1. Yang Y., Zhang W., Yongming L. Existence and insufficiency of the crack closure for fatigue crack growth analysis. International Journal of Fatigue, 2014, vol. 62, pp. 144–153.
2. Bolshukhin M.A., Zverev D.L., Kaidalov V.B. Evaluation of durability of structural materials in joint processes of low-cycle and high-cycle fatigue. Problemy prochnosti i plastichnosti, 2010, is. 72, pp. 28–35.
3. Sander M., Richard H.A. Fatigue crack growth under variable amplitude loading. Part I: experimental investigations. Fatigue and Fracture of Engineering Materials and Structures, 2006, no. 29, pp. 291–301.
4. Kollerov M.Yu., Gusev D.E., Sharonov A.A., Gurtovoy S.I. Cyclic durability of implants from an alloy based on titanium nickelide. Metals, 2009, no. 6, pp. 85–92.
5. Potter J.M. The effect of load interaction and sequence on the fatigue behavior of notched coupons. Cyclic stress-strain behavior – analysis, experimental, and failure prediction. ASTM International, 1973. Selected Technical Papers 519, pp. 109–132.
6. Furuya Y., Hirukawa H., Takeuchi E. Gigacycle fatigue in high strength steels. Science and Technology of Advanced Materials, 2019, vol. 20 (1), pp. 643–656.
7. Raikher V.L. Fatigue damageability. Moscow: MATI, 2006, 238 p.
8. Suneung A., Mendel M.B. Fatigue life mode1 for crack propagation under variable-amplitude load. Mechanics Research Communications, 1995, vol. 22 (1), pp. 95–101.
9. Troshchenko V.T. Deformation and fracture of metals under high-cycle loading. Kiev: Naukova Dumka, 1981, 344 p.
10. Neshpor G.S., Kudryashov V.G., Miklyaev P.G. Influence of loading conditions on the propagation of fatigue cracks in sheet specimens from alloy D16T. Problemy prochnosti, 1972, no. 8, pp. 66–68.
11. Troshchenko V.T., Sosnovsky L.A. Fatigue resistance of metals and alloys: a reference book in 2 parts. Kiev: Naukova Dumka, 1987, part 1, 347 p.
12. Troshchenko V.T., Sosnovsky L.A. Fatigue resistance of metals and alloys: a reference book in 2 parts. Kiev: Naukova dumka, 1987, part 2, 832 p.
13. Schijve J. Fatigue crack closure: Observations and technical significance. Mechanics of Fatigue Crack Closure. ASTM International, 1988. Selected Technical Papers 982, pp. 5–35.
14. Elber W. The significance of fatigue crack closure. Damage tolerance in aircraft structures. ASTM International, 1971. Selected Technical Papers 486, pp. 230–242.
15. Emelyanov O. V., Lyadetsky I. A. Determination of the characteristics of steel resistance to the development of cracks under a cyclic change in load. Building materials and products: interuniversity: Collection of Scientific works. Magnitogorsk, MSTU, 2002, pp. 300–308.
16. Savkin A.N., Badikov K.A., Sedov A.A. Fractographic analysis of the propagation of fatigue cracks under regular cyclic loading with overloads in the aluminum alloy 2024-T3. Izvestia VolgGTU, ser.: Problems of materials science, welding and strength in mechanical engineering. 2018, no. 3 (213), pp. 94–101.
17. Vakhromeev A.M. Determination of the cyclic durability of materials and structures of vehicles: guidelines. Moscow: MADI, 2015, 64 p.
18. Shtremel M.A. On unity in diverse fatigue processes. Deformatsiya i razrusheniye materialov, 2011, no. 6, pp. 1–12.
19. Terentyev V.F. Complete curve of fatigue of metals and alloys. Tekhnologiya metallov, 2004, no. 6, pp. 12–16.
20. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
21. Buznik V.M., Kablov E.N., Koshurina A.A. Materials for complex technical devices for arctic applications. Nauchno-tekhnicheskiye problemy osvoyeniya Arktiki, Moscow: Nauka, 2015, pp. 275–285.
22. Kablov E.N. Quality control of materials is a guarantee of the safety of aircraft operation. Aviacionnye materialy i technologii, 2001, no. 1, pp. 3–8.
23. Grinevich A.V., Lutsenko A.N., Karimova S.A. Investigation of the residual fatigue life of the V95pchT1 aluminum alloy after exposure in various conditions. Voprosy materialovedeniya, 2013, no. 2 (74), pp. 118–122.
24. Orlov M.R., Morozova L.V., Terekhin A.M., Naprienko S.A., Avtaev V.V. Investigation of the effect of chemical-thermal treatment on the resistance of high-cycle fatigue of steel 20Kh3MVF under conditions of an asymmetric loading cycle. Deformatsiya i razrusheniye materialov, 2015, no. 12, pp. 18–24.
25. Grinevich A.V., Lutsenko A.N., Karimova S.A. Durability of products and corrosion fatigue of structural materials. Voprosy materialovedeniya, 2013, no. 1 (73), pp. 220–229.
26. Terentyev V.F., Korableva S.A. Fatigue of metals. Moscow: Nauka, 2015, 484 p.
27. Terentyev V.F., Petukhov A.N. Fatigue of high strength metallic materials. Moscow: IMET RAN – TsIAM, 2013, 515 p.
28. Terentyev V.F. Fatigue of metallic materials. Moscow: Nauka, 2003, 254 p.
29. Guryev A.V., Mitin V.Ya. Features of the development of local micro-inhomogeneous deformations and the accumulation of fatigue damage in carbon steels. Problemy prochnosti, 1978, no. 11, pp. 19–23.
