1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Kablov E.N., Karimova S.A., Semenova L.V. Korrozionnaya aktivnost ugleplastikov i zashhita metallicheskih silovyh konstrukcij v kontakte s ugleplastikom [Corrosion activity carbonplastics and protection of metal load bearing structures in contact with the carbonplastics] // Korroziya: materialy, zashhita. 2011. №12. P. 1–7.
3. Kulyushina N.V., Kozlov I.A., Kutyrev A.E., Vagramyan T.A. Adhesive coatings on the basis of trialkoxysilanes for aluminum and steel // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 05. Available at: http://viam-works.ru (accessed: December 09, 2016). DOI: 10.18577/2307-6046-2015-0-8-5-5.
4. Zakharova L.V. Anodno-oksidnoe pokrytie – zashhita titanovyh splavov ot goryachesolevoj korrozii [Anodic oxide coating – protection of titanium alloys against hot salt corrosion] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 02. Available at: http://www.viam-works.ru (accessed: December 09, 2016). DOI: 10.18577/2307-6046-2015-0-10-2-2.
5. Karpov V.A., Kovalchuk Yu.L., Kuznecov Yu.I. i dr. Zashhita ot morskoj korrozii stalej v zamknutyh obemah [Protection against sea corrosion staly in the closed volumes] // Korroziya: materialy, zashhita. 2013. №5. S. 35–40.
6. Ivonin V.N., Chin K.K., Din V.D. i dr. Ob effektivnosti protivokorrozionnoj zashhity alyuminievyh splavov konversionnymi pokrytiyami v usloviyah vlazhnogo tropicheskogo klimata [About efficiency of anticorrosive protection of aluminum alloys conversion coatings in the conditions of humid tropical climate] // Korroziya: materialy, zashhita. 2012. №10. S. 44–48.
7. Rinaldi G., Huber T., McIntosh H. et al. Corrosion sensor development for condition-based maintenance of aircraft // International Journal of Aerospace Engineering. 2012. Vol. 2012. P. 1–11.
8. Harrigan S. A condition-based maintenance solution for army helicopters // The AMMTIAC Quarterly. 2009. Vol. 4. No. 2. P. 3–8.
9. Kablov E.N., Starcev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoj atmosfery. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. 1. Factors of influence (overview)] // Korroziya: materialy, zashhita. 2013. №12. S. 6–18.
10. Hohlatova L.B., Kolobnev N.I., Antipov V.V., Karimova S.A., Rudakov A.G., Oglodkov M.S. Vliyanie korrozionnoj sredy na skorost rosta treshhiny ustalosti v alyuminievyh splavah [Influence of the corrosion environment on the growth rate of crack of fatigue in aluminum alloys] // Aviacionnye materialy i tehnologii. 2011. №1. S. 16–20.
11. Karimova S.A., Kutyrev A.E., Fomina M.A., Chesnokov D.V. Modelirovanie processa vozdejstviya agressivnyh komponentov promyshlennoj atmosfery na metallicheskie materialy v kamere solevogo tumana [Modeling of process of influence of aggressive components of the industrial atmosphere on metal materials in the salt spray chamber] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 86–94. DOI: 10.18577/2071-9140-2015-0-1-86-94.
12. Abbott W.H. A Study of Wash Intervals on Navy P3 Aircraft Using Corrosion Sensors // 2009–DOD Corrosion Conference. 2009. P. 14.
13. Kablov E.N., Starcev O.V., Medvedev I.M. Korrozionnaya agressivnost primorskoj atmosfery. Chast 2. Novye podhody k ocenke korrozivnosti primorskih atmosfer [Corrosion aggression of the seaside atmosphere. Part 2. New approaches to assessment of ability of the seaside atmospheres to cause corrosion] // Korroziya: materialy, zashhita. 2016. №1. S. 1–15.
14. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Song H., Saraswathy V. Corrosion Monitoring of Reinforced Concrete Structures – A Review // International Journal of Electrochemical Science. 2007. Vol. 2. P. 1–28.
17. Cai J.-P., Lyon S.B. A mechanistic study of initial atmospheric corrosion kinetics using electrical resistance sensors // Corrosion Science. 2005. Vol. 47. No. 12. P. 2956–2973.
