1. Fei F., Kirby L., Gralczyk A., Song X. Binder-free additive manufacturing of ceramics using hydrothermal-assisted jet fusion. Journal of the European Ceramic Society, 2023, vol. 43, no. 14, pp. 6308–6320. DOI: 10.1016/j.jeurceramsoc.2023.06.056.
2. Markandan K., Seetoh I.P., Lai C.Q. Mechanical anisotropy of graphene nanocomposites induced by graphene alignment during stereolithography 3D printing. Journal of Materials Research, 2021, vol. 36, pp. 4262–4274. DOI: 10.1557/s43578-021-00400-5.
3. Demidenko E.V., Kuzmin S.V., Kirik D.I. 3D printing of antenna-feeder devices using polymeric materials. Elektronika i mikroelektronika SVCh, 2018, no. 1, pp. 491–495.
4. Wang X., Jiang M., Zhou Z. et al. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 2017, vol. 110, pp. 442–458.
5. Hu X., Sansi Seukep A.M., Senthooran V. et al. Progress of Polymer-Based Dielectric Composites Prepared Using Fused Deposition Modeling 3D Printing. Nanomaterials, 2023, vol. 13, no. 19, pp. 2711–2735. DOI: 10.3390/nano13192711.
6. Bondar D. Open-Cavity Plastic Housings for Integrated and Microwave Electronics. Komponenty i tekhnologii, 2016, no. 11, pp.137–144.
7. Light D.N., Wilcox J.R. Process considerations in the fabrication of fluoropolymer printed circuit boards. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 1995, vol. 18, no. 1, pp. 118–126.
8. Sebastian M.T., Jantunen H. Low loss dielectric materials for LTCC applications: a review. International Materials Reviews, 2008, vol. 53, no. 2, pp. 57–90.
9. Sahin S., Nahar N.K., Sertel K. Dielectric properties of low-loss polymers for mmW and THz applications. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, vol. 40, pp. 557–573.
10. Fontana A. Implementation of 3D printing and laser machining manufacturing technologies for the conception of high-frequency ceramic devices and their integration in modern communication systems. Electronic. Universit´e de Limoges, 2022, 250 p.
11. Ahmad I., Dildar H., Khan R. et al. Design and experimental analysis of multiband compound reconfigurable 5G antenna for sub-6 GHz wireless applications. Wireless Communications and Mobile Computing, 2021, vol. 1, pp. 1–14. DOI: 10.1155/2021/5588105.
12. Kumar N., Khanna R. A two element MIMO antenna for sub-6 GHz and mmWave 5G systems using characteristics mode analysis. Microwave and Optical Technology Letters, 2021, vol. 63, no. 2, pp. 587–595.
13. Bobrova Yu., Rakhmyatullin A. Liquid Crystal Polymers ‒ Promising Materials for Printed Circuit Boards of RF/Microwave Operating Ranges. Tekhnologii v elektronnoy promyshlennosti, 2021, no. 5, pp. 20–25.
14. Bogdanov Yu., Kochemasov V., Khas'yanova E. Foiled dielectrics – how to choose the best option for printed circuit boards of RF/microwave ranges. Part 1. Tekhnologii, 2013, no. 2, pp. 156–168.
15. Kirtania S.G., Elger A.W., Hasan Md.R. et al. Flexible antennas: a review. Micromachines, 2020, vol. 11, no. 9, p. 847.
16. Quan B., Liang X., Ji G. et al. Dielectric polarization in electromagnetic wave absorption: review and perspective. Journal of Alloys and Compounds, 2017, vol. 728, pp. 1065–1075.
17. Wang L., Yang J., Cheng W. et al. Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission. Frontiers in Materials, 2021, vol. 8, p. 434. DOI: 10.3389/fmats.2021.774843.
18. Azlan A., Kamal M., Ali M.T. et al. A comparative study of material Leucaena leucocephala stem wood plastic composite (WPC) substrate with FR4 substrate throughout single patch antenna design. Progress In Electromagnetics Research B, 2014, vol. 59, pp. 151–166.
