1. Sagawa M., Fujimura S., Togawa N. et al. New material for permanent magnets on a base of Nd and Fe (invited) // Journal of Applied Physics. 1984. Vol. 55. No. 6. P. 2083–2087.
2. Rodewald W., Wall B., Katter M., Uestuener K. Top Nd–Fe–B magnets with greater than 56 MGOe energy density and 9.8 kOe coercivity // IEEE Transactions on Magnetics. 2002. Vol. 38. P. 2955–2957.
3. Croat J.J., Herbst J.F., Lee R.W., Pinkerton F. High-energy product Nd–Fe–B permanent magnets // Journal of Applied Physics Letters. 1984. Vol. 44. P. 148–149.
4. Saito T., Fujita M., Kuji T. et al. The development of high performance Nd–Fe–Co–Ga–B die upset magnets // Journal of Applied Physics. 1998. Vol. 83. P. 6390.
5. Mishra R.K. The microstructure of hot formed neodymium-iron-boron magnets // Journal of Applied Physics. 1993. Vol. 73. No. 10. P. 6470–6472.
6. Yoshikawa N., Kasai Y., Watanabe T. et al. Effect of additive elements on magnetic properties and irreversible loss of hotworked Nd–Fe–Co–B magnet // Journal of Applied Physics. 1991. Vol. 69. No. 8. P. 6049–6051.
7. Kablov E.N., Piskorskij V.P., Burhanov G.S. i dr. Termostabilnye kolcevye magnity s radialnoj teksturoj na osnove Nd(Pr)–Dy–Fe–Co–B [Thermostable ring magnets with radial structure on the basis of Nd(Pr) – Dy–Fe–Co–B] // Fizika i himiya obrabotki materialov. 2011. №3. S. 43–47.
8. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennyh materialov sistemy Nd–Dy–Fe–Co–B ot tehnologicheskih parametrov [Properties dependence of the Nd–Dy–Fe–Co–B sintered materials on technological parameters] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
9. Kablov E.N., Ospennikova O.G., Korolev D.V., Piskorskij V.P., Valeev R.A., Rezchikova I.I. Mehanizm vliyaniya soderzhaniya bora i termoobrabotki na svojstva magnitov sistemy Nd–Fe–Al–Ti–B [Influence mechanisms of boron content and heat treatment on the properties of Nd–Fe–Al–Ti–B magnets] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 30–34. DOI: 10.18577/2071-9140-2015-0-S2-30-34.
10. Xiao-qiang L., Li L., Zhi-cheng C. et al. Microstructure and magnetic properties of anisotropic Nd−Fe−B magnets prepared by spark plasma sintering and hot deformation // Transactions of Nonferrous Metals Society of China. 2014. Vol. 24. P. 3142−3151.
11. Castle E., Sheridan R., Grasso S. et al. Rapid Sintering of Anisotropic, Nanograined Nd–Fe–B by Flash-Spark Plasma Sintering // Journal of Magnetism and Magnetic Materials. 2016. Vol. 417. P. 279–280.
12. Boldin M.C. Fizicheskie osnovy tehnologii elektroimpulsnogo plazmennogo spekaniya: ucheb.-metodich. posobie [Physical bases of technology of electropulse plasma agglomeration: educational and methodical grant]. N. Novgorod: Nizhegorod. gos. un-t., 2012. S. 59.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Gutfleisch O. Controlling the properties of high energy density permanent magnetic materials by different processing routes // Journal of Physics D: Applied Physics. 2000. Vol. 33. P. R157–R172.
15. Tikadzumi S. Fizika ferromagnetizma. Magnitnye harakteristiki i prakticheskie primeneniya [Magnetic characteristics and practical applications]. M.: Mir, 1987. 419 s.
16. Kalin B.A. Fizicheskoe materialovedenie [Physical materials science]. M.: MIFI, 2008. T. 6. 672 p.
17. Sheng H.C., Zeng X.R., Jin C.X., Qian H.X. Phase evolution and magnetic properties of Nd9.5Fe81Zr3B6.5 nanocomposite magnets // Transactions of Nonferrous Metals Society of China. 2013. Vol. 23. P. 2628−2632.
18. Clavaquera-Mora M.T., Diego J.A., Clavaguera N.H. Magnetic hardening mechanisms in Nd–Fe–B nanocrystalline material // Journal of Applied Physics. 1994. Vol. 76. P. 1124–1130.
19. Kim H., Kim Y., Kapustin G.A. et al. Magnetic properties and microstructure of nanocrystalline NdFeB magnets fabricated by a modified hot working process // Journal of Magnetics. 2002. Vol. 7. No. 4. P. 138–142.
20. Zhao R., Zhang W.C., Li J.J. et al. Effect of die-upset process on magnetic properties and deformation behavior of nanostructured Nd–Fe–B magnets // Journal of Magnetics. 2011. Vol. 16. P. 294–299.