18. Li S., Kim Y.G., Jung S., Song H.S., Lee S.M. Application of steel thin film electrical resistance sensor for in situ corrosion monitoring // Sensors and Actuators, B: Chemical. 2007. Vol. 120. No. 2. P. 368–377.
19. Roblero E., Corvo F., Moo-Yam V. et al. Development and evaluation of atmospheric corrosion sensors using printed circuits // Proceedings of EUROCORR 2014. 2014. 631 р.
20. Prosek T., Taube M., Dubois F., Thierry D. Application of automated electrical resistance sensors for measurement of corrosion rate of copper, bronze and iron in model indoor atmospheres containing short-chain volatile carboxylic acids // Corrosion Science. Elsevier Ltd, 2014. Vol. 87. P. 376–382.
21. Li S., Jung S., Park K., Lee S.-M., Kim Y.-G. Kinetic study on corrosion of steel in soil environments using electrical resistance sensor technique // Materials Chemistry and Physics. 2007. Vol. 103. No. 1. P. 9–13.
22. Yoo J.-H., Park Z.-T., Kim J.-G., Chung L. Development of a galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structures: Part 1. Laboratory tests to correlate galvanic current with actual damage // Cement and Concrete Research. 2003. Vol. 33. No. 12. P. 2057–2062.
23. Muralidharan S., Ha T.H., Bae J.H. et al. A promising potential embeddable sensor for corrosion monitoring application in concrete structures // Measurement. 2007. Vol. 40. No. 6. P. 600–606.
24. Česen A., Kosec T., Legat A. Characterization of steel corrosion in mortar by various electrochemical and physical techniques // Corrosion Science. 2013. Vol. 75. P. 47–57.
25. Mizuno D., Suzuki S., Fujita S., Hara N. Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor // Corrosion Science. Elsevier Ltd, 2014. Vol. 83. P. 217–225.
26. Demo J., Andrews C., Friedersdorf F. et al. Deployment of a wireless corrosion monitoring system for aircraft applications // Aerospace Conference IEEE-2013. 2013. P. 1–10.
27. Demo J., Steiner A., Friedersdorf F., Putic M. Diagnostics and Prognostics for Aircraft Structures using a Wireless Corrosion Monitoring Network // Aerospace Conference IEEE-2010. 2010. P. 1–9.
28. Wilson A., Vincent P., McMahon P. et al. A small, low-power, networked corrosion sensor suite // Materials Forum. 2008. Vol. 33. P. 36–45.
29. Avdeev Yu.P., Karpov V.A., Olshanskij V.M. K voprosu formirovaniya korrozionno-opasnyh uslovij v zamknutyh obmah tehnicheskih ustrojstv [To question of forming of corrosion and dangerous conditions in the closed volumes of engineering devices] // Korroziya: materialy, zashhita. 2013. №7. C. 14–17.
30. Molokov M.V., Medvedev I.M. Ocenka chuvstvitelnosti datchikov k izmeneniyu vremeni prodolzhitelnosti uvlazhneniya poverhnosti pri ekspluatacii v usloviyah umerenno teplogo klimata Assessment of sensitivity of sensors to change of time of duration of moistening of surface at operation in the conditions of moderately warm climate // Novye materialy i tehnologii: sb. nauch. statej II Rossijsko-Kazahstanskoj molodezhnoj nauch.-tehnich. konf. Barnaul: Izd-vo Alt. un-ta, 2014. P. 165–171.
31. Kouril M., Prosek T., Scheffel B., Degres Y. Corrosion monitoring in archives by the electrical resistance technique // Journal of Cultural Heritage. Elsevier Masson SAS, 2014. Vol. 15. No. 2. P. 99–103.
32. Shitanda I., Okumura A., Itagaki M. et al. Screen-printed atmospheric corrosion monitoring sensor based on electrochemical impedance spectroscopy // Sensors and Actuators B: Chemical. 2009. Vol. 139. No. 2. P. 292–297.
33. Allahar K.N., Upadhyay V., Bierwagen G.P., Gelling V.J. Monitoring of a military vehicle coating under Prohesion exposure by embedded sensors // Progress in Organic Coatings. 2009. Vol. 65. No. 1. P. 142–151.
