1. Nozhnickij Yu.A., Golubovskij E.R. Obespechenie prochnostnoj nadezhnosti monokristallicheskih rabochih lopatok vysokotemperaturnyh turbin perspektivnyh GTD [Ensuring strength reliability of single-crystal working blades of high-temperature turbines of perspective GTD] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tehnich. konf. M.: VIAM, 2006. S. 65−71.
2. Harada H. Development of Superalloys for 1700°C ultra-efficient gas turbines // Proc. 9th Liege Conf. «Materials for Advanced Power Engineering 2010». Belgium: University of Liège, 2010. P. 604−614.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Walston S., Cetel A., MacKay R. et al. Joint development of a fourth generation single crystal superalloy // Superalloys 2004. Pennsylvania: Minerals, Metals & Materials Society, 2004. P. 15−24.
5. Koizumi Y., Kobayashi T., Yokokawa T. et al. Development of next-generation Ni-base single crystal superalloys // Ibid. P. 35−43.
6. Fifth generation nickel base single crystal superalloy // TMS-196. Tokyo (Japan): NIMS and IHI, 2006. 4 p. Available: http://www.sakimori.nims.go.jp (accessed: December 21, 2011).
7. Kablov E.N., Petrushin N.V., Svetlov I.L. Kompyuternoe konstruirovanie zharoprochnogo nikelevogo splava IV pokoleniya dlya monokristallicheskih lopatok gazovyh turbin [Computer designing of heat resisting nickel alloy IV of generation for single-crystal blades of gas turbines] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 98–115.
8. Kablov E.N., Petrushin N.V. Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviacionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTD] // Tehnologiya legkih splavov. 2007. №2. S. 6–16.
9. Sato A., Harada H., Yeh An-C. et al. A 5th generation SC superalloy with balanced high temperature properties and processability // Superalloys 2008. Pennsylvania: Minerals, Metals & Materials Society, 2008. P. 131–138.
10. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
11. Petrushin N.V., Svetlov I.L., Ospennikova O.G.: 1) Litejnye zharoprochnye nikelevye splavy [Cast heat resisting nickel alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 15−19; 2) Litejnye zharoprochnye nikelevye splavy // Vse materialy. Enciklopedicheskij spravochnik. 2012. №6. S. 16−21.
12. Kawagishi K., Yeh An-C., Yokokawa T., Kobayashi T., Koizumi Y., Harada H. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 // Superalloys 2012. Pennsylvania: Minerals, Metals & Materials Society, 2012. P. 189−195.
13. Yokokawa T., Harada H., Mori Y., Kawagishi K. et al. Design of nest generation Ni-base single-crystal superalloy containing Ir: towards 1150 ºC temperature capability // Superalloys 2016. Pennsylvania: Minerals, Metals & Materials Society, 2016. P. 123−130.
14. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
15. Inozemcev A.A., Koryakovcev A.S., Lesnikov V.P., Kuznecov V.P. Rol materialov i zashhitnyh pokrytij turbinnyh lopatok v obespechenii nadezhnosti i ekonomichnosti GTD [Role of materials and protecting covers of turbine blades in ensuring reliability and profitability of GTD] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tehnich. konf. M.: VIAM, 2006. S. 84−87.
16. Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraiya V.N., Gavrilin O.S. Monokristally nikelevyh zharoprochnyh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. 336 s.
17. Petrushin N.V., Svetlov I.L. Fiziko-himicheskie i strukturnye harakteristiki zharoprochnyh nikelevyh splavov [Physical and chemical and structural characteristics of heat resisting nickel alloys] // Metally. 2001. №2. S. 63−73.
18. Petrushin N.V., Svetlov I.L., Samoylov A.I., Morozova G.I. Physicochemical properties and creep strength of a single crystal of nickel-base superalloy containing rhenium and ruthenium // Intern. J. Materials Research (formerly Z. Metallkunde). 2010. Vol. 101. No. 5. P. 594−600.
19. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38−52.
