1. Kablov E.N. The dominant feature of the national technology initiative. Problems of accelerating the development of additive technologies in Russia. Metally Evrazii, 2017, no. 3, pp. 2–6.
2. Kablov E.N. New generation materials – the basis of innovation, technology leader and national safety of Russia. Intelleki i tekhnologii. 2016, no. 2 (14), pp. 16–21.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Sorokin A.E., Platonov M.M., Larionov S.A. Selective laser sintering of polymer compositions based on polyamide 12. Trudy VIAM, 2017, no. 9, paper no. 05. Available at: http://www.viam-works.ru (accessed: February 28, 2020). DOI: 10.18577/2307-6046-2017-0-9-5-5.
5. Kirin B.S., Lonskii S.L., Petrova G.N., So-rokin A.E. Materials for the 3D-printing on the basis of polyetheretherketones. Trudy VIAM, 2019, no. 4 (76), paper no. 03. Available at: http://viam-works.ru (accessed: February 28, 2020). DOI: 10.18577/2307-6046-2019-0-4-21-29.
6. Kondrashov S.V., Pykhtin A.A., Larionov S.A., Sorokin A.E. Influence of the technological FDM-modes of the press and structure of used materials on physic-mechanical cha-racteristics of FDM-models (review). Trudy VIAM, 2019, no. 10 (82), paper no. 04. Available at: http://www.viam-works.ru (accessed: February 22, 2020). DOI: 10.18577/2307-6046-2019-0-10-34-49.
7. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Mechanical properties of CNT nanocomposites (review). Trudy VIAM, 2016, no. 5 (41), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 5, 2020). DOI: 10.18577/2307-6046-2016-0-5-8-8.
8. Manias E., Touny A., Wu L., Strawhecker K. et al. Polypropylene/ Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties. Chemistry of Materials, 2001, vol. 13, no. 10, pp. 3516–3523.
9. Zhang S., Horrocks A.R. A review of flame retardant polypropylene fibres. Progress in Polymer Science, 2003, vol. 28, no. 11, pp. 1517–1538.
10. Krishnamoorti R., Yurekli K. Rheology of polymer layered silicate nanocomposites. Current Opinion in Colloid & Interface Science, 2001, vol. 6, no. 5–6, pp. 464–470.
11. Salvetat J.P., Briggs G., Bonard J.M. et al. Review article polymer-matrix nanocomposites, processing, manufacturing, and application an overview. Physical Review Letters, 1999, vol. 82, pp. 944.
12. Kumar A.P., Depan D., Tomer N.S. et al. Nanoscale particles for polymer degradation and stabilization – trends and future perspectives. Progress in polymer science, 2009, vol. 34, no. 6, pp. 479–515.
13. Bikiaris D. Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials, 2010, vol. 3, no. 4, pp. 2884–2946.
14. Abedi S., Abdouss M. A review of clay-supported Ziegler–Natta catalysts for production of polyolefin/clay nanocomposites through in situ polymerization. Applied Catalysis A: General, 2014, vol. 475, pp. 386–409.
15. Spitalsky Z., Tasis D., Papagelis K. et al. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science, 2010, vol. 35, no. 3, pp. 357–401.
16. Yengejeh S.I., Kazemi S.A., Öchsner A. Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches. Computational Materials Science, 2017, vol. 136, pp. 85–101.
17. Bredeau S., Peeterbroeck S., Bonduel D. et al. From carbon nanotube coatings to high performance polymer nanocomposites. Polymer International, 2008, vol. 57, no. 4, pp. 547–553.
18. Bocchini S., Frache A., Camino G. et al. Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. European Polymer Journal, 2007, vol. 43, no. 8, pp. 3222–3235.
19. Zakharova G.S., Volkov V.L., Ivanovskaya V.V., Ivanovskiy A.L. Nanotubes and related nanostructures of d-metal oxides: synthesis and modeling. Uspekhi khimii, 2005. T. 74, no. 7, pp. 651–685.
20. ЗZakharova G.S., Enyashin A.N., Ivanovskaya V.V. et al. Nanotubes of titanium and vanadium oxides: synthesis and modeling. Inzhenernaya fizika, 2003, vol. 5, pp. 19.
21. Kidalov V.V., Dydenchuk A.F. Indium oxide nanotubes obtained by radical-beam epitaxy. Zhurnal nano- i elektronnoy fiziki, 2015, vol. 7, no. 3, pp. 03026-1-03026-3.
22. Saunders Z., Noack C.W., Dzombak D.A. et al. Characterization of engineered alumina nanofibers and their colloidal properties in water. Journal of Nanoparticle Research, 2015, vol. 17, no. 3, pp. 1–14.
23. Bravaya N.M., Galiullin A.B.N., Saratovskikh S.L. et al. Synthesis and properties of hybrid materials obtained by in situ copolymerization of ethylene and propylene in the presence of Al2O3 nanofibers (NafenTM) on catalytic system racEt (2MeInd)2ZrMe2/isobutylalumoxane. Journal of Applied Polymer Science, 2017, vol. 134, no. 15. Ap. 44678. DOI: 10.1002/app.44678.
24. Bravaya N.M., Saratovskikh S.L., Panin A.N. et al. Influence of silane coupling agent on the synthesis and properties of nanocomposites obtained via in situ catalytic copolymerization of ethylene and propylene in the presence of modified Nafen™ Al2O3 nanofibers. Polymer, 2019, vol. 174, pp. 114–122.