19. Willis O.R. Characterizing Fluoropolymeric Materials for Microelectronics and MEMS Packaging. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, vol. 28, pp. 118–144. DOI: 10.1109/MEMSYS.2010.5442456.
20. Sazhina B.I. Electrical properties of polymers. Leningrad: Khimiya, 1977, 191 p.
21. Bartenev G.M., Zelenev Yu.V. Physics and mechanics of polymers. Moscow: Vysshaya shkola, 1983, p. 391.
22. Zulkifli A. Polymer Dielectric Materials. IntechOpen. 2012, pp. 3–26. DOI: 10.5772/50638.
23. Anthony J. Bur Dielectric properties of polymers at microwave frequencies. Polymer, 1985, vol. 26, pp. 963–977.
24. Koulouridis S., Kiziltas G., Zhou Y. et al. Polymer–Ceramic Composites for Microwave Applications. Fabrication and Performance Assessment. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 12, pp. 4202–4208. DOI: 10.1109/tmtt.2006.885887.
25. Subodh G., Deepu V., Mohanan P., Sebastian M.T. Dielectric response of high permittivity polymer ceramic composite with low loss tangent. Applied Physics Letters, 2009, vol. 95, no. 6. DOI: 10.1063/1.3200244.
26. Manu K.M., Soni S., Murthy V.R.K., Sebastian M.T. Ba(Zn1/3Ta2/3)O3 ceramics reinforced high density polyethylene for microwave applications. Journal of Materials Science: Materials in Electronics, 2013, vol. 24, no. 6, pp. 2098–2105. DOI: 10.1007/s10854-013-1064-y.
27. George S., Deepu V.N., Mohanan P., Sebastian M.T. Influence of Ca[(Li1/3Nb2/3)0.8Ti0.2]O3-δ filler on the microwave dielectric properties of polyethylene and polystyrene for microelectronic applications. Polymer Engineering & Science, 2009, vol. 50, no. 3, pp. 570–576. DOI: 10.1002/pen.21554.
28. Takahashi S., Imai Y., Kan A. et al. Preparation and characterization of isotactic polypropylene/MgO composites as dielectric materials with low dielectric loss. Journal of the Ceramic Society of Japan, 2013, vol. 121, no. 1416, pp. 606–610. DOI: 10.2109/jcersj2.121.606.
29. Sasikala T.S., Sebastian M.T. Mechanical, thermal and microwave dielectric properties of Mg2SiO4 filled Polyteterafluoroethylene composites. Ceramics International, 2016, vol. 42, no. 6, pp. 7551–7563. DOI: 10.1016/j.ceramint.2016.01.162.
30. Thomas S., Deepu V.N., Mohanan P., Sebastian M.T. Effect of Filler Content on the Dielectric Properties of PTFE/ZnAl2O4–TiO2 Composites. Journal of the American Ceramic Society, 2008, vol. 91, no. 6, pp. 1971–1975. DOI: 10.1111/j.1551-2916.2008.02365.x.
31. Yao M., Yuan Y., Li E. et al. Effects of (Na1/2Nd1/2)TiO3 on the microstructure and microwave dielectric properties of PTFE/ceramic composites. Journal of Materials Science: Materials in Electronics, 2018, vol. 29, pp. 20680–20687. DOI: 10.1007/s10854-018-0206-7.
32. Huang E.-Q., Zhao J., Zha J.-W. et al. Preparation and wide-frequency dielectric properties of (Ba0.5Sr0.4Ca0.1)TiO3/poly(vinylidene fluoride) composites. Journal of Applied Physics, 2014, vol. 115, no. 19. рр. 194102-1–194102-6. DOI: 10.1063/1.4876748.
33. Rajesh S., Murali K.P., Priyadarsini V. et al. Microwave Dielectric Properties of Rutile Filled PEEK Composites. Polymer-Plastics Technology and Engineering, 2008, vol. 47, no. 3, pp. 242–246. DOI: 10.1080/03602550701866691.
34. Xiang F., Wang H., Yao X. Dielectric properties of SrTiO3/POE flexible composites for microwave applications. Journal of the European Ceramic Society, 2007, vol. 27, no. 8–9, pp. 3093–3097. DOI: 10.1016/j.jeurceramsoc.2006.11.034.