34. Bierwagen G., Tallman D., Li J. et al. EIS studies of coated metals in accelerated exposure // Progress in Organic Coatings. 2003. Vol. 46. No. 2. P. 148–157.
35. Wilson A.R., Muscat R.F. Novel thin wire paint and sealant degradation sensor // Sensors and Actuators A: Physical. 2011. Vol. 169. No. 2. P. 301–307.
36. Wan K., Leung C. Durability Tests of a Fiber Optic Corrosion Sensor // Sensors. 2012. Vol. 12. No. 3. P. 3656–3668.
37. Sposob registracii signalov izmeritelnyh preobrazovatelej na osnove breggovskih reshetok, zapisannyh v edinom volokonnom svetovode: pat. 2413259 Ros. Federaciya [Way of registration of signals of measuring transducers on the basis of the Bragg grids which have been written down in the uniform fiber lightguide: pat. 2413259 Rus. Federation]; opubl. 10.02.06.
38. Volokonno-opticheskoe ustrojstvo dlya izmereniya temperaturnogo raspredeleniya (varianty): pat. 2413188 Ros. Federaciya [The fiber-optical device for measurement of temperature distribution (options): pat. 2413188 Rus. Federation]; opubl. 27.02.11.
39. Babin S.A., Ismagulov A.E., Podivilov E.V. et al. Modulation instability at propagation of narrowband 100-ns pulses in optical fibers of various types // Laser Physics. 2010. Vol. 20. No. 2. P. 334–340.
40. Kerrouche А., Boyle W.J.O., Gebremichael Y. et al. Field tests of fibre Bragg grating sensors incorporated into CFRP for railway bridge strengthening condition monitoring // Sensors and Actuators A: Physical. 2008. Vol. 148. No. 1. P. 68–74.
41. Muto S., Suzuki O., Amano T., Morisawa M. A plastic optical fibre sensor for real-time humidity monitoring // Measurement Science and Technology. 2003. Vol. 14. No. 6. P. 746–750.
42. Ghosh S.K., Sarkar S.K., Chakraborty S. Design and development of a fiber optic intrinsic voltage sensor // Proceedings of the 12th IMEKO TC4 international symposium Part. 2002. Vol. 2. P. 415–419.
43. Zhao Y., Li X., Zhou X., Zhang Y. Review on the graphene based optical fiber chemical and biological sensors // Sensors and Actuators B: Chemical. 2016. Vol. 231. P. 324–340.
44. Raghunandhan R., Chen L.H., Long H.Y. et al. Sensors and Actuators B : Chemical Chitosan / PAA based fiber-optic interferometric sensor for heavy metal ions detection. 2016. Vol. 233. P. 31–38.
45. Yang J., Chen L.H., Zheng Y. et al. Heavy metal ions probe with relative measurement of fiber Bragg grating // Sensors and Actuators, B: Chemical. 2016. Vol. 230. P. 353–358.
46. Benounis M., Jaffrezic-Renault N., Stremsdoerfer G., Kherrat R. Elaboration and standardization of an optical fibre corrosion sensor based on an electroless deposit of copper // Sensors and Actuators B: Chemical. 2003. Vol. 90. No. 1–3. P. 90–97.
47. Abderrahmane S., Himour A., Kherrat R. et al. An optical fibre corrosion sensor with an electroless deposit of Ni–P // Sensors and Actuators B: Chemical. 2001. Vol. 75. No. 1–2. P. 1–4.
48. Benounis M., Jaffrezic-Renault N. Elaboration of an optical fibre corrosion sensor for aircraft applications // Sensors and Actuators B: Chemical. 2004. Vol. 100. No. 1–2. P. 1–8.
49. Dong S., Liao Y., Tian Q. et al. Optical and electrochemical measurements for optical fibre corrosion sensing techniques // Corrosion Science. 2006. Vol. 48. No. 7. P. 1746–1756.
50. Hu W., Cai H., Yang M. et al. Fe–C-coated fibre Bragg grating sensor for steel corrosion monitoring // Corrosion Science. Elsevier Ltd, 2011. Vol. 53. No. 5. P. 1933–1938.
