1. Robert Bartini: collection. Compil. E.A. Vatulyan; trans. from Italian. Moscow: VIAM, 2016, 220 p.
2. Aizatullova A.Sh., Sudakov M.A. History of the creation and operation of the supersonic passenger aircraft Tu-144 (based on memoir sources). Vestnik kostromskogo gosudarstvennogo universiteta, 2020, vol. 26, no. 3, pp. 87–92.
3. Turchanov A.M., Filimonov D.S., Gukasyan M.G., Lukasov V.V. The influence of wing geometry on the flight performance of civil aviation aircraft. Reshetnevskie chteniya, 2015, vol. 1, pp. 435–436.
4. Fridlyander I.N. Memories of the Creation of Aerospace and Nuclear Technology from Aluminum Alloys. 2nd ed., suppl. Moscow: Nauka, 2006, 287 p.
5. Kerber L.P. Tupolev. St. Petersburg: Politekhnika, 1999, 339 p.
6. Krotov D.O., Likharev, D.V. Tu-144: A Supersonic Aircraft Ahead of Its Time. Studencheskiy vestnik, 2024, no. 45-13 (331), pp. 46–48.
7. Vologdin I. Concorde: How Metal Learned to Fly Faster than Sound and Carry Passengers. Available at: https://dzen.ru/a/aJ7kSeWA8xkI5oRt (accessed: September 15, 2025).
8. Khvatkov R.S., Zubov A.Yu. Tu-144 and Concorde. Battle for Supersonic Speed. Tsifrovaya nauka, 2023, no. 12, pp. 117–132.
9. Khvatkov R.S. Development and Comparison of Technical Parameters of the Tu-144 and Concorde. Akademicheskaya publitsistika, 2025, no. 1–2, pp. 90–93.
10. Sidnyaev N.I. Prospects for the Development of Supersonic Passenger Aircraft. Inzhenernyy zhurnal: nauka i innovatsii, 2023, no. 1 (133), paper no. 04. DOI: 10.18698/2308-6033-2023-1-2243.
11. Lachenaud R. Fatigue strength and crack propagation in AU2GN alloy as a function of temperature and frequency. Proceedings of a Symposium «Current aeronautical fatigue problems». Rome, 1965, pp. 77–101.
12. N’Guyen V.P., Ripley E.L. Design philosophy and fatigue testing of the Concorde. Aircraft Fatigue. Design, Operational and Economic Aspects. Pergamon Press (Australia) Pty Limited, 1972, pp. 403–436.
13. Roldan M., Sifferlen R. Mecanismes de deformation par fluage d’un alliage Al–Cu–Mg–Ni (Al–2,5%Cu–1,5%Mg–1,2%Ni) a l’etat forge apres trempe et revenue. Acta Metallurgica, 1972, vol. 20, is. 6, pp. 829–837.
14. Bueno L.O., Bell R.L. Anelastic creep behavior of RR-58 aluminum alloy at 180 °C: Phenomenological aspects and analysis based on the unbowing of dislocation segments. Materials Science and Engineering, 2005, vol. 410–411, pp. 72–78.
15. Robin C., Dominiak S., Pluvinage G. Variation of crack opening-load diagram with fatigue crack growth rate. Materials Science and Engineering, 1977, vol. 29, is. 2, pp. 145–150.
16. Leyman C.S. A review of technical development of Concorde. Progress in Aerospace Science, 1986, vol. 23, is. 3, pp. 185–238.
17. Szondi D. Supersonic: 50 years after its first flight, the Concorde story is still remarkable. New Atlas. Aircraft. 2019. Available at: https:// newatlas.com/concorde-50-years-first-flight/58609/ (accessed: October 01, 2025).
18. Supersonic aircraft Tu-144. Available at: https://aviation21.ru/sverxzvukovoj-samolet-tu-144/ (accessed: September 15, 2025).
19. Benaissa M., Catherine M., Michel C. Fatigue behavior of 2618-T851 aluminum alloy under uniaxial and multiaxial loadings. International Journal of Fatigue, 2020, vol. 131, pp. 1–9. DOI: 10.1016/j.ijfatigue.2019.105322.
20. Robinson J.S., Cudd R.L., Evans J.T. Creep resistant aluminium alloys and their applications. Materials Science and Technology, 2003, vol. 19, pp. 143–155. DOI: 10.1179/026708303225009373.
21. Hemmerdinger J. NASA progresses X-59 quiet supersonic demonstrator towards planned first flight before year-end. Available at: https://www.flightglobal.com/aerospace/nasa-still-targeting-2025-first-f... (accessed: September 15, 2025).
22. Fokin A. The XB-1 supersonic airliner demonstrator broke the sound barrier for the first time. Available at: https://nplus1.ru/news/2025/01/30/boom-xb1-first-supersonic-flight/amp (accessed: September 15, 2025).
23. Shemyakinskaya E. From London to New York in 45 minutes: the A-HyM hypersonic jetliner concept is presented. Available at: https://hightech.plus/2025/05/26/iz-londona-v-nyu-iork-za-45-minut-preds... (accessed: September 15, 2025).
24. Rains T. A US startup wants to use a new kind of plane engine to propel a jet carrying 12 passengers from LA to Tokyo in an hour. Available at: https://www.businessinsider.com/venus-aerospace-stargazer-hypersonic-jet... (accessed: September 15, 2025).