35. Graça M.P.F., Sabóia K.D.A., Amaral F., Costa L.C. Microwave Dielectric Properties of CCTO/PVA Composites. Advances in Materials Science and Engineering, 2018, no. 1, pp. 1–7. DOI: 10.1155/2018/6067519.
36. Takahashi S., Imai Y., Kan A. et al. High-frequency dielectric and mechanical properties of cyclo-olefin polymer/MgO composites. Polymer Bulletin, 2015, vol. 72, no. 7, pp. 1595–1601. DOI: 10.1007/s00289-015-1358-8.
37. Castles F., Isakov D., Lui A. et al. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Scientific reports, 2016, vol. 6, no. 22714, pp. 1–8. DOI: 10.1038/srep22714.
38. Westphal W.B., Sils A. Dielectric Constant and Loss Data: Technical Rept. AFML-TR-72-39. 1972, р. 62.
39. Sasikala T.S., Raman S., Mohanan P. et al. Effect of silane coupling agent on the dielectric and thermal properties of DGEBA-forsterite composites. Journal of Polymer Research, 2010, vol. 18, no. 4, pp. 811–819. DOI: 10.1007/s10965-010-9478-1.
40. Thomas D., Janardhanan C., Sebastian M.T. Mechanically Flexible Butyl Rubber-SrTiO3 Composite Dielectrics for Microwave Applications. International. Journal of Applied Ceramic Technology, 2011, vol. 8, no. 5, pp. 1099–1107. DOI: 10.1111/j.1744-7402.2010.02584.x.
41. Namitha L.K., Ananthakumar S., Sebastian M.T. Aluminum nitride filled flexible silicone rubber composites for microwave substrate applications. Journal of Materials Science: Materials in Electronics, 2014, vol. 26, no. 2, pp. 891–897. DOI: 10.1007/s10854-014-2479-9.
42. Simpkin R. Derivation of Lichtenecker's Logarithmic Mixture Formula From Maxwell's Equations. Trans Microwave Theory and Techniques, 2010, vol. 58, pp. 545–550.
43. Goncharenko A.V., Lozovski V.Z., Venger E.F. Lichtenecker's equation: applicability and limitations. Optics Communications, 2000, vol. 174, pp. 19–32.
44. Rayleigh L. LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. The philosophical magazine. Ser.: 5, 1892, vol. 34, pp. 481–502.
45. Maxwell J.C. Electricity and Magnetism. Oxford: Clarendon Press, 1982, vol. 1, pp. 1831–1879.
46. Bruggeman D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik, 1935, vol. 416, pp. 636–664.
47. Jayasundere N., Smith B.V. Dielectric constant for binary piezoelectric 0–3 composites. Journal of Applied Physics, 1993, vol. 73, no. 5, pp. 2462–2466.
48. Yamada T., Ueda T., Kitayama T. Piezoelectricity of a high-content lead zirconate titanate/polymer composite. Journal of Applied Physics, 1982, vol. 53, no. 6, pp. 4328–4332.
49. Progelhof R.C., Throne J.L., Ruetsch R.R. Methods for predicting the thermal conductivity of composite systems: a review. Polymer Engineering & Science, 1976, vol. 16, no. 9, pp. 615–625.
50. Cheng S.C., Vachon R.I. The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. International Journal of Heat and Mass Transfer, 1969, vol. 12, no. 3, pp. 249–264.
51. Halpin J.C. Stiffness and expansion estimates for oriented short fiber composites. Journal of composite materials, 1969, vol. 3, no. 4, pp. 732–734.
52. Halpin J.C., Kardos J.L. The Halpin–Tsai equations: a review. Polymer Engineering and Science, 1976, vol. 16, pp. 344–352.
53. Zhang Q., Gao F., Hu G. et al. Characterization and dielectric properties of modified Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites with high dielectric tunability. Composites Science and Technology, 2015, vol. 118, pp. 94–100. DOI: 10.1016/j.compscitech.2015.08.013.
54. Jin S., Wang L., Wang Z. et al. Dielectric properties of modified SrTiO3/PTFE composites for microwave RF antenna applications. Journal of Materials Science: Materials in Electronics, 2015, vol. 26, no. 10, pp. 7431–7437. DOI: 10.1007/s10854-015-3374-8.