21. Herbst J.F. R2Fe14B materials: Intrinsic properties and technological aspects // Reviews of Morden Physics. 1991. Vol. 63. No. 4. P. 819–900.
22. Bin L., Yanfeng L., Huijie W., Anhua L. et al. Model of temperature field for the preparation process of melt-spun NdFeB powders // Journal of Rare Earths. 2014. Vol. 32. No. 6. P. 514–520.
23. Lee R.W., Brewer E.G., Schnaffel N.A. Processing of neodymium-iron-boron melt-spun ribbons to fully dense magnets // IEEE Transactions on Magnetics. 1985. Vol. MAG-21. No. 5. P. 1958–1963.
24. Mishra R.K. Microstructure of hotpressed and dieupset NdFeB magnets // Journal of Applied Physics. 1987. Vol. 62. No. 3. P. 967–971.
25. Fuerst C.D., Brewer E.G. High remanence rapidly solidified NdFeB: Dieupset magnets (invited) // Journal of Applied Physics. 1993. Vol. 73. No. 10. P. 5751–5756.
26. Gruenberger W., Hinz D., Kirchner A., Mueller K.H. Hot deformation of nanocrystalline Nd–Fe–B alloys // Journal of Alloys and Compounds. 1997. Vol. 257. P. 293–301.
27. Hinz D., Kirchner A., Brown D.N. et al. Near net shape production of radially oriented NdFeB ring magnets by backward extrusion // Journal of Materials Processing Technology. 2003. Vol. 135. P. 358–365.
28. Brown D.N., Lim Y.K., Remoroza R.A., Miller D. Optimization of melt spun RE-Fe-B powder composition for fully dense, high energy magnets // Journal of Applied Physics. 2011. Vol. 109. P. 07A742.
29. Yi P., Lee D., Yan A. Effects of compositions on characteristics and microstructures for melt-spun ribbons and die-upset magnets of Nd12.8+xFe81.2_x_y_zCoyGazB6 // Journal of Magnetism and Magnetic Materials. 2010. Vol. 322. P. 3019–3022.
30. Liu Z.W., Huang Y.L., Hu S.L., Zhong X.C. Properties enhancement and recoil loop characteristics for hot deformed nanocrystalline NdFeB permanent magnets // Materials Science and Engineering. 2013. Vol. 60. P. 012–013.
31. Zhihua H., Linhua C., Jun L., Ying L. Enhanced magnetic properties in Nd–Fe–B magnets prepared by spark plasma sintering via die-upsetting process // Journal of Rare Earths. 2011. Vol. 29. No. 7. P. 660–662.
32. Fuerst C.D., Brewer E.G. Enhanced coercivities in dieupset NdFeB magnets with diffusionalloyed additives (Zn, Cu, and Ni) // Journal of Applied Physics Letters. 1990. Vol. 52. P. 2252–2254.
33. Pinkerton F.E., Fuerst C.D. Coercivity of die upset Nd–Fe–B magnets: a strong pinning model // Journal of Magnetism and Magnetic Materials. 1990. Vol. 89. P. 139–142.
34. Fuerst C.D., Brewer E.G. Dieupset Nd2Fe14 M magnets (M=B and C) // Journal of Applied Physics. 1991. Vol. 70. P. 6444–6446.
35. Shinoda M., Iwasaki K., Tanigawa S., Tokunaga M. Magnetic properties of arc-shaped Nd–Fe–B die-upset magnets // Journal of Magnetism and Magnetic Materials. 1994. Vol. 134. P. 47–52.
36. Pengpeng Y., Min L., Renjie C., Aru Y. Enhanced magnetic properties and bending strength of hot deformed Nd–Fe–B magnets with Cu additions // J. Alloys and Compounds. 2010. Vol. 491. No. 1–2. P. 605–609.
37. Dospial M., Nabialek M., Szota M. et al. The Investigation of the Magnetization Reversal Mechanism in the Nd–Fe–B Type Magnet, Aligned by Hot Deformation // Acta Physica Polonica A. 2012. Vol. 121. No. 5–6. P. 1282–1284.
38. Tang X., Chen R., Yin W. et al. Impact of Nd–Cu diffusion on microstructure and coercivity in hot-pressed and die-upset nanocomposite magnets // Journal of Scripta Materialia. 2014. Vol. 88. P. 49–52.
39. Hu Z.H., Qu H.J., Zhao J.Q., Luo C. Effect of amorphous powder blend on the magnetic and mechanical properties of die-upset Nd–Fe–B magnets // Journal of Magnetism and Magnetic Materials. 2014. Vol. 358–359. P. 204–207.
40. Sorokin O.Yu., Solntsev S.St., Evdokimov S.A., Osin I.V. Metod gibridnogo iskrovogo plazmennogo spekaniya: princip, vozmozhnosti, perspektivy primeneniya [Hybrid spark plasma sintering method: principle, possibilities, future prospects] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 11–16. DOI: 10.18577/2071-9140-2014-0-s6-11-16.