Ножницкий Ю.А., Голубовский Е.Р. Обеспечение прочностной надежности монокристаллических рабочих лопаток высокотемпературных турбин перспективных ГТД // Научные идеи С.Т. Кишкина и современное материаловедение: тр. Междунар. науч.-технич. конф. М.: ВИАМ, 2006. С. 65-71.
Harada H. Development of Superalloys for 1700°C ultra-efficient gas turbines // Proc. 9th Liege Conf. «Materials for Advanced Power Engineering 2010». Belgium: University of Liège, 2010. P. 604-614.
Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3-33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Walston S., Cetel A., MacKay R. et al. Joint development of a fourth generation single crystal superalloy // Superalloys 2004. Pennsylvania: Minerals, Metals & Materials Society, 2004. P. 15-24.
Koizumi Y., Kobayashi T., Yokokawa T. et al. Development of next-generation Ni-base single crystal superalloys // Ibid. P. 35-43.
Fifth generation nickel base single crystal superalloy // TMS-196. Tokyo (Japan): NIMS and IHI, 2006. 4 p. URL: http://www.sakimori.nims.go.jp (дата обращения: 21.12.2011).
Каблов Е.Н., Петрушин Н.В., Светлов И.Л. Компьютерное конструирование жаропрочного никелевого сплава IV поколения для монокристаллических лопаток газовых турбин // Литейные жаропрочные сплавы. Эффект С.Т. Кишкина. М.: Наука, 2006. С. 98-115.
Каблов Е.Н., Петрушин Н.В. Светлов И.Л., Демонис И.М. Литейные жаропрочные никелевые сплавы для перспективных авиационных ГТД // Технология легких сплавов. 2007. №2. С. 6-16.
Sato A., Harada H., Yeh An-C. et al. A 5th generation SC superalloy with balanced high temperature properties and processability // Superalloys 2008. Pennsylvania: Minerals, Metals & Materials Society, 2008. P. 131-138.
Каблов Е.Н., Петрушин Н.В., Светлов И.Л., Демонис И.М. Никелевые литейные жаропрочные сплавы нового поколения // Авиационные материалы и технологии. 2012. №S. С. 36-52.
Петрушин Н.В., Светлов И.Л., Оспенникова О.Г.: 1) Литейные жаропрочные никелевые сплавы // Все материалы. Энциклопедический справочник. 2012. №5. С. 15-19; 2) Литейные жаропрочные никелевые сплавы // Все материалы. Энциклопедический справочник. 2012. №6. С. 16-21.
Kawagishi K., Yeh An-C., Yokokawa T., Kobayashi T., Koizumi Y., Harada H. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 // Superalloys 2012. Pennsylvania: Minerals, Metals & Materials Society, 2012. P. 189-195.
Yokokawa T., Harada H., Mori Y., Kawagishi K. et al. Design of nest generation Ni-base single-crystal superalloy containing Ir: towards 1150 ºC temperature capability // Superalloys 2016. Pennsylvania: Minerals, Metals & Materials Society, 2016. P. 123-130.
Каблов Е.Н., Мубояджян С.А. Жаростойкие и теплозащитные покрытия для лопаток турбины высокого давления перспективных ГТД // Авиационные материалы и технологии. 2012. №S. С. 60-70.
Иноземцев А.А., Коряковцев А.С., Лесников В.П., Кузнецов В.П. Роль материалов и защитных покрытий турбинных лопаток в обеспечении надежности и экономичности ГТД // Научные идеи С.Т. Кишкина и современное материаловедение: тр. Междунар. науч.-технич. конф. М.: ВИАМ, 2006. С. 84-87.
Шалин Р.Е., Светлов И.Л., Качанов Е.Б., Толораия В.Н., Гаврилин О.С. Монокристаллы никелевых жаропрочных сплавов. М.: Машиностроение, 1997. 336 с.
Петрушин Н.В., Светлов И.Л. Физико-химические и структурные характеристики жаропрочных никелевых сплавов // Металлы. 2001. №2. С. 63-73.
Petrushin N.V., Svetlov I.L., Samoylov A.I., Morozova G.I. Physicochemical properties and creep strength of a single crystal of nickel-base superalloy containing rhenium and ruthenium // Intern. J. Materials Research (formerly Z. Metallkunde). 2010. Vol. 101. No. 5. P. 594-600.
Каблов Е.Н., Петрушин Н.В., Елютин Е.С. Монокристаллические жаропрочные сплавы для газотурбинных двигателей // Вестник МГТУ им. Н.Э. Баумана. Сер.: Машиностроение. 2011. №SP2. С. 38-52.
Каблов Е.Н., Петрушин Н.В., Морозова Г.И., Светлов И.Л. Физико-химические факторы жаропрочности никелевых сплавов, содержащих рений // Литейные жаропрочные сплавы. Эффект С.Т. Кишкина. М.: Наука, 2006. С. 116-130.
Петрушин Н.В., Оспенникова О.Г., Елютин Е.С. Рений в монокристаллических жаропрочных никелевых сплавах для лопаток газотурбинных двигателей // Авиационные материалы и технологии. 2014. №S5. С. 5-16. DOI: 10.18577/2071-9140-2014-0-s5-5-16.