55. Hu Y., Zhang Y., Liu H., Zhou D. Microwave dielectric properties of PTFE/CaTiO3 polymer ceramic composites. Ceramics International, 2011, vol. 37, no. 5, pp. 1609–1613. DOI: 10.1016/j.ceramint.2011.01.039.
56. Jiang P., Bian J. Low dielectric loss BST/PTFE composites for microwave applications. International Journal of Applied Ceramic Technology, 2019, vol. 16, no. 1, pp. 152–159. DOI: 10.1111/ijac.13083.
57. Yang Q., Shi Z., Ma D. et al. Flexible PbTiO3-nanowires/P (VDF-TrFE) composite films and their dielectric, ferroelectric and pyroelectric properties. Ceramics International, 2018, vol. 44, no. 12, pp. 14850–14856. DOI: 10.1016/j.ceramint.2018.05.118.
58. Peng H., Ren H., Dang M. et al. Novel high dielectric constant and low loss PTFE/CNT composites. Ceramics International, 2018, vol. 44, no. 14, pp. 16556–16560. DOI: 10.1016/j.ceramint.2018.06.077.
59. Zheng L., Zhou J., Shen J. et al. The dielectric properties and dielectric mechanism of perovskite ceramic CLST/PTFE composites. Journal of Materials Science: Materials in Electronics, 2017, vol. 28, no. 16, pp. 11665–11670. DOI: 10.1007/s10854-017-6969-4.
60. Rajesh S., Murali K.P., Ratheesh R. Preparation and characterization of high permittivity and low loss PTFE/CaTiO3 microwave laminates. Polymer Composites, 2009, vol. 30, no. 10, pp. 1480–1485. DOI: 10.1002/pc.20716.
61. Rajesh S., Murali K.P., Rajani K.V., Ratheesh R. SrTiO3-Filled PTFE Composite Laminates for Microwave Substrate Applications. International Journal of Applied Ceramic Technology, 2009, vol. 6, no. 5, pp. 553–561. DOI: 10.1111/j.1744-7402.2009.02389.x.
62. Rajesh S., Murali K.P., Priyadarsini V. et al. Rutile filled PTFE composites for flexible microwave substrate applications. Materials Science and Engineering: B, 2009, vol. 163, no. 1, pp. 1–7. DOI: 10.1016/j.mseb.2009.04.011.
63. Wu K.-T., Yuan Y., Zhang S.-R. et al. ZrTi2O6 filled PTFE composites for microwave substrate applications. Journal of Polymer Research, 2013, vol. 20, no. 8, pp. 1–6. DOI: 10.1007/s10965-013-0223-4.
64. Peng H., Ren H., Dang M. et al. The dimensional effect of MgTiO3 ceramic filler on the microwave dielectric properties of PTFE/MgTiO3 composite with ultra-low dielectric loss. Journal of Materials Science: Materials in Electronics, 2019, vol. 30, pp. 6680–6687. DOI: 10.1007/s10854-019-00977-y.
65. Yuan Y., Zhang S.R., Zhou X.H., Li E.Z. MgTiO3 filled PTFE composites for microwave substrate applications. Materials Chemistry and Physics, 2013, vol. 141, no. 1, pp. 175–179. DOI: 10.1016/j.matchemphys.2013.04.043.
66. James N.K., Jacob K.S., Murali K.P., Ratheesh R. Ba(Mg1/3Ta2/3)O3 filled PTFE composites for microwave substrate applications. Materials Chemistry and Physics, 2010, vol. 122, no. 2–3. P. 507–511. DOI: 10.1016/j.matchemphys.2010.03.035.
67. Luo F., Tang B., Fang Z. et al. Effects of coupling agent on dielectric properties of PTFE based and Li2Mg3TiO6 filled composites. Ceramics International, 2019, vol. 45, no. 8, pp. 20458–20464. DOI: 10.1016/j.ceramint.2019.07.023.
