1. Kablov E.N., Lukina E.A., Sbitneva S.V., Khokhlatova L.B., Zaitsev D.V. Formation of metastable phases during the decomposition of a solid solution in the process of artificial aging of Al-alloys. Tekhnologiya legkikh splavov, 2016, no. 3, pp. 7–17.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577 / 2071-9140-2020-0-1-3-11.
3. Grigorenko V.B., Morozovа L.V. The usage of fractographic analysis to diagnostic the causes of destruction of products from medium-carbon steel. Trudy VIAM, 2018, no. 8 (68), paper no. 10. Available at: http://www.viam-works.ru (accessed: December 1, 2020). DOI: 10.18577/2307-6046-2018-0-8-98-111.
4. Voznesenskaya N.M., Shestakov I.I., Tonysheva O.A. Influence of modes of annealing on tendency to brittle fracture of large-size forgings from high-strength corrosion-resistant steel 18kH13N4K4S2АМ3. Trudy VIAM, 2016, no. 12, paper no. 04. Available at: http://www.viam-works.ru (accessed: December 1, 2020). DOI: 10.18577/2307-6046-2016-0-12-4-4.
5. Gerasimov S.A., Kuksenova L.I., Lapteva V.G. Structure and wear resistance of nitrided structural steels and alloys. 2nd ed., rev. Moscow: Publishing house of MSTU im. N.E. Bauman, 2014, 518 p.
6. Utevsky L.M., Glikan E.E., Kark G.S. Reversible temper brittleness of steel and iron alloys. Moscow: Metallurgiya, 1987, 222 p.
7. Sevalnev G.S., Antsyferova M.V., Dulnev K.V., Sevalneva T.G., Vlasov I.I. Influence of nitrogen concentration on the structure and properties of sparingly alloyed struc-tural steel. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 10–16. DOI: 10.18577/2071-9140-2020-0-2-10-16.
8. Vasilyeva A.G., Komissarova L.A., Goryushin V.V. Stability of deformation hardening of martensite against tempering. Metallovedenie i termicheskaya obrabotka metallov, 1978, no. 9, pp. 26–29.
9. Seach M.P. Interface adsorption, embrittlement and fracture in metallurgy. Surface Science, 1975, vol. 53, no. 1, pp. 168–212.
10. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategic directions for the development of structural materials and technologies for their processing for aircraft engines of the present and future. Avtomaticheskaya svarka, 2013, no. 10, pp. 23–32.
11. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12.Arkharov V.I., Ivanovskaya S.I., Kolesnikova N.M., Fafanova T.A. On the mechanism of phosphorus influence on tempering brittleness of steel. Fizika metallov i metallovedenie, 1956, vol. 2, is. 1, pp. 57–56.
13. Inman M.C., Tipler H.R. Grain-boundary segregation of phosphorus in an iron-phosphorus alloy and the effect upon mechanical properties. Acta metallurgica, 1958, vol. 26, no. 2, pp. 72–84.
14. Cahn J.W., Hilliard J.E. Grain-boundary segregation of P in an Fe–P alloy and effect upon mechanical properties. Acta metallurgica, 1959, vol. 7, no. 3, pp. 219–222.
15. McLean D. Grain Boundaries in Metals. Moscow: Metallurgizdat, 1960, 322 p.
16. Utevsky L.M. Tempering brittleness of steel. Moscow: Metallurgizdat, 1961, 190 p.
17. Marcus H.L., Palmberg P.W. Auger fracture surfase analysis of a temper embrittled 3340 steel. Transactions of metallurgical society of AIME, 1969, vol. 245, no. 7, pp. 1664–1666.
18. Stein D.F., Joshi A., LaForce R.P. Studies utilizing auger electron emission spectroscopy on temper embrittlement in low alloy steels. ASM Transactions Quarterly, 1969, vol. 62, pp. 776–783.