51. Lee B. Review of the present status of optical fiber sensors // Optical Fiber Technology. 2003. Vol. 9. Issue 2. P. 57–79.
52. Lo Y.-L., Xiao F.-Y. Measurement of corrosion and temperature using a single-pitch Bragg grating fiber sensor // Journal of intelligent material systems and structures. 1998. Vol. 9. No. 10. P. 800–807.
53. Babin S.A., Golushko S.K., Cyba A.M., Chejdo G.P., Shelemba I.S., Shakirov S.R. Koncepciya mnogofunkcionalnoj sistemy bezopasnosti ugolnoj shahty s ispolzovaniem volokonno-opticheskih tehnologij [The concept of multifunction safety system of coal mine with use of fiber-optical technologies] // Vychislitelnye tehnologii. 2013. T. 18. S. 95–100.
54. Volokonno-opticheskij linejnyj pozharnyj izveshhatel: pat. 2467397 Ros. Federaciya [Fiber-optical linear fire annunciator: pat. 2467397 Rus. Federation]; opubl. 20.11.12.
55. Gurevich É.I., Lyamin A.A., Shelemba I.S. Measurement of the temperature of a stator winding with fiber-optic sensors in bench tests of a turbogenerator // Power Technology and Engineering. 2010. Vol. 44. No. 3. P. 249–254.
56. Kotenev V.A., Petrunin M.A., Maksaeva L.B. i dr. Vakuumnoe okislenie nanoplenok svezhenapylennogo zheleza [Vacuum oxidation of nanofilms are fresh misted iron] // Fizikohimiya poverhnosti i zashhita materialov. 2013. T. 49. №4. S. 442–448.
57. Rutherford P., Ikegami R., Shrader J. et al. Novel NDE fiber optic corrosion sensor // Proceedings of SPIE. 1996. Vol. 2718. P. 158–169.
58. Bossi R., Criswell T., Ikegami R. et al. Novel methods for aircraft corrosion monitoring // Proceedings of SPIE. 1994. Vol. 2455. P. 332–335.
59. Rutherford P., Ikegami R., Shrader J. et al. Aluminum alloy clad fiber optic corrosion sensor // Proceedings of SPIE. 1997. Vol. 3042. P. 248–259.
60. Dong S., Liao Y., Tian Q. Intensity-based optical fiber sensor for monitoring corrosion of aluminum alloys // Applied optics. 2005. Vol. 44. No. 27. P. 5773–5777.
61. Babin S.A., Vlasov A.A., Shelemba I.S. Fiber-optic sensors based on Bragg gratings // High Energy Chemistry. 2008. Vol. 42. No. 7. P. 535–537.
62. Babin S.A., Vlasov A.A., Kablukov S.I., Shelemba I.S. Sensornaya sistema na osnove volokonno-opticheskih breggovskih reshetok [Touch system on the basis of fiber-optical Bragg grids] // Vestnik NGU. Ser.: Fizika. 2007. №.2. Vyp. 3. S. 54–57.
63. Shishkin V.V., Granjov I.V., Shelemba I.S. Otechestvennyj opyt proizvodstva i primeneniya volokonno-opticheskih datchikov [Domestic experience of production and use of optical fiber sensors] // Prikladnaya fotonika. 2016. T. 3. №1. S. 61–74.
64. Babin S.А., Kablukov S.I., Shelemba I.S., Vlasov А.А. An interrogator for a fiber Bragg sensor array based on a tunable erbium fiber laser // Laser Physics. 2007. Vol. 17. No. 11. P. 1340–1344.
65. Handawi K.A., Vahdati N., Rostron P. et al. Strain based FBG sensor for real-time corrosion rate monitoring in pre-stressed structures // Sensors and Actuators B: Chemical. 2016. P. 276–285.
66. Wade S.А., Wallbrink C.D., McAdam G. et al. A fibre optic corrosion fuse sensor using stressed metal-coated optical fibres // Sensors and Actuators B: Chemical. 2008. Vol. 131. No. 2. P. 602–608.