68. Subodh G., Joseph M., Mohanan P., Sebastian M.T. Low Dielectric Loss Polytetrafluoroethylene/TeO2 Polymer Ceramic Composites. Journal of the American Ceramic Society, 2007, vol. 90, no. 11, pp. 3507–3511. DOI: 10.1111/j.1551-2916.2007.01914.x.
69. Joseph T., Uma S., Philip J., Sebastian M.T. Electrical and thermal properties of PTFE-Sr2ZnSi2O7 composites. Journal of Materials Science: Materials in Electronics, 2010, vol. 22, no. 8, pp. 1000–1009. DOI: 10.1007/s10854-010-0250-4.
70. Murali K.P., Rajesh S., Prakash O. et al. Comparison of alumina and magnesia filled PTFE composites for microwave substrate applications. Materials Chemistry and Physics, 2009, vol. 113, no. 1, pp. 290–295. DOI: 10.1016/j.matchemphys.2008.07.089.
71. James N.K., Rajesh S., Murali K.P. et al. Preparation and microwave characterization of BaWO4 filled polytetrafluoroethylene laminates for microwave substrate applications. Journal of Materials Science: Materials in Electronics, 2010, vol. 21, no. 12, pp. 1255–1261. DOI: 10.1007/s10854-010-0058-2.
72. Sasikala T.S., Sebastian M.T. Mechanical, thermal and microwave dielectric properties of Mg2SiO4 filled Polyteterafluoroethylene composites. Ceramics International, 2016, vol. 42, no. 6, pp. 7551–7563. DOI: 10.1016/j.ceramint.2016.01.162.
73. Murali K.P., Rajesh S., Jacob K.S. et al. Preparation and characterization of cordierite filled PTFE laminates for microwave substrate applications. Journal of Materials Science: Materials in Electronics, 2009, vol. 21, no. 2, pp. 192–198. DOI: 10.1007/s10854-009-9892-5.
74. Murali K.P., Rajesh S., Prakash O. et al. Preparation and properties of silica filled PTFE flexible laminates for microwave circuit applications. Composites Part A: Applied Science and Manufacturing, 2009, vol. 40, no. 8, pp. 1179–1185. DOI: 10.1016/j.compositesa.2009.05.007.
75. Thomas D., Janardhanan C., Sebastian M.T. Mechanically Flexible Butyl Rubber-SrTiO3 Composite Dielectrics for Microwave Applications. International Journal of Applied Ceramic Technology, 2011, vol. 8, no. 5, pp. 1099–1107. DOI: 10.1111/j.1744-7402.2010.02584.x.
76. Chameswary J., Sebastian M.T. Butyl rubber–Ba0.7Sr0.3TiO3 composites for flexible microwave electronic applications. Ceramics International, 2013, vol. 39, no. 3, pp. 2795–2802. DOI: 10.1016/j.ceramint.2012.09.047.
77. Chameswary J., Sebastian M.T. Effect of Ba(Zn1/3Ta2/3)O3 and SiO2 ceramic fillers on the microwave dielectric properties of butyl rubber composites. Journal of Materials Science: Materials in Electronics, 2013, vol. 24, no. 11, pp. 4351–4360. DOI: 10.1007/s10854-013-1410-0.
78. Namitha L.K., Sebastian M.T. Microwave dielectric properties of flexible silicone rubber – Ba(Zn1/3Ta2/3)O3 composite substrates. Materials Research Bulletin, 2013, vol. 48, no. 11, pp. 4911–4916. DOI: 10.1016/j.materresbull.2013.07.029.
79. Cho S.-D., Lee J.-Y., Hyun J.-G., Paik K.-W. Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications. Materials Science and Engineering: B, 2004, vol. 110, no. 3, pp. 233–239. DOI: 10.1016/j.mseb.2004.01.022.
80. Subodh G., Deepu V., Mohanan P., Sebastian M.T. Dielectric response of high permittivity polymer ceramic composite with low loss tangent. Applied Physics Letters, 2009, vol. 95, no. 6, p. 062903. DOI: 10.1063/1.3200244.
81. Joseph T., Uma S., Philip J., Sebastian M.T. Dielectric, thermal and mechanical properties of Sr2ZnSi2O7 based polymer/ceramic composites. Journal of Materials Science: Materials in Electronics, 2011, vol. 23, no. 6, pp. 1243–1254. DOI: 10.1007/s10854-011-0581-9.