19. Joshi A., Stein D.F. Temper embrittlement of low alloy steels. ASTM STP, 1972, no. 499. P. 59–89.
20. Viswanathan R. Temper embrittlement in a Ni–Cr steel containing phosphorus as impurity. Me-tallurgical transactions, 1971, vol. 2, no. 3, pp. 809–815.
21. Marcus H.L., Hackett L.H., Palmberg P.W. Effect of solute elements on temper embrittlement of low alloy steels. ASTM STP, 1972, no. 499, pp. 90–103.
22. Seah M.P. Adsorption-induced interface decohesion. Acta metallurgica, 1980, vol. 28, p. 955–964.
23. Savitsky I.A., Skakov Yu.A. On the effect of deformation on the width of X-ray lines of carbon-free martensite. Izvestiya vuzov. Chernaya metallurgiya, 1972, no. 1, pp. 124–126.
24. Vylezhnev V.P., Kleiner L.M., Kurdyumov G.V., Sarrak V.I. On the effect of plastic deformation on the state of a solid solution of carbon in martensite of hardened steel. Fizika metallov i metallovedenie, 1967, vol. 24. 22, pp. 186–189.
25. Kurdyumov G.V., Utevsky L.M., Entin R.I. Transformations in iron and steel. Moscow: Nauka, 1977, 238 p.
26. Blanter M.E., Gasanov M.G., Gulyaeva N.A. Fine crystal structure of the surface layer of steel subjected to hardening treatment with a roller. Metallovedenie i termicheskaya obrabotka metallov, 1966, no. 3, pp. 13–15.
27. Myasnikov Yu.G. X-ray studies of shot-blasting hardening. Surface quality of machine parts. Moscow: Publishing house of the Academy of Sciences of the USSR, 1961, pp. 256–259.
28. Shigarev A.S. Investigation of the fine structure of surface-hardened fatigue specimens of low-tempered steels. Metallovedenie i termicheskaya obrabotka metallov, 1962, no. 3, pp. 25–29.
29. Guttmann M. Equilibrium segregation in a ternary solution: a model for temper embrittlement. Surface Science, 1975, vol. 53, pp. 213–227.
30. Krahe P.R., Guttmann M. On the segregation of manganese and antimony to the grain boundaries of temper embrittled steel. Scripta metallurgica, 1973, vol. 7, pp. 387–394.
31. Coad J.P., Riviere J.C., Guttmann M. Reversibiliti of temper embrittlement studied by combined XPS and AES. Acta metallurgica, 1977, vol. 25, no. 2, pp. 161–172.
32. Guttmann M., Krahe P.R., Abel F. et al. Temper embrittlement and intergranular segregation of antimony: a quantitative analysis performed with the backscattering of energetic ions. Metallurgical transactions, 1974, vol. 5, no. 1, pp. 167–177.
33. Glikman E.E. On the decrease in the surface energy of grain boundaries in alloys during embrittlement caused by the enrichment of boundaries with impurities. Fizika metallov i metallovedenie, 1968, vol. 26, no. 2, pp. 233–240.
34. Glikman E.E., Bruver R.N., Sarychev K.Yu. On the effect of carbon on intercrystalline internal adsorption and grain adhesion in iron-phosphorus alloys. Doklady Akademii nauk SSSR, 1971, vol. 200, no. 5, pp. 1055–1058.
35. Woodward J., Burstein G.T. Surface segregation in 3Cr–0,5Mo steel. Metal science, 1980, vol. 14, no. 11, pp. 529–533.
36. Lea C., Seah M.P. Site competition surface segregation. Surface science, 1975, vol. 53, pp. 272–285.
37. Briant C.L. The effect of nickel, chromium, and manganese on phosphorus segregation in low alloy steels. Scripta metallurgica, 1981, vol. 15, no. 9, pp. 1013–1018.
38. Yuriev S.F., Kusnitsyna Z.I. Structural features of structural steel in a state of reversible temper brittleness. Fizika metallov i metallovedenie, 1956, vol. 3, is. 2, pp. 282–298.
