1. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials. Rossiyskie nanotekhnologii, 2013, no. 3–4, pp. 28–46.
2. Irzhak V.I. Epoxy composite materials with carbon nanotubes. Uspekhi khimii, 2011, vol. 80, no. 8, pp. 821–840.
3. Singh N.P., Gupta V.K., Singh A.P. Graphene and carbon nanotube reinforced epoxy nanocomposites: a review. Polymer, 2019, vol. 180, art. 121724.
4. Roy S., Petrova R.S., Mitra S. Effect of сarbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnology Reviews, 2018, vol. 7, pp. 475–485.
5. Sharma H., Kumar A., Rana S., Guadagno L. An overview on carbon fiber-reinforced epoxy composites: effect of graphene oxide incorporation on composites performance. Polymers, 2022, vol. 14, art. 1548.
6. Kondrashov S.V., Grachev V.P., Akatenkov R.V., Aleksashin V.N. et al. Modification of epoxy polymers with small additives of multiwall carbon nanotubes. Vysokomolekulyarnye soedineniya. Ser.: A, 2014, vol. 56, no. 3, pp. 316–322.
7. Dubey R., Dutta D., Sarkar A., Chattopadhyay P. Functionalized carbon nanotubes: synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Advances, 2021, vol. 3, pp. 5722–5744.
8. Perepechko I.I. Introduction to polymer physics. Moscow: Khimiya, 1978, 312 p.
9. Menard K. Dynamic Mechanical Analysis: A Practical Introduction. 2nd ed. CRC Press, 2008, 240 p.
10. Startsev V.O., Lebedev M.P., Molokov M.V. Determination of the glass-transition temperature of GRPS and CFRPS using a torsion pendulum in regimes of freely damped vibrations and quasi-stastic torsion of specimens. Mechanics of Composite Materials, 2018, vol. 54, no. 1, pp. 13–22.
11. Startsev V.O., Molokov M.V., Grebeneva T.A., Tkachuk A.I. Dynamic mechanical and thermomechanical analysis of reversible plasticization of epoxy-diane resin-diaminodiphenylsulfon system by moisture. Polymer Science. Ser.: A, 2017, vol. 59, no. 5, pp. 640–648.
12. Startsev O.V., Vapirov Yu.M., Lebedev M.P., Kychkin A.K. Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis. Mechanics of Composite Materials, 2020, vol. 56, no. 2, pp. 227–240.
13. Wang S., Liang Z., Gonnet P., Liao Y.-H., Wang B., Zhang C. Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites. Advanced Functional Materials, 2007, vol. 17, pp. 87–92.
14. Wang S., Tambraparni M., Qiu J., Tipton J., Dean D. Thermal expansion of graphene composites. Macromolecules, 2009, vol. 42, pp. 5251–5255.
15. Thakre P.R., Bisrat Y., Lagoudas D.C. Electrical and mechanical properties of carbon nanotube-epoxy nanocomposites. Journal of Applied Polymer Science, 2010, vol. 116, pp. 191–202.
16. Seong M., Kim D.S. Effects of facile amine functionalization on the physical properties of epoxy/graphene nanoplatelets nanocomposites. Journal of Applied Polymer Science, 2015, vol. 132, art. 42269.
17. Chhetri S., Adak N.C., Samanta P. et al. Functionalized reduced graphene oxide/epoxy composites with enhanced mechanical properties and thermal stability. Polymer Testing, 2017, vol. 63, pp. 1‒11.
18. Jen Y.-M., Chang H.-H., Lu C.-M., Liang S.-Y. Temperature-Dependent Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Tensile Quasi-Static and Fatigue Properties of Epoxy Nanocomposites. Polymers, 2020, vol. 13, art. 84.
19. Liang X., Dai F. Epoxy nanocomposites with reduced graphene oxide-constructed three-dimensional networks of single wall carbon nanotube for enhanced thermal management capability with low filler loading. ACS Applied Materials Interfaces, 2020, vol. 12, pp. 3051–3058.
20. Pathak A.K., Garg H., Singh M. et al. Enhanced interfacial properties of graphene oxide incorporated carbon fiber reinforced epoxy nanocomposite: a systematic thermal properties investigation. Journal of Polymer Research, 2019, vol. 26, art. 23.
21. Auad M.L., Mosiewicki M.A., Uzunpinar C., Williams R.J.J. Functionalization of carbon nanotubes and carbon nanofibers used in epoxy/amine matrices that avoid partitioning of the monomers at the fiber interface. Polymer Engineering & Science, 2009, vol. 50, pp. 183–190.
22. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Mechanical properties of CNT nanocomposites (review). Trudy VIAM, 2016, no. 5 (41), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 13, 2024). DOI: 10.18577/2307-6046-2016-0-5-8-8.
23. Zagora A.G., Kondrashov S.V., Antyufeeva N.V., Pykhtin A.A. Research of influence of technological modes of production of epoxy nanocomposites with carbon nanotubes on their heat resistance. Trudy VIAM, 2019, no. 1 (73), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 13, 2024). DOI: 10.18577/2307-6046-2019-0-1-64-73.
24. Arribas C., Prolongo M.G., Sánchez-Cabezudo M. et al. Hydrothermal ageing of graphene/carbon nanotubes/epoxy hybrid nanocomposites. Polymer Degradation and Stability, 2019, vol. 170, art. 109003.
25. Sánchez-Romate X.F., Terán P., Prolongo S.G. et al. Hydrothermal ageing on self-sensing bonded joints with novel carbon nanomaterial reinforced adhesive films. Polymer Degradation and Stability, 2020, vol. 177, art. 109170.