67. Zheng X., Hu W., Zhang N., Gao M. Optical corrosion sensor based on fiber Bragg grating electroplated with Fe–C film // Optical Engineering. 2014. Vol. 53. No. 7. P. 077104.
68. Martins-Filho J.F., Fontana E., Guimarães J. et al. Fiber-optic-based corrosion sensor using OTDR // Proceedings of IEEE Sensors. 2007. P. 1172–1174.
69. Martins-Filho J.F., Fontana E. Optical Fibre Sensor System for Multipoint Corrosion Detection // Optical Fiber New Developments / ed. Lethien C. InTech, 2009. P. 586.
70. Kulchin Y.N., Vitrik O.B., Dyshlyuk A.V., Shalagin A.M., Babin S.A., Shelemba I.S., Vlasov A.A. Combined time-wavelength interrogation of fiber-Bragg gratings based on an optical time-domain reflectometry // Laser Physics. 2008. Vol. 18. No. 11. P. 1301–1304.
71. Shahpir R., Sabouri S.G., Khorsandi A. Laser-based multichannel fiber optic sensor for multipoint detection of corrosion // Optica Applicata. 2016. Vol. XLVI. No. 1. P. 103–115.
72. Qiu Z., Luo Y., Song S. The formation of pure aluminium corrosion sensing film on fiber and its electrochemical performance // Materials and Corrosion. 2007. Vol. 58. No. 2. P. 109–112.
73. Dong S., Liao Y., Tian Q. Sensing of corrosion on aluminum surfaces by use of metallic optical fiber // Applied optics. 2005. Vol. 44. No. 30. P. 6334–6337.
74. Li X.M., Chen W.M., Huang Z.Q. et al. Fiber Optic Corrosion Sensor Fabricated by Electrochemical Method // Proceedings of SPIE. 1998. Vol. 3330. P. 126–133.
75. Derinkuyu S., Ertekin K., Oter O. et al. Fiber optic pH sensing with long wavelength excitable Schiff bases in the pH range of 7,0–12,0 // Analytica Chimica Acta. 2007. Vol. 588. No. 1. P. 42–49.
76. Panova A.A., Pantano P., Walt D.R. In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber // Analytical chemistry. 1997. Vol. 69. No. 8. P. 1635–1641.
77. Szunerits S., Walt D.R. Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles // Analytical Chemistry. 2002. Vol. 74. No. 4. P. 886–894.
78. Dong S., Luo M., Peng G., Cheng W. Broad range pH sensor based on sol-gel entrapped indicators on fibre optic // Sensors and Actuators, B: Chemical. 2008. Vol. 129. No. 1. P. 94–98.
79. Kotenev V.A., Petrunin M.A., Maksaeva L.B., Sokolova N.P., Gorbunov A.M., Kablov E.N., Civadze A.Yu. Gravimetriya, rezistometriya i infrakrasnaya Fure-spektroskopiya v kontrole agressivnosti vozdushnoj atmosfery s ispolzovaniem sensornogo sloya metall-oksidnogo nanokompozita zheleza [Gravimetry, resistmetry and infrared Fourier spectroscopy in control of aggression of the air atmosphere with use of touch layer of metal-oxide nanocomposite of iron] // Fizikohimiya poverhnosti i zashhita materialov. 2013. T 49. №5. S. 540–548.
80. Kotenev V.A., Tsivadze A.Y. Fiber-Optical Spectroscopy for Monitoring the Electro-Oxidation of Metals // Measurement Techniques. 2014. Vol. 56. No. 10. P. 1134–1139.
81. Kotenev V.A., Tsivadze A.Y. Probe Raman spectroscopy in monitoring the electrical degradation of thin-film conductors // Measurement Techniques. 2012. Vol. 54. No. 12. P. 1421–1426.
82. Gagina I.A., Sokolova N.P., Platonova N.P. et al. Fourier transform infrared spectroscopy in long-term corrosion monitoring of the interaction between a commercial aluminum sheet and carbon tetrachloride at room temperature // Protection of Metals and Physical Chemistry of Surfaces. 2012. Vol. 48. No. 5. P. 591–595.