20. Kablov E.N., Petrushin N.V., Morozova G.I., Svetlov I.L. Fiziko-himicheskie faktory zharoprochnosti nikelevyh splavov, soderzhashhih renij [Physical and chemical factors of thermal stability of the nickel alloys, containing reniye] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 116−130.
21. Petrushin N.V., Ospennikova O.G., Elyutin E.S. Renij v monokristallicheskih zharoprochnyh nikelevyh splavah dlya lopatok gazoturbinnyh dvigatelej [Rhenium in single crystal nickel-based superalloys for gas turbine engine blades] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 5–16. DOI: 10.18577/2071-9140-2014-0-s5-5-16.
22. Portnoj K.I., Bogdanov V.I., Fuks D.L. Raschet vzaimodejstviya i stabilnosti faz [Calculation of interaction and stability of phases]. M.: Metallurgiya, 1981. 248 s.
23. Blavette D., Caron P., Khan T. An atom probe investigation of the role rhenium additions in improving creep resistance of Ni-base superalloys // Scripta Metallurgica. 1986. Vol. 20. No. 10. P. 1395–1400.
24. Fink P.J., Miller J.L., Konitzer D.G. Rhenium reduction – alloy design using an economically strategic element // J. of Metals. 2010. Vol. 62. No. 1. P. 55−57.
25. Wahl J.B., Harris K. New single crystal superalloys, CMSX-7 and CMSX-8 // Superalloys–2012. Pennsylvania: Minerals, Metals & Materials Society, 2012. P. 179−188.
26. Nickel-Basislegierung für die gießtechnische Herstellung einkristallin erstarter Bauteile: pat. 10100790 Deutsches; publ. 18.07.02.
27. Petrushin N.V., Ospennikova O.G., Visik E.M., Rassohina L.I., Timofeeva O.B. Zharoprochnye nikelevye splavy nizkoj plotnosti [Heat resisting nickel alloys of low density] // Litejnoe proizvodstvo. 2012. №6. S. 5−11.
28. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monokristallicheskij zharoprochnyj nikelevyj splav novogo pokoleniya s nizkoj plotnostyu [Single-crystal nickel-based superalloy of a new generation with low-density] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
29. Low density, high creep resistant single crystal superalloy for turbine airfoils: pat. 7261783 US; publ. 28.08.07.
30. Kablov E.N., Petrushin N.V. Komp\'yuternyj metod konstruirovaniya litejnyh zharoprochnyh nikelevyh splavov [Computer method of designing of cast heat resisting nickel alloys] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka. 2006. S. 56–78.
31. Rae C.M.F., Reed R.C. The precipitation of topologically close-packed phases in rhenium-containing superalloys // Acta Materialia. 2001. Vol. 49. No. 10. P. 4113–4125.
32. Acharya M.V., Fuch G.E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys // Materials Science Engineering A. 2004. Vol. 381. P. 143−153.
33. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features of the single-crystal heat resisting nickel alloys alloyed by rhenium] // Metally. 2006. №5. S. 47−57.
34. Morozova G.I., Timofeeva O.B., Petrushin N.V. Osobennosti struktury i fazovogo sostava vysokorenievogo nikelevogo zharoprochnogo splava [Features of structure and phase composition of high-rhenium nickel hot strength alloy] // Metallovedenie i termicheskaya obrabotka metallov. 2009. №2 (644). S. 10–16.
35. Walston W.S., Schaeffer J.C., Murphy W.H. A new type microstructural instability in superalloys – SRZ // Superalloys 1996. Pennsylvania: Minerals, Metals & Materials Society, 1996. P. 9−18.
36. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy, legirovannye ruteniem [The nickel hot strength alloys alloyed by ruthenium] // Aviacionnye materialy i tehnologii. M.: VIAM, 2004. Vyp.: Vysokorenievye zharoprochnye splavy, tehnologiya i oborudovanie dlya proizvodstva splavov i lit\'ya monokristallicheskih turbinnyh lopatok GTD. S. 80−90.