25. Falcon J. China tests its Yunxing supersonic aircraft designed to reach Mach 4. Available at: https://inspenet.com/en/noticias/the-yunxing-supersonic-plane-reaches-ma... (accessed: September 15, 2025).
26. Supersonic passenger jets: a reboot. Available at: https://polymus.ru/news/detail/sverkhzvukovye-passazhirskie-samolyety-pe... (accessed: September 15, 2025).
27. Kirill Sypalo: We can be leaders in the creation of a supersonic airliner. Available at: https://tsagi.ru/pressroom/expert/4803/ (accessed: September 14, 2025).
28. World-class scientific center «Supersonic». Available at: https://www.tsagi.ru/institute/ISC_Supersonic/ (accessed: September 15, 2025).
29. A high-tech demonstrator model of a supersonic passenger jet will be shown for the first time at MAKS-2021. Available at: https://tsagi.ru/pressroom/archive/2021/5247/ (accessed: September 14, 2025).
30. Kablov E.N. New Generation Materials and Digital Technologies for Their Processing. Vestnik Rossiyskoy akademii nauk, 2020, no. 4, vol. 90, pp. 331–334. DOI: 10.31857/S0869587320040052.
31. Romanova O.A., Bobovnikov V.N. Heat-resistant deformable aluminum alloy AK4-2 (1143) for supersonic passenger aircraft. Tsvetnye metally, 1994, no. 11, pp. 56–58.
32. Teleshov V.V. Development of the production technology of plates from heat-resistant deformable aluminum alloy AK4-1 in connection with their structure and mechanical properties. Part 4. Influence of alloy composition and structure of semi-finished products on fracture toughness and fatigue characteristics. Tekhnologiya legkikh splavov, 2015, no. 3, pp. 45–64.
33. Andreev D.A., Teleshov V.V., Gorskaya L.A. et al. Crack Resistance Characteristics of Rolled Plates Made of AK4-2chT1 Alloy. Tekhnologiya legkikh splavov, 1996, no. 3, pp. 35–41.
34. Aviation materials: reference book in 13 vols. 7th revised and enlarged edition. Ed. E.N. Kablov. Moscow: VIAM, 2008, vol. 4: Aluminum and beryllium alloys, part 1: Wrought aluminum alloys, book 1, 263 p.
35. Panteleev M.D., Sviridov A.V., Skupov A.A. Welding features of heat-resistant aluminum alloys, alloy V-1213 and 1151. Trudy VIAM, 2022, no. 9 (115), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 10, 2025). DOI: 10.18577/2307-6046-2022-0-9-28-38.
36. Panteleev M.D., Sviridov A.V., Odintsov N.S., Bondarenko S.V. Survivability of welded fuselage elements made of heat-resistant aluminum alloys V-1213 and 1151. Trudy VIAM, 2024, no. 3 (133), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 10, 2025). DOI: 10.18577/2307-6046-2024-0-3-30-40.
37. Astashkin A.I., Zaitsev D.V., Selivanov A.A., Tkachenko E.A. The influence of homogenization annealing оn the structural phase evolution and technological plasticity of aluminum alloy 1163 ingots. Trudy VIAM, 2024, no. 7 (137), paper no. 02. Available at: http://www.viam-works.ru (accessed: September 08, 2025). DOI: 10.18577/2307-6046-2024-0-7-12-23.
38. Klochkov G.G., Ovchinnikov V.V., Klochkova Yu.Yu., Romanenko V.A. Structure and properties of sheets from workable aluminium alloy V-1341 of Al–Mg–Si system. Trudy VIAM, 2017, no. 12 (60), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 08, 2025). DOI: 10.18577/2307-6046-2017-0-12-3-3.
39. Benarieb I., Romanenko V.A., Klochkova Yu.Yu., Ovchinnikov V.V., Sbitneva S.V. Application of hightech aluminum alloy V-1341 of Al–Mg–Si system for pipelines of aircraft products. Trudy VIAM, 2020, no. 11 (93), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 08, 2025). DOI: 10.18577/2307-6046-2020-0-11-21-30.
40. Astashkin A.I., Babanov V.V., Selivanov A.A., Tkachenko E.A. Structure and properties of massive forgings with a reduced level of residual stresses made of aluminum alloy 1933sb of balanced composition. Trudy VIAM, 2021, no. 7 (101), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 30, 2025). DOI: 10.18577/2307-6046-2021-0-7-13-21.
41. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. New generation aluminum-lithium alloys and layered aluminum-glass plastics based on them. Tsvetnye metally, 2016, no. 8, pp. 86–91. DOI: 10.17580/tsm.2016.08.13.
42. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2017-9140-2017-0-S-195-211.
43. Klochkova Yu.Yu., Klochkov G.G., Romanenko V.A., Burlyaeva I.P. Structure and properties of massive extruded semiproducts from high-strength aluminium-lithium alloy V-1469. Trudy VIAM, 2015, no. 9, paper no. 04. Available at: http://www.viam-works.ru (accessed: September 02, 2025). DOI: 10.18577/2307-6046-2015-0-9-4-4.
44. Lukina E.A., Kochubey A.Ya., Filonova E.V., Rabkevich M.E. Patterns of structure formation of alloy B-1480 under thermomechanical influence. Deformatsiya i razrusheniye materialov, 2021, no. 9, pp. 11–17. DOI: 10.31044/1814-4632-2021-9-11-17.