25. Agureev L.E., Laptev I.N., Ivanov B.S. et al. Development of Heat Resistant Aluminum Composite with Minor Addition of Alumina Nanofibers (Nafen™). Inorganic Materials: Applied Research, 2020, vol. 11, no. 5, pp. 1045–1050.
26. Voltsihhin N., Rodríguez M., Hussainova I. et al. Low temperature, spark plasma sintering behavior of zirconia added by a novel type of alumina nanofibers. Ceramics International, 2014, vol. 40, no. 5, pp. 7235–7244.
27. Qin H., Zhao C., Zhang S., Chen G. et al. Photo-oxidative degradation of poly-ethylene/montmorillonitenanocomposite. Polymer Degradation and Stability, 2003, vol. 81. No. 3, pp. 497–500.
28. Qin H., Zhang Z., Feng M. et al. The influence of interlayer cations on the photo oxidative degradation of polyethylene/montmorillonite composites. Journal of Polymer Science. Part B: Polymer Physics, 2004, vol. 42, no. 16, pp. 3006–3012.
29. Wu H., Krifa M., Koo J.H. Functionalized Nafen™ alumina nanofiber reinforced Polyamide 6 nanocomposites: mechanical, thermal and flame retardant properties. SAMPE Conference Proceedings, (Baltimore MD, May 18–21, 2015). Available at: https://www.researchgate.net (accessed: July 5, 2020).
30. Jin Y.H., Park H.J., Im S.S. et al. Polyethylene/Clay Nanocomposite by In Situ Exfoliation of Montmorillonite During Ziegler Natta Polymerization of Ethylene. Macromolecular rapid communications, 2002, vol. 23, no. 2, pp. 135–140.
31. Yang F., Zhang X., Zhao H. et al. Preparation and properties of polyethylene/montmorillonite nanocomposites by in situ polymerization. Journal of applied polymer science, 2003, vol. 89, no. 13, pp. 3680–3684.
32. Wei L., Tang T., Huang B. Synthesis and characterization of polyethylene/clay–silica nanocomposites: a montmorillonite/silica hybrid supported catalyst and in situ polymerization. Journal of Polymer Science. Part A: Polymer Chemistry, 2004, vol. 42, no. 4, pp. 941–949.
33. Lee D.H., Kim H.S., Yoon K.B. et al. Polyethylene/MMT nanocomposites prepared by in situ polymerization using supported catalyst systems. Science and Technology of Advanced Materials, 2005, vol. 6, no. 5, pp. 457.
34. Hoàng E.M., Allen N.S., Liauw C.M. et al. The thermo-oxidative degradation of metallocenepolyethylenes. Part 1: long-term thermal oxidation in the solid state. Polymer degradation and stability, 2006, vol. 91, no. 6, pp. 1356–1362.
35. Carneiro O.S., Silva A.F., Gomes R. Fused deposition modeling with polypropylene. Materials & Design, 2015, vol. 83, pp. 768–776.
36. Hertle S., Drexler M., Drummer D. Additive manufacturing of poly (propylene) by means of melt extrusion. Macromolecular Materials and Engineering, 2016, vol. 301, no. 12, pp. 1482–1493.
37. Schirmeister C.G., Hees T., Licht E.H. et al. 3D printing of high density polyethylene by fused filament fabrication. Additive Manufacturing, 2019, vol. 28, pp. 152–159.
38. Spoerk M., Savandaiah C., Arbeiter F. et al. Optimization of mechanical properties of glassspheresfilled polypropylene composites for extrusion based additive manufacturing. Polymer Composites, 2019, vol. 40, no. 2, pp. 638–651.
39. Spoerk M., Sapkota J., Weingrill G. et al. Shrinkage and warpage optimization of expanded perlitefilled polypropylene composites in extrusionbased additive manufacturing. Macromolecular Materials and Engineering, 2017, vol. 302, no. 10, pp. 1700143.
40. Saw L.T., Zainuddin F., Cao X.V. et al. The thermal mechanical degradation of mineral filled polypropyleneethylene copolymer composites during extrusion process. Polymer Composites, 2021, vol. 42, no. 1, pp. 83–97.
41. Gijsman P. Review on the thermo-oxidative degradation of polymers during processing and in service. e-Polymers, 2008, vol. 8, no. 1, pp. 1–34. DOI: 10.1515/epoly.2008.8.1.727.
42. Manson D., Sperling L. Polymer mixtures and composites. Moscow: Khimiya, 1979.440 p.
43. Lepeshkin S., Baturin V., Tikhonov E. et al. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface. Nanoscale, 2016, vol. 8, no. 44, pp. 18616–18620.
44. Watanabe R., Sugahara A., Hagihara H. et al. Polypropylene-Based Nanocomposite with Enhanced Aging Stability by Surface Grafting of Silica Nanofillers with a Silane Coupling Agent Containing an Antioxidant. ACS omega, 2020, vol. 5, no. 21, pp. 12431–12439.
45. Shi X., Wang J., Jiang B. et al. Hindered phenol grafted carbon nanotubes for enhanced thermal oxidative stability of polyethylene. Polymer, 2013, vol. 54, no. 3, pp. 1167–1176.