82. Palukuru V.K., Sanoda K., Pynttäri V. et al. Inkjet-Printed RF Structures on BST-Polymer Composites: An Application of a Monopole Antenna for 2.4 GHz Wireless Local Area Network Operation. International Journal of Applied Ceramic Technology, 2010, vol. 8, no. 4, pp. 940–946. DOI: 10.1111/j.1744-7402.2010.02532.x.
83. Hu T., Juuti J., Jantunen H., Vilkman T. Dielectric properties of BST/polymer composite. Journal of the European Ceramic Society, 2007, vol. 27, no. 13–15, pp. 3997–4001. DOI: 10.1016/j.jeurceramsoc.2007.02.082.
84. Takahashi S., Imai Y., Kan A. et al. High-frequency dielectric and mechanical properties of cyclo-olefin polymer/MgO composites. Polymer Bulletin, 2015, vol. 72, no. 7, pp. 1595–1601. DOI: 10.1007/s00289-015-1358-8.
85. Drishya V., Unnimaya A.N., Naveenraj R. et al. Preparation, Characterization, and Dielectric Properties of PP/CaTiO3 Composites for Microwave Substrate Applications. International Journal of Applied Ceramic Technology, 2016, vol. 13, no. 5, pp. 810–815. DOI: 10.1111/ijac.12554.
86. Takahashi S., Imai Y., Kan A. et al. Microwave dielectric properties of composites consisting of MgAl2O4 filler synthesized by molten-salt method and isotactic polypropylene polymer matrix. Japanese Journal of Applied Physics, 2015, vol. 54, no. 10, pp. 1–5. DOI: 10.7567/jjap.54.10ne02.
87. Takahashi S., Imai Y., Kan A. et al. Preparation and characterization of isotactic polypropylene/MgO composites as dielectric materials with low dielectric loss. Journal of the Ceramic Society of Japan, 2013, vol. 121, no. 1416, pp. 606–610. DOI: 10.2109/jcersj2.121.606.
88. Takahashi S., Imai Y., Kan A. et al. Effects of hollow Zn2SiO4 particles addition on dielectric properties of isotactic polypropylene-HW composites. Materials Science and Engineering: B, 2016, vol. 209, pp. 51–55. DOI: 10.1016/j.mseb.2016.01.010.
89. Goyal R.K., Katkade S.S., Mule D.M. Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Composites Part B: Engineering, 2013, vol. 44, no. 1, pp. 128–132. DOI: 10.1016/j.compositesb.2012.06.019.
90. Taha T.A., Alzara M.A.A. Synthesis, thermal and dielectric performance of PVA-SrTiO3 polymer nanocomposites. Journal of Molecular Structure, 2021, vol. 1238, pp. 1–7. DOI: 10.1016/j.molstruc.2021.130401.
91. Goulas A., McGhee J., Whittaker T. et al. Synthesis and dielectric characterisation of a low loss BaSrTiO3/ABS ceramic/polymer composite for fused filament fabrication additive manufacturing. Additive Manufacturing, 2022, vol. 55, no. 6, рр. 1–19. DOI: 10.1016/j.addma.2022.102844.
92. Zha J.-W., Liu Q., Dang Z.-M., Chen G. Tailored wide-frequency dielectric behavior of polyimide composite films with BaxSr1‒xTiO3Perovskites ceramic particles. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, vol. 23, no. 1, pp. 113–120. DOI: 10.1109/tdei.2015.005162.
93. Im D.H., Jeon C.J., Kim E.S. MgTiO3/polystyrene composites with low dielectric loss. Ceramics International, 2012, vol. 38, pp. 191–195. DOI: 10.1016/j.ceramint.2011.04.081.
94. Subodh G., Deepu V., Mohanan P., Sebastian M.T. Polystyrene/Sr2Ce2Ti5O15composites with low dielectric loss for microwave substrate applications. Polymer Engineering & Science, 2009. Vol. 49, no. 6, pp. 1218–1224. DOI: 10.1002/pen.21220.