26. Wang Y., Zhu W., Wan B. et al. Hygrothermal ageing behavior and mechanism of carbon nanofibers modified flax fiber-reinforced epoxy laminates. Composites: Part A, 2021, vol. 140, art. 106142.
27. Awad S.A., Fellows C.M., Mahini S.S. Effects of accelerated weathering on the chemical, mechanical, thermal and morphological properties of an epoxy/multi-walled carbon nanotube composite. Polymer Testing, 2017, vol. 66, pp. 70–77.
28. Awad S.A., Fellows C.M., Mahini S.S. Evaluation of bisphenol A-based epoxy resin containing multiwalled carbon nanotubes to improve resistance to degradation. Journal of Composite Materials, 2018, vol. 53, pp. 2981–2991.
29. Mach P., Geczy A., Polansky R., Bušek D. Glass transition temperature of nanoparticle-enhanced and environmentally stressed conductive adhesive materials for electronics assembly. Journal of Materials Science: Materials in Electronics, 2019, vol. 30, pp. 4895–4907.
30. Gkikas G., Douka D.-D., Barkoula N.-M., Paipetis A.S. Nano-enhanced composite materials under thermal shock and environmental degradation: a durability study. Composites Part B: Engineering, 2015, vol. 70, pp. 206–214.
31. Kondrashov S.V., Merkulova Y.I., Marakhovskii P.S., Shashkeev K.A., Popkov O.V., Startsev O.V., Molokov M.V., Kurshev E.V., D'yachkova T.P., Yurkov G.Y. Degradation of physicomechanical properties of epoxy nanocomposites with carbon nanotubes upon heat and humidity aging. Russian Journal of Applied Chemistry, 2017, vol. 90, no. 5, pp. 788–796.
32. Bolshakov V.A., Kondrashov S.V., Merkulova Y.I., Dyachkova T.P., Yurkov G.Y., Ilyichyov F.V. Research of nanomodified carbon composites before and after hydrothermal aging. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 61–66. DOI: 10.18577/2071-9140-2015-0-2-61-66.
33. Glaskova-Kuzmina T., Aniskevich A., Papanicolaou G. et al. Hydrothermal Aging of an Epoxy Resin Filled with Carbon Nanofillers. Polymers, 2020, vol. 12, no. 5, art. 1153.
34. Yang T., Lu S., Song D. et al. Effect of nanofiller on the mechanical properties of carbon fiber/epoxy composites under different aging conditions. Materials, 2021, vol. 14, art. 7810.
35. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composite materials. Moscow: VIAM, 2021, 528 p.
36. Kablov E.N., Chursova L.V., Babin A.N. et al. Developments of FSUE VIAM in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
37. Mishurov K.S., Pavlovskiy K.A., Imametdinov E.Sh. Environmental effects on properties of CFRP (carbon fiber reinforced plastic) VKU-27L. Trudy VIAM, 2018, no. 3 (63), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 13, 2023). DOI: 10.18577/2307-6046-2018-0-3-60-67.
38. Slavin A.V., Startsev O.V. Properties of aircraft glass- and carbonfibers reinforced plastics at the early stage of natural weathering. Trudy VIAM, 2018, no. 9 (69), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 13, 2023). DOI: 10.18577/2307-6046-2018-0-9-71-82.
39. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solventfree binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 13, 2023). DOI: 10.18577/2307-6046-2021-0-5-114-126.
40. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Trudy VIAM, 2020, no. 12 (94), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 13, 2023). DOI: 10.18577/2307-6046-2020-0-12-47-58.
41. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Constructional carbon the plastics modified by nanoparticles. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 277–286.
42. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
43. Startsev O.V., Kablov E.N., Makhonkov A.Yu. Regularities of the α-transition of epoxy binder composite materials according to dynamic mechanical analysis. Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyenie, 2011. Special issue: Advanced structural materials and technologies, pp. 104–113.
44. Chen C.-M., Chang H.-L., Lee C.-Y. Improvement prediction on the dynamic performance of epoxy composite Uued in packaging by using nano-particle reinforcements in addition to 2-hydroxyethyl methacrylate toughener. Materials, 2021, vol. 14, art. 4193.
45. Marakhovskii P.S., Ospennikova O.G., Vorob'ev N.N. et al. Еvaluation of the variability of glass transition temperature of carbon-fiber-reinforced plastic fabricated by autoclave molding. Polymer Science. Ser.: D, 2020, vol. 13, no 1, pp. 73–79.
46. Odegard G.M., Bandyopadhyay A. Physical aging of epoxy polymers and their composites. Journal of Polymer Science Part B: Polymer Physics, 2011, vol. 49, pp. 1695–1716.
47. Startsev O.V., Krotov A.S., Golub P.D. Effect of climatic and radiation ageing on properties of VPS-7 glass fibre reinforced epoxy composite. Polymer Degradation and Stability, 1999, vol. 63, pp. 353–358.
48. Startsev V.O., Nikolaev E.V., Vardanyan A.M., Nechaev A.A. The influence of climatic factors on residual stresses in nanomodified cyanate ester-based CFRP. Trudy VIAM, 2021, no. 8 (102), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 13, 2023). DOI: 10.18577/2307-6046-2021-0-8-104-112.
49. Herakovich C.T., Hier M.W. Damage-induced property changes in composites subjected to cyclic thermal loading. Engineering Fracture Mechanics, 1986, vol. 25, pp. 779–791.