Портной К.И., Богданов В.И., Фукс Д.Л. Расчет взаимодействия и стабильности фаз. М.: Металлургия, 1981. 248 с.
Blavette D., Caron P., Khan T. An atom probe investigation of the role rhenium additions in improving creep resistance of Ni-base superalloys // Scripta Metallurgica. 1986. Vol. 20. No. 10. P. 1395-1400.
Fink P.J., Miller J.L., Konitzer D.G. Rhenium reduction - alloy design using an economically strategic element // J. of Metals. 2010. Vol. 62. No. 1. P. 55-57.
Wahl J.B., Harris K. New single crystal superalloys, CMSX-7 and CMSX-8 // Superalloys-2012. Pennsylvania: Minerals, Metals & Materials Society, 2012. P. 179-188.
Nickel-Basislegierung für die gießtechnische Herstellung einkristallin erstarter Bauteile: pat. 10100790 Deutsches; publ. 18.07.02.
Петрушин Н.В., Оспенникова О.Г., Висик Е.М., Рассохина Л.И., Тимофеева О.Б. Жаропрочные никелевые сплавы низкой плотности // Литейное производство. 2012. №6. С. 5-11.
Каблов Е.Н., Оспенникова О.Г., Петрушин Н.В., Висик Е.М. Монокристаллический жаропрочный никелевый сплав нового поколения с низкой плотностью // Авиационные материалы и технологии. 2015. №2 (35). С. 14-25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
Low density, high creep resistant single crystal superalloy for turbine airfoils: pat. 7261783 US; publ. 28.08.07.
Каблов Е.Н., Петрушин Н.В. Компьютерный метод конструирования литейных жаропрочных никелевых сплавов // Литейные жаропрочные сплавы. Эффект С.Т. Кишкина. М.: Наука. 2006. С. 56-78.
Rae C.M.F., Reed R.C. The precipitation of topologically close-packed phases in rhenium-containing superalloys // Acta Materialia. 2001. Vol. 49. No. 10. P. 4113-4125.
Acharya M.V., Fuch G.E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys // Materials Science Engineering A. 2004. Vol. 381. P. 143-153.
Каблов Е.Н., Петрушин Н.В., Бронфин М.Б., Алексеев А.А. Особенности монокристаллических жаропрочных никелевых сплавов, легированных рением // Металлы. 2006. №5. С. 47-57.
Морозова Г.И., Тимофеева О.Б., Петрушин Н.В. Особенности структуры и фазового состава высокорениевого никелевого жаропрочного сплава // Металловедение и термическая обработка металлов. 2009. №2 (644). С. 10-16.
Walston W.S., Schaeffer J.C., Murphy W.H. A new type microstructural instability in superalloys - SRZ // Superalloys 1996. Pennsylvania: Minerals, Metals & Materials Society, 1996. P. 9-18.
Каблов Е.Н., Светлов И.Л., Петрушин Н.В. Никелевые жаропрочные сплавы, легированные рутением // Авиационные материалы и технологии. М.: ВИАМ, 2004. Вып.: Высокорениевые жаропрочные сплавы, технология и оборудование для производства сплавов и литья монокристаллических турбинных лопаток ГТД. С. 80-90.
Петрушин Н.В., Елютин Е.С., Назаркин Р.М. и др. Сегрегация легирующих элементов в направленно закристаллизованных жаропрочных никелевых сплавах, содержащих рений и рутений // Вопросы материаловедения. 2015. №1 (81). С. 27-37.
Murakami H., Honma T., Koizumi Y., Harada H. Distribution of platinum group metals in Ni-base single-crystal superalloys // Superalloys 2000. Pennsylvania: Minerals, Metals& Materials. Society, 2000. P. 747-756.
Fu C.L., Reed R., Janotti A., Kremar M. On the diffusion of alloying elements in the nickel-base superalloys // Superalloys 2004. Pennsylvania: Minerals, Metals & Materials Society. 2004. P. 867-876.
Argence D., Vernault C., Desvallées Y., Fournier D. MC-NG: a 4th generation single-crystal superalloy for future aeronautical turbine blades and vanes // Superalloys 2000. Pennsylvania: Minerals, Metals &Materials Society, 2000. P. 829-837.
Каблов Е.Н., Бунтушкин В.П., Базылева О.А. Конструкционные жаропрочные материалы на основе соединения Ni3Al для деталей горячего тракта ГТД // Технология легких сплавов. 2007. №2. С. 75-80.
Каблов Е.Н., Оспенникова О.Г., Петрушин Н.В. Новый монокристаллический интерметаллидный жаропрочный сплав на основе γ¢-фазы для лопаток ГТД // Авиационные материалы и технологии. 2015. №1 (34). С. 34-40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
Поварова К.Б., Базылева О.А., Дроздов А.А. и др. Конструкционные жаропрочные сплавы на основе Ni3Al: получение, структура, свойства // Материаловедение. 2011. №4. С. 39-48.