95. George S., Anjana P.S., Sebastian M.T. et al. Dielectric, Mechanical, and Thermal Properties of Low-Permittivity Polymer–Ceramic Composites for Microelectronic Applications. International Journal of Applied Ceramic Technology, 2010, vol. 7, no. 4, pp. 461–474. DOI: 10.1111/j.1744-7402.2010.02510.x.
96. Sasikala T.S., Sebastian M.T. Microwave Dielectric Properties of Polystyrene–Forsterite (Mg2SiO4) Composite. Journal of Electronic Materials, 2015, vol. 45, no. 1, pp. 729–735. DOI: 10.1007/s11664-015-4188-4.
97. Zhang L., Yue Z.X., Li L.T. Ceramic-Polymer Composites with Low Dielectric Loss for Microwave Antennas and Wireless Sensors. Key Engineering Materials, 2015, vol. 655, pp. 153–158. DOI: 10.4028/www.scientific.net/kem.655.153.
98. Shi Y., Zhang L., Yue Z. Dielectric response of Mg0.95Ca0.05TiO3 ceramic filled HDPE composites with low dielectric loss. Ceramics International, 2015, vol. 41, pp. 504–509. DOI: 10.1016/j.ceramint.2015.03.298.
99. Anjana P.S., Deepu V., Uma S. et al. Dielectric, thermal, and mechanical properties of CeO2-filled HDPE composites for microwave substrate applications. Journal of Polymer Science Part B: Polymer Physics, 2010, vol. 48, no. 9, pp. 998–1008. DOI: 10.1002/polb.21988.
100. Varghese J., Nair D.R., Mohanan P., Sebastian M.T. Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications. Physical Chemistry Chemical Physics, 2015, vol. 17, no. 22, pp. 14943–14950. DOI: 10.1039/c5cp01242b.
101. Thomas S., Deepu V., Uma S., Mohanan P. et al. Preparation, characterization and properties of Sm2Si2O7 loaded polymer composites for microelectronic applications. Materials Science and Engineering: B, 2009, vol. 163, no. 2, pp. 67–75. DOI: 10.1016/j.mseb.2009.05.007.
102. Thomas D., Sebastian M.T. HDPE Matrix Composites Filled With Ca4La6(SiO4)4(PO4)2O2 for Microwave Substrate Applications. Journal of Electronic Packaging, 2014, vol. 136, no. 3, p. 031002. DOI: 10.1115/1.4027089.
103. Joseph T., Uma S., Philip J., Sebastian M.T. Dielectric, thermal and mechanical properties of Sr2ZnSi2O7 based polymer/ceramic composites. Journal of Materials Science: Materials in Electronics, 2011, vol. 23, no. 6, pp. 1243–1254. DOI: 10.1007/s10854-011-0581-9.
104. Manu K.M., Ananthakumar S., Sebastian M.T. Electrical and thermal properties of low permittivity Sr2Al2SiO7 ceramic filled HDPE composites. Ceramics International, 2013, vol. 39, no. 5, pp. 4945–4951. DOI: 10.1016/j.ceramint.2012.11.090.
105. Yang M., Li Q., Zhang X. et al. Surface engineering of 2D dielectric polymer films for scalable production of high-energy-density films. Progress in Materials Science, 2022, vol. 128, p. 100968.
106. Dhanumalayan E., Joshi G.M. Performance properties and applications of polytetrafluoroethylene (PTFE). Advanced Composites and Hybrid Materials, 2018, no.1, pp. 247–268.
107. Alibakhshikenari M., Virdee B.S., See C.H. et al. Super-wide impedance bandwidth planar antenna for microwave and millimeter-wave applications. Sensors, 2019, vol. 19, no. 10, p. 2306.
108. Sebastian M.T., Jantunen H. Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review. International Journal of Applied Ceramic Technology, 2010, vol. 7, pp. 415–434.
109. Deka J.R., Bhattacharyya N.S. Microwave characterization of alumina filled polystyrene composite. Proceedings of URSI. 2005. Available at: http://www.ursi.org/proceedings/ procga05/pdf/D04.6(0652).pdf (accessed: April 01, 2024).