83. McAdam G., Newman P.J., McKenzie I. et al. Fiber Optic Sensors for Detection of Corrosion within Aircraft // Structural Health Monitoring. 2005. Vol. 4. No. 1. P. 47–56.
84. Venancio P.G., Cottis R.А., Narayanaswamy R., Fernandes J.C.S. Optical sensors for corrosion detection in airframes // Sensors and Actuators B: Chemical. Elsevier B.V., 2013. Vol. 182. P. 774–781.
85. Yeo T.L., Sun T., Grattan K.T.V. Fibre-optic sensor technologies for humidity and moisture measurement // Sensors and Actuators A: Physical. 2008. Vol. 144. No. 2. P. 280–295.
86. Venugopalan T., Sun T., Grattan K.T.V. Long period grating-based humidity sensor for potential structural health monitoring // Sensors and Actuators A: Physical. 2008. Vol. 148. No. 1. P. 57–62.
87. Usha S.P., Mishra S.K., Gupta B.D. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance // Sensors and Actuators B: Chemical. 2015. Vol. 218. P. 196–204.
88. Rodríguez-Fernández J., Pereiro R., Sanz-Medel A. Optical fibre sensor for hydrogen sulphide monitoring in mouth air // Analytica Chimica Acta. 2002. Vol. 471. No. 1. P. 13–23.
89. Choi M.M.F., Hawkins P. Development of an optical hydrogen sulphide sensor // Sensors and Actuators B: Chemical. 2003. Vol. 90. No. 1–3. P. 211–215.
90. Mishra S.K., Rani S., Gupta B.D. Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film // Sensors and Actuators B: Chemical. 2014. Vol. 195. P. 215–222.
91. Grant S.А., Satcher J.H., Bettencourt K. Development of sol–gel-based fiber optic nitrogen dioxide gas sensors // Sensors And Actuators. 2000. Vol. 69. P. 132–137.
92. Mechery S.J., Singh J.P. Fiber optic based gas sensor with nanoporous structure for the selective detection of NO2 in air samples // Analytica Chimica Acta. 2006. Vol. 557. No. 1–2. P. 123–129.
93. Wong Y.M., Scully P.J., Bartlett R.J. et al. Plastic optical fibre sensors for environmental monitoring: Biofouling and strain applications // Strain. 2003. Vol. 39. No. 3. P. 115–119.
94. Ganesh A.B., Radhakrishnan T.K. Fiber-optic sensors for the estimation of oxygen gradients within biofilms on metals // Optics and Lasers in Engineering. 2008. Vol. 46. No. 4. P. 321–327.
95. Ganesh A.B., Radhakrishnan T.K. Fiber-optic sensor for the estimation of microbial corrosion of metals // Optik-International Journal for Light and Electron Optics. 2009. Vol. 120. No. 10. P. 479–483.
96. Estella J., de Vicente P., Echeverría J.C., Garrido J.J. A fibre-optic humidity sensor based on a porous silica xerogel film as the sensing element // Sensors and Actuators B: Chemical. 2010. Vol. 149. No. 1. P. 122–128.
97. Zhao Z., Duan Y. A low cost fiber-optic humidity sensor based on silica sol-gel film // Sensors and Actuators B: Chemical. 2011. Vol. 160. No. 1. P. 1340–1345.
98. Chen L.H. et al. Chitosan based fiber-optic Fabry-Perot humidity sensor // Sensors and Actuators B: Chemical. 2012. Vol. 169. P. 167–172.
99. Wang Y., Shen C., Lou W., Shentu F. Fiber optic humidity sensor based on the graphene oxide/PVA composite film // Optics Communications. Elsevier, 2016. Vol. 372. P. 229–234.
100. Xu W., Huang W. Bin, Huang X.G., Yu C.Y. A simple fiber-optic humidity sensor based on extrinsic Fabry-Perot cavity constructed by cellulose acetate butyrate film // Optical Fiber Technology. Elsevier Inc., 2013. Vol. 19. No. 6. PART A. P. 583–586.
101. Consales M., Buosciolo A., Cutolo A. et al. Fiber optic humidity sensors for high-energy physics applications at CERN // Sensors and Actuators B: Chemical. 2011. Vol. 159. No. 1. P. 66–74.