Светлов И.Л., Петрушин Н.В., Голубовский Е.Р., Хвацкий К.К., Щеголев Д.В., Елютин Е.С. Механические свойства монокристаллов никелевого жаропрочного сплава, содержащего рений и рутений // Деформация и разрушение материалов. 2008. №11. С. 26-35.
Петрушин Н.В., Висик Е.М., Горбовец М.А., Назаркин Р.М. Структурно-фазовые характеристики и механические свойства монокристаллов жаропрочных никелевых ренийсодержащих сплавов с интерметаллидно-карбидным упрочнением // Металлы. 2016. №4. С. 57-70.
Селезнев В.Г., Розанов М.А., Минова Н.И. Определение физических характеристик монокристаллических образцов сплава ЖС36 // Новые технологические процессы и надежность ГТД. М.: ЦИАМ, 2008. Вып. 7: Обеспечение прочностной надежности рабочих лопаток высокотемпературных турбин. С. 73-77.
Fährmann M., Hermann W., Fährmann E. et al. Determination of matrix and precipitate elastic constants in (γ-γ¢) Ni-base model alloys, and their relevance to rafting // Material Science Engineering A. 1999. Vol. 260. Issue 1-2. P. 212-221.
Miner R.V., Voigt R.S., Gayda J., Gabb T.P. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy René N4: Part I. Tensile behavior // Metallurgical Transactions A. 1986. Vol. 17. Issue 3. P. 491-496.
Yun-Jiang W., Chong-Yu W. First-principles calculation for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers // Chinese Physics B. 2009. Vol. 18. No. 10. P. 4339-4348.
Caron P., Diologent F., Drawin S. Influence of chemistry on the tensile yield strength of nickel-based single crystal superalloys // Proc. Conf. Eurosuperalloys 2010. Switzerland. Scientific net Trans. Tech. Publications. Advanced Materials Research. 2011. Vol. 278. P. 345-350. DOI: 10.4028/www.scientific.net/AMR.278.345.
Каблов Е.Н., Голубовский Е.Р. Жаропрочность никелевых сплавов. М.: Машиностроение, 1998. 462 с.
Голубовский Е.Р., Светлов И.Л. Температурно-временна́я зависимость анизотропии длительной прочности монокристаллов ЖНС // Проблемы прочности. 2002. №2. С. 5-19.
Бокштейн Б., Епишин А., Светлов И., Есин В., Родин А., Линк Т. Рост и залечивание пор в монокристаллах жаропрочных сплавов на никелевой основе // Журнал функциональных материалов. 2007. Т. 1. №5. С. 162-170.
Епишин А.И., Светлов И.Л. Эволюция морфологии пор в монокристаллах никелевых жаропрочных сплавов // Материаловедение. 2015. №7. С. 21-28.
Epishin A., Link T., Fedelich B., Svetlov I., Golubovskiy E. Hot isostatic processing of single crystal nickel-base superalloys mechanism of pore closure and effect on mechanical properties // MATEC WEB of Conference. 2014. Vol. 14. P. 08003. DOI: 10.1051/matecconf/2014141/3009.
Светлов И.Л., Хвацкий К.К., Горбовец М.А., Беляев М.С. Влияние горячего изостатического прессования на механические свойства литейных никелевых жаропрочных сплавов // Авиационные материалы и технологии. 2015. №3 (36). С. 10-14. DOI: 10.18577/2071-9140-2015-0-3-10-14.
Transpiration cooled blade for a gas turbine engine: pat. 4314794 A US; publ. 09.02.82.
Method of manufacturing a transpiration cooled ceramic blade for a gas turbine: pat. 4376004 A US; publ. 08.03.83.
GE assembles first 777x engine // Aviation week. Network. URL: http://aviationweek.com/commercial-aviation/ge-assembles-first-777x-engi... (дата обращения: 21.08.2016).
Xu L., Bo S., Hongde Y., Lei W. Evolution of Rolls-Royce air-cooled turbine blades and feature analysis // J. Procedia Engineering. 2015. Vol. 99. P. 1482-1491.
Turbine blade for extreme temperature condition: pat. 7189459 B2 US; publ. 03.13.07.
Drawin S. Ultra High temperature refractory metal based silicide materials for next generation turbines // ONERA (French aerospace research Centre), Metallic Materials and Processing Department 92320 CHÂTILLON (France). URL: http://www.aerodays2006.org/sessions/B_Sessions/ B5/B54.pdf (дата обращения: 11.04.2012).
Shryu Q., Rongming W., Yarfang H. Microstructure of Nb/Nb5Si3 in situ composites // Transaction Nonferrous Met. Sos. China. 2002. Vol. 12. No. 4. P. 681-684.
Светлов И.Л. Высокотемпературные Nb-Si композиты // Материаловедение. 2010. №9-10. С. 18-38.
Карпов М.И., Внуков В.И., Коржов В.П. и др. Структура и механические свойства жаропрочного сплава системы Nb-Si эвтектического состава, полученного методами направленной кристаллизации // Деформация и разрушение материалов. 2002. №12. С. 2-8.