1. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: July 06, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
2. Gulyaev I.N., Pavlovskiy K.A. High modulus carbon plastics for civil aviation equipment (review). Trudy VIAM, 2023, no. 3 (121), paper no. 09. Available at: http://www.viam-works.ru (accessed: July 06, 2024). DOI: 10.18577/2307-6046-2023-0-3-95-106.
3. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials. Moscow: NRC «Kurchatov Institute» – VIAM, 2023, 528 p.
4. Kablov E.N., Kirillov V.N., Startsev O.V., Krotov A.S. Сlimatic aging of composite aviation materials: III. Significant aging factors. Russian Metallurgy (Metally), 2012, vol. 2012, no. 4, pp. 323–329.
5. Startsev V.O., Plotnikov V.I., Antipov Yu.V. Reversible influence of moisture on the mechanical properties of PCM after weathering. Trudy VIAM, 2018, no. 5 (65), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 07, 2024). DOI: 10.18577/2307-6046-2018-0-5-110-118.
6. Startsev O.V., Startsev V.O., Kogan A.M., Vardanyan A.M. Change in the plasticizing effect of moisture during climatic aging of polymer composite materials. Deformatsiya i razrusheniye materialov, 2024, no. 1, pp. 16–26.
7. Startsev V.O. The degradation of polymer composite materials in seawater (review). Aviation materials and technologies, 2023, no. 1 (70), paper no. 12. URL: http://www.journal.viam.ru (accessed: July 07, 2024). DOI: 10.18577/2713-0193-2023-0-1-148-170.
8. Evdokimov A.A., Petrova A.P., Pavlovskiy K.A., Gulyaev I.N. The influence of climatic ageing on the properties of PCM-based epoxy resin systems. Trudy VIAM, 2021, no. 3 (97), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 08, 2024). DOI: 10.18577/2307-6046-2021-0-3-128-136.
9. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solventfree binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 08, 2024). DOI: 10.18577/2307-6046-2021-0-5-114-126.
10. Mikołajczyk T., Olejnik M. Influence of the plastification drawing conditions and distribution of drawing ratios on the structure and properties of fibres made of a polyimidoamide nanocomposite containing montmorillonite. Fibres and Textiles in Eastern Europe, 2009, vol. 17, no. 1, pp. 20–25.
11. Aranda-García F.J., González-Núñez R., Jasso-Gastinel C.F., Mendizábal E. Water absorption and thermomechanical characterization of extruded starch/poly (lactic acid)/agave bagasse fiber bioplastic composites. International Journal of Polymer Science, 2015, vol. 2015, no. 1, аrt. 343294. DOI: 10.1155/2015/343294.
12. Koval T.V., Veligodsky I.M., Gromova A.A. Study of the plasticizing effect of moisture on the properties of VSE-34 binder based PCMS after 5 years exposure in the different climate zones. Trudy VIAM, 2021, no. 9 (103), paper no. 11. Available at: http://www.viam-works.ru (accessed: July 08, 2024). DOI: 10.18577/2307-6046-2021-0-9-105-116.
13. Liu T., Liu X., Feng P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Composites Part B, 2020, vol. 191, art. 107958.
14. Nandagopal R.A., Boay C.G., Narasimalu S. An empirical model to predict the strength degradation of the hygrothermal aged CFRP material. Composite Structures, 2020, vol. 236, аrt. 111876.
15. Gao C., Zhou C. Moisture absorption and cyclic absorption–desorption characters of fibre-reinforced epoxy composites. Journal of Materials Science, 2019, vol. 54, no. 11, pp. 8289–8301.
16. Wei B., Cao H., Song S. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corrosion Science, 2011, vol. 53, no. 1, pp. 426–431.
17. Yang S., Chu M., Chen F. et al. Effect of different environmental conditions on durabilities of polyester- and vinylester-based glass-fiber-reinforced polymer pultruded profiles. Frontiers in Materials, 2022, vol. 9, art. 862872. DOI: 10.3389/fmats.2022.862872.
18. Zulueta K., Burgoa A., Martínez I. Effects of hygrothermal aging on the thermomechanical properties of a carbon fiber reinforced epoxy sheet molding compound: An experimental research. Journal of Applied Polymer Science, 2021, vol. 138, no. 11, art. 50009. DOI: 10.1002/app.50009.
19. Liu X., Su Q., Zhu J., Song X. The aging behavior and life prediction of CFRP rods under a hygrothermal environment. Polymers, 2023, vol. 15, art. 2490. DOI: 10.3390/polym15112490.
20. Akay M., Mun S.K.A., Stanley A. Influence of moisture on the thermal and mechanical properties of autoclaved and oven-cured Kevlar-49/epoxy laminates. Composites science and technology, 1997, vol. 57, no. 5, pp. 565–571.
21. Ramesh C., Arumugam V., Stanley J., Kumar V. Effects of hydrolytic aging on glass/epoxy, kevlar/epoxy and hybrid (glass/kevlar/epoxy) composites. International Journal of Engineering Research and Technology, 2013, vol. 2, pp. 1589–1596.
22. Startsev O.V., Kornienko G.V., Gladkikh A.V., Gorbovets M.A. Non-destructive measurements of the shear modulus in the sheet plane during aging of polymer composite materials. Klei. Germetiki. Tekhnologii, 2024, no. 3, pp. 21–30. DOI: 10.31044/1813-7008-2024-0-3-21-30.