37. Petrushin N.V., Elyutin E.S., Nazarkin R.M. i dr. Segregaciya legiruyushhih elementov v napravlenno zakristallizovannyh zharoprochnyh nikelevyh splavah, soderzhashhih renij i rutenij [Segregation of doping elements in directionally crystalline heat resisting nickel alloys, containing rhenium and ruthenium] // Voprosy materialovedeniya. 2015. №1 (81). S. 27–37.
38. Murakami H., Honma T., Koizumi Y., Harada H. Distribution of platinum group metals in Ni-base single-crystal superalloys // Superalloys 2000. Pennsylvania: Minerals, Metals& Materials. Society, 2000. P. 747−756.
39. Fu C.L., Reed R., Janotti A., Kremar M. On the diffusion of alloying elements in the nickel-base superalloys // Superalloys 2004. Pennsylvania: Minerals, Metals & Materials Society. 2004. P. 867−876.
40. Argence D., Vernault C., Desvallées Y., Fournier D. MC-NG: a 4th generation single-crystal superalloy for future aeronautical turbine blades and vanes // Superalloys 2000. Pennsylvania: Minerals, Metals &Materials Society, 2000. P. 829−837.
41. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Konstrukcionnye zharoprochnye materialy na osnove soedineniya Ni3Al dlya detalej goryachego trakta GTD [Constructional heat resisting materials on the basis of Ni3Al connection for details of hot path of GTD] // Tehnologiya legkih splavov. 2007. №2. S. 75−80.
42. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
43. Povarova K.B., Bazyleva O.A., Drozdov A.A. i dr. Konstrukcionnye zharoprochnye splavy na osnove Ni3Al: poluchenie, struktura, svojstva [Constructional hot strength alloys on the basis of Ni3Al: receiving, structure, properties] // Materialovedenie. 2011. №4. S. 39–48.
44. Svetlov I.L., Petrushin N.V., Golubovskij E.R., Hvackij K.K., Shhegolev D.V., Elyutin E.S. Mehanicheskie svojstva monokristallov nikelevogo zharoprochnogo splava, soderzhashhego renij i rutenij [Mechanical properties of monocrystals of the nickel hot strength alloy, containing rhenium and ruthenium] // Deformaciya i razrushenie materialov. 2008. №11. S. 26–35.
45. Petrushin N.V., Visik E.M., Gorbovec M.A., Nazarkin R.M. Strukturno-fazovye harakteristiki i mehanicheskie svojstva monokristallov zharoprochnyh nikelevyh renijsoderzhashhih splavov s intermetallidno-karbidnym uprochneniem [Structural phase characteristics and mechanical properties of monocrystals of heat resisting nickel rhenium containing alloys with intermetallic-carbide hardening] // Metally. 2016. №4. S. 57–70.
46. Seleznev V.G., Rozanov M.A., Minova N.I. Opredelenie fizicheskih harakteristik monokristallicheskih obrazcov splava ZhS36 [Definition of physical characteristics of single-crystal samples of alloy ZhS36] // Novye tehnologicheskie processy i nadezhnost GTD. M.: CIAM, 2008. Vyp. 7: Obespechenie prochnostnoj nadezhnosti rabochih lopatok vysokotemperaturnyh turbin. S. 73–77.
47. Fährmann M., Hermann W., Fährmann E. et al. Determination of matrix and precipitate elastic constants in (γ-γ) Ni-base model alloys, and their relevance to rafting // Material Science Engineering A. 1999. Vol. 260. Issue 1–2. P. 212−221.
48. Miner R.V., Voigt R.S., Gayda J., Gabb T.P. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy René N4: Part I. Tensile behavior // Metallurgical Transactions A. 1986. Vol. 17. Issue 3. P. 491–496.
49. Yun-Jiang W., Chong-Yu W. First-principles calculation for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers // Chinese Physics B. 2009. Vol. 18. No. 10. P. 4339−4348.