102. Ibrahim N.B., Arsad A.Z., Yusop N., Baqiah H. The physical properties of nickel doped indium oxide thin film prepared by the sol-gel method and its potential as a humidity sensor // Materials Science in Semiconductor Processing. Elsevier, 2016. Vol. 53. P. 72–78.
103. Miao Y., Ma X., He Y. et al. Low-temperature-sensitive relative humidity sensor based on tapered square no-core fiber coated with SiO2 nanoparticles // Optical Fiber Technology. Elsevier Inc., 2016. Vol. 29. P. 59–64.
104. Zrelli A., Bouyahi M., Ezzedine T. Simultaneous monitoring of humidity and strain based on Bragg sensor // Optik – International Journal for Light and Electron Optics. Elsevier GmbH., 2016. Vol. 127. No. 18. P. 7326–7331.
105. Soares C.G., Garbatov Y., Zayed A., Wang G. Influence of environmental factors on corrosion of ship structures in marine atmosphere // Corrosion Science. Elsevier Ltd, 2009. Vol. 51. No. 9. P. 2014–2026.
106. Rodrı́guez J., Hernández F., González J. The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different // Corrosion Science. 2003. Vol. 45. P. 799–815.
107. Gardiner C.P., Melchers R.E. Enclosed atmospheric corrosion in ship spaces // British Corrosion Journal. 2001. Vol. 36. No. 4. P. 272–276.
108. Ma Y., Li Y., Wang F. Corrosion of low carbon steel in atmospheric environments of different chloride content // Corrosion Science. Elsevier Ltd, 2009. Vol. 51. No. 5. P. 997–1006.
109. Merino M.C., Pardo А., Arrabal R. et al. Influence of chloride ion concentration and temperature on the corrosion of Mg–Al alloys in salt fog // Corrosion Science. Elsevier Ltd, 2010. Vol. 52. No. 5. P. 1696–1704.
110. Lam C.C.C., Mandamparambil R., Sun T. et al. Optical Fiber Refractive Index Sensor for Chloride Ion Monitoring // IEEE Sensors Journal. 2009. Vol. 9. No. 5. P. 525–532.
111. Patil S.S., Shaligram A.D. Refractometric Fiber Optic Sensor for Detecting Salinity of Water // Journal of Sensor Technology. 2013. Vol. 03. No. 03. P. 70–74.
112. Zhao Y., Zhang X., Zhao T. et al. Optical salinity sensor system based on fiber-optic array // IEEE Sensors Journal. 2009. Vol. 9. No. 9. P. 1148–1153.
113. Guzman-Sepulveda J.R., Ruiz-Perez V.I., Torres-Cisneros M. et al. Fiber optic sensor for high-sensitivity salinity measurement // Photonics Technology Letters. 2013. Vol. 25. No. 23. P. 2323–2326.
114. Guzmán-Sepúlveda J., Guzmán-Cabrera R., Torres-Cisneros M. et al. A Highly Sensitive Fiber Optic Sensor Based on Two-Core Fiber for Refractive Index Measurement // Sensors. 2013. Vol. 13. No. 10. P. 14200–14213.
115. Fuhr P.L., Huston D.R., MacCraith B. Embedded fiber optic sensors for bridge deck chloride penetration measurement // Optical Engineering. 1998. Vol. 37. No. 4. P. 1221–1228.
116. McPolin D.O., Basheer P.A.M., Long A.E. et al. Development and longer term in situ evaluation of fiber-optic sensors for monitoring of structural concrete // Sensors Journal. 2009. Vol. 9. No. 11. P. 1537–1545.
117. Wang J., Chen B. Experimental research of optical fiber sensor for salinity measurement // Sensors and Actuators A: Physical. 2012. Vol. 184. P. 53–56.
118. Gentleman D.J., Booksh K.S. Determining salinity using a multimode fiber optic surface plasmon resonance dip-probe // Talanta. 2006. Vol. 68. No. 3. P. 504–515.
119. Woodruff M.W., Sirkis J.S. Corrosion sensing of aluminum using optical fiber // Proceedings of SPIE. 1994. Vol. 2191. P. 511–515.