39. Ustinovshchikov Yu.I. Isolation of the second phase in solid solutions. Moscow: Nauka, 1988, 175 p.
40. Joshi A. Segregation at selective grain bounderies and its role in temper embrittlement of alloy steels. Scripta metallurgica, 1975, vol. 9, pp. 251–260.
41. Briant C.L., Feng H.C., McMahon C.J. Embrittlement of a 5 pct nickel high strength steel by impurities and their effects on hydrogen-induced cracking. Metallurgical transactions, 1978, vol. 9A, no. 5, pp. 625–632.
42. Erhart H., Grabke H.J., Moller R. Kongrenzenanreicherung und versprodende Wirkung des Phosphors in Eisenbasis-Legierungen und niedriglegierten Stahlen. Archive fur das Eisenhuttenwesen, 1981, vol. 52, no. 11, pp. 451–456.
43. Erhart H., Grabke H.J. Equilibrium segregation of phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P, Fe–Cr–C–P alloys. Metal science, 1981, vol. 15, no. 9, pp. 401–408.
44. Erhart H., Grabke H.J. Site competition in grain boundary segregation of phosphorus and nitrogen in iron. Scripta metallurgica, 1981, vol. 15, no. 5, pp. 531–534.
45. Suzuki S., Obata M., Abiko K., Kimura H. Role of carbon in preventing the intergranular fracture in iron-phosphorous alloys. Transactions of The Iron and Steel Institute of Japan, 1985, vol. 25, pp. 62–68.
46. Preece A., Carter R.D. Temper brittleness in high-puriti iron-base alloys. The journal of Iron and Steel Institute, 1953, vol. 173, no. 4, pp. 387–396.
47. Woodline B.C. Some aspects of temper brittleness. The journal of Iron and Steel Institute, 1953, vol. 173, no. 3, pp. 240–245.
48. Smith C.L., Low J.R. Effect of prior austenitic grain boundary composition of temper brittleness in a Ni–Cr–Sb steel. Metallurgical transactions, 1974, vol. 5, no. 2, pp. 279–285.
49. Seah M.P. Grain boundary segregation and the T-t dependence of temper brittleness. Acta metallurgica, 1977, vol. 25, no. 3, pp. 345–357.
50. Cianelli A.K., Feng H.C., Ucisik A.H., McMahon C.J. Temper embrittlement of Ni–Cr steel by Sn. Metallurgical transactions, 1977, vol. 8A, no. 7, pp. 1059–1061.
51. Ustinovshchikov Yu.I., Bannykh O.A. The nature of temper brittleness of steels. Moscow: Nauka, 1977, 238 p.
52. Ustinovshchikov Yu.I. Secondary hardening of structural alloy steels. Moscow: Metallurgiya, 1982, 127 p.
53. Novikov I.I. Theory of heat treatment of metals. Moscow: Metallurgy, 1986, 480 p.
54. Ustinovshikov Y.I. Effects of alloing elements, impuritis, and carbon on temper embrittlement of steels. Metal science, 1984, vol. 18, no. 12, pp. 545–548.
55. Ustinovshchikov Yu.I. The nature of the influence of various components on the tempering brittleness of steels. Fizika metallov i metallovedenie, 1985, vol. 59, no. 3, pp. 524–532.
56. Bokshtein B.S., Khodan A.N., Zabusov O.O., Maltsev D.A., Gurovich B.A. Kinetics of phosphorus segregation at grain boundaries in low-alloy low-carbon steel. Fizika metallov i metallovedenie, 2014.Vol. 115.No. 2.P. 156.
57. Ucisik A.H., McMahon C.J., Feng Jr.C., Feng H.C. The influence of intercritical heat treatment on the temper embrittlement susceptibiliti of a P-doped Ni–Cr steel. Metallurgical transactions, 1978, vol. 9A, no. 3, pp. 321–329.
58. Lea P.C., Arnold R.N. The embrittlement of alloy steels. Proceeding of the Institution of Mechanical Engineers. 1935, vol. 131, pp. 539–553.