50. Caron P., Diologent F., Drawin S. Influence of chemistry on the tensile yield strength of nickel-based single crystal superalloys // Proc. Conf. Eurosuperalloys 2010. Switzerland. Scientific net Trans. Tech. Publications. Advanced Materials Research. 2011. Vol. 278. P. 345–350. DOI: 10.4028/www.scientific.net/AMR.278.345.
51. Kablov E.N., Golubovskij E.R. Zharoprochnost nikelevyh splavov [Thermal stability of nickel alloys]. M.: Mashinostroenie, 1998. 462 s.
52. Golubovskij E.R., Svetlov I.L. Temperaturno-vremennáya zavisimost anizotropii dlitelnoj prochnosti monokristallov ZhNS [Dependence of anisotropy of long durability of monocrystals ZHNSOT of temperature and time] // Problemy prochnosti. 2002. №2. S. 5–19.
53. Bokshtejn B., Epishin A., Svetlov I., Esin V., Rodin A., Link T. Rost i zalechivanie por v monokristallah zharoprochnyh splavov na nikelevoj osnove [Growth and curing of time in monocrystals of hot strength alloys on nickel basis] // Zhurnal funkcionalnyh materialov. 2007. T. 1. №5. S. 162–170.
54. Epishin A.I., Svetlov I.L. Evolyuciya morfologii por v monokristallah nikelevyh zharoprochnyh splavov [Evolution of morphology of time in monocrystals of nickel hot strength alloys] // Materialovedenie. 2015. №7. S. 21–28.
55. Epishin A., Link T., Fedelich B., Svetlov I., Golubovskiy E. Hot isostatic processing of single crystal nickel-base superalloys mechanism of pore closure and effect on mechanical properties // MATEC WEB of Conference. 2014. Vol. 14. P. 08003. DOI: 10.1051/matecconf/2014141/3009.
56. Svetlov I.L., Khvatskiy K.K., Gorbovets M.A., Belyaev M.S. Vliyanie goryachego izostaticheskogo pressovaniya na mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov [An effect of Hot Isostatic Pressing (HIP) on mechanical properties of casting Ni-based superalloys] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 10–14. DOI: 10.18577/2071-9140-2015-0-3-10-14.
57. Transpiration cooled blade for a gas turbine engine: pat. 4314794 A US; publ. 09.02.82.
58. Method of manufacturing a transpiration cooled ceramic blade for a gas turbine: pat. 4376004 A US; publ. 08.03.83.
59. GE assembles first 777x engine // Aviation week. Network. Available at: http://aviationweek.com/commercial-aviation/ge-assembles-first-777x-engi... (accessed: August 21, 2016).
60. Xu L., Bo S., Hongde Y., Lei W. Evolution of Rolls-Royce air-cooled turbine blades and feature analysis // J. Procedia Engineering. 2015. Vol. 99. P. 1482–1491.
61. Turbine blade for extreme temperature condition: pat. 7189459 B2 US; publ. 03.13.07.
62. Drawin S. Ultra High temperature refractory metal based silicide materials for next generation turbines // ONERA (French aerospace research Centre), Metallic Materials and Processing Department 92320 CHÂTILLON (France). Available at: http://www.aerodays2006.org/sessions/B_Sessions/ B5/B54.pdf (accessed: April 11, 2012).
63. Shryu Q., Rongming W., Yarfang H. Microstructure of Nb/Nb5Si3 in situ composites // Transaction Nonferrous Met. Sos. China. 2002. Vol. 12. No. 4. P. 681–684.
64. Svetlov I.L. Vysokotemperaturnye Nb–Si kompozity [High-temperature Nb–Si composites] // Materialovedenie. 2010. №9–10. S. 18–38.
65. Karpov M.I., Vnukov V.I., Korzhov V.P. i dr. Struktura i mehanicheskie svojstva zharoprochnogo splava sistemy Nb–Si evtekticheskogo sostava, poluchennogo metodami napravlennoj kristallizacii [Structure and mechanical properties of hot strength alloy of Nb-Si system of the eutectic structure received by methods of directed crystallization] // Deformaciya i razrushenie materialov. 2002. №12. S. 2–8.