23. Rege S.K., Lakkad S.C. Effect of salt water on mechanical properties of fibre reinforced plastics. Fibre Science and Technology, 1983, vol. 19, pp. 317–324.
24. Muralidharan M., Sathishkumar T.P., Rajini N. et al. Evaluation of tensile strength retention and service life prediction of hydrothermal aged balanced orthotropic carbon/glass and Kevlar/glass fabric reinforced polymer hybrid composites. Journal of Applied Polymer Science, 2021, vol. 138, p. 51602.
25. Srihari S., Revathi A., Rao R. Hygrothermal effects on RT-cured glass-epoxy composites in immersion environments. Part B: Degradation studies. Journal of reinforced plastics and composites, 2002, vol. 21, no. 11, pp. 993–1002.
26. Bone J.E., Sims G.D., Maxwell A.S., Frenz S., Ogin S.L., Foreman C., Dorey R.A. On the relationship between moisture uptake and mechanical property changes in a carbon fibre/epoxy composite. Journal of Composite Materials, 2022, vol. 56, no. 14, pp. 2189–2199.
27. D’Almeida J.R.M. Effects of distilled water and saline solution on the interlaminar shear strength of an aramid/epoxy composite. Composites, 1991, vol. 22, pp. 448–450.
28. Aniskevich A.N., Jansons J. Structural approach to calculation of the effect of moisture on elastic characteristics of organoplastics. Mechanics of composite materials, 1998, vol. 34, no. 4, pp. 383–386.
29. Anderson E., Gunawan B., Nicholas J., Ingraham M., Hernandez-Sanchez B.A. A multicontinuum-theory-based approach to the analysis of fiber-reinforced polymer composites with degraded stiffness and strength properties due to moisture absorption. Journal of Marine Science and Engineering, 2023, vol. 11, no. 2, аrt. 421.
30. Davies P., Le Gac P.Y., Le Gall M. Influence of sea water aging on the mechanical behaviour of acrylic matrix composites. Applied composite materials, 2017, vol. 24, no. 1, pp. 97–111.
31. Pérez-Pacheco E., Cauich-Cupul J.I., Valadez-González A., Herrera-Franco P.J. Effect of moisture absorption on the mechanical behavior of carbon fiber/epoxy matrix composites. Journal of materials science, 2013, vol. 48, pp. 1873–1882.
32. Pritchard G., Speake S.D. The use of water absorption kinetic data to predict laminate property changes. Composites, 1987, vol. 18, pp. 227–232.
33. Crank J. The mathematics of diffusion. Second ed. Oxford: Clarendon press, 1975, 414 p.
34. Korkees F. Moisture absorption behavior and diffusion characteristics of continuous carbon fiber reinforced epoxy composites: a review. Polymer-Plastics Technology and Materials, 2023, vol. 62, pp. 1789–1822. DOI: 10.1080/25740881.2023.2234461.
35. Hong B., Xian G., Li H. Comparative study of the durability behaviors of epoxy- and polyurethane-based CFRP plates subjected to the combined effects of sustained bending and water/seawater immersion. Polymers, 2017, vol. 9, art. 603.
36. Kutsevich K.E., Dementeva L.A., Lukina N.F. Properties and application of polymer composite materials based on glue prepregs. Trudy VIAM, 2016, no. 8, paper no. 7. Available at: http://www.viam-works.ru (accessed: August 15, 2024). DOI: 10.18577/2307-6046-2016-0-8-7-7.
37. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56‒61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
38. Startsev O.V., Bolonin A.B., Vapirov Yu.M. et al. Improving the viscoelastic properties of acrylic enamel AC-1115. Lakokrasochnye materialy i ikh primenenie, 1986, no. 4, pp. 16–18.
39. Startsev V.O., Nechaev A.A. The influence of natural and accelerated weathering on the nanomodified CFRP’S strength. Aviation materials and technologies, 2023, no. 3 (72), paper no. 11. Available at: http://www.journal.viam.ru (accessed: July 07, 2024). DOI: 10.18577/2713-0193-2023-0-3-134-151.
40. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47‒58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
41. State Standard 33843–2016. Polymer composites. Method for determining the shear modulus in the plane by the torsion method. Moscow: Standartinform, 2016, 11 p.
42. International Standard ISO 15310-1999. Fibre-reinforced plastic composites – Determination of the in-plane shear modulus by the plate twist method, 1999, 11 p. Available at: http://www.iso.ch (accessed: August 20, 2024).
43. Tarnopolsky Yu.M., Kintsis T.Ya. Methods of static testing of reinforced plastics. Moscow: Khimiya, 1981, 272 p.
44. Startsev V.O., Startsev O.V., Zeleneva T.O., Vardanyan A.M. Influence of precipitation on changes in the mass of samples of polymeric composite materials in open climatic conditions. Aviation materials and technologies, 2024, no. 1 (74), paper no. 11. Available at: http://www.journal.viam.ru (accessed: August 20, 2024). DOI: 10.18577/2713-0193-2024-0-1-136-154.
45. Carter H.G., Kibler K.G. Langmuir-type model for anomalous moisture diffusion in composite resins. Open Journal of Composite Materials, 1978, vol. 12, pp. 118–131.