30. Weibul V. Fatigue tests and analysis of their results. Moscow: Mashinostroenie, 1964, 275 p.
31. Shkolnik L.M. Fatigue Testing Technique: handbook. Moscow: Metallurgiya, 1978.304 p.
32. Boytsov G.V. On the relationship between the nucleation stage and the kinetics of fatigue fracture development. Fracture mechanics, reliability and technical diagnostics of thin-walled structures: interuniversity collection. N. Novgorod: Publishing house of NSTU im. R.E. Alekseeva, 1996, pp. 9–16.
33. Ibatullin I. D. Kinetics of fatigue damage and destruction of surface layers: monograph. Samara: SSTU, 2008, 387 p.
34. Estimated values of characteristics of aviation metal structural materials: aviation handbook. Moscow: OAK-TsAGI, 2013.302 p.
35. Belov V.K., Rudzei G.F., Kalyuta A.A. Improving the fatigue life of riveted and welded joints of aircraft structures by technological methods. Novosibirsk: Publishing house of NSTU, 2006.180 p.
36. Kollerov M.Yu., Ilyin A.A., Gusev D.E., Lamzin D.A. Influence of deformation mechanisms on fatigue properties of metallic materials. Metally, 2008, no. 5, pp. 72–79.
37. Romanov A.N. Problems of materials science in the mechanics of deformation and fracture at the stage of cracking. Part 14. Relationship between static and cyclic properties of structural materials. Vestnik nauchno-tekhnicheskogo razvitiya, 2017, no. 4 (116), pp. 31–43.
38. Makhutov N.A. Low-cycle fatigue. Mechanical engineering: encyclopedia in 40 vol. Moscow: Mashinostroyenie, 2010, vol. II-1: Physical and mechanical properties. Testing of metallic materials, pp. 217–285.
39. Troshchenko V.T., Khamaza L.A. Fatigue and inelasticity of metals. Proceedings of XIII International Colloquium «Mechanical fatigue of metals». 2006, no. 6, pp. 9–22.
40. Bilalov D.A., Oborin V.A., Naimark O.B. Influence of intermetallic inclusions on the formation of subsurface cracks in the AMg6 alloy during gigacycle fatigue. Letters on Materials, 2020, vol. 10 (2), pp. 206–210. DOI: 10.22226/2410-3535-2020-2-206-210.
41. Bannikov M.V., Bannikova I.A., Uvarov S.V., Naimark O.B. Anomaly of elastic properties of metals under gigacycle loading of metals and kinetics of damage development. Vestnik Permskogo universiteta, ser.: Physics, 2017, no. 4 (38), pp. 63–70. DOI: 10.17072/1994-3598-2017-4-63-70.
42. Bannikov M.V., Oborin V.A., Naimark O.B. Investigation of the stages of fracture of titanium alloys in the regime of high- and high-cycle fatigue based on the morphology of the fracture surface. Vestnik PNRPU, ser.: Mechanics. 2015, no. 3, pp. 15–24. DOI: 10.15593/perm.mech/2015.3.02.
43. Grinevich A.V., Rumyancev Yu.S., Morozova L.V., Terehin A.L. Study of fatigue life of 1163-T and V95o.ch.-T2 aluminum alloys after surface hardening. Aviacionnye materialy i tehnologii, 2014, no. S4, pp. 93–102. DOI: 10.18577/2071-9140-2014-s4-93-102.
44. Antipov A.A., Gorokhov A.N., Gorokhov V.A., Kazakov D.A., Kapustin S.A. Experimental and theoretical study of fatigue of materials and structures under high-temperature high-cycle loading. Problemy prochnosti i plastichnosti, 2014, is. 76 (1), pp. 26–38.
45. Petukhov A.N. On the peculiarities of the occurrence and development of fatigue cracks in gas turbine engine parts. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2005, no. 9 (25), pp. 56–62.
46. Prokhorov A.E., Plekhov O.A. Experimental study of the process of destruction of steel 40X13T in the regime of gigacycle fatigue. Prirodnye resursy Arktiki i Subarktiki, 2018, vol. 26, no. 4, pp. 125–132. DOI: 10.31242/2618-9712-2018-26-4-125-132.
47. Erasov V.S., Nuzhny G.A., Grinevich A.V. On the assessment of the damageability of metallic materials by mechanical testing methods. Deformatsiya i razrusheniye materialov, 2015, no. 3, pp. 42–47.
48. Erasov V.S., Rudakov A.G., Nuzhny G.A., Grinevich A.V., Terekhin A.L. Formation of a main crack during fatigue testing: Report conf. Fundamental research in the field of protection against corrosion, aging, biodeterioration of materials and structures in various climatic conditions and natural environments, in order to ensure the safe operation of complex technical systems. Moscow: VIAM, 2013, pp. 10–13.
49. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Crack growth resistance of aviation materials in fatigue testing. Trudy VIAM, 2013, no. 10, no. 06. Available at: http://www.viam-works.ru (accessed: July 25, 2020).
50. Troshchenko V.T., Hamaza L.A. Deformation curves of fatigue of steels and methods for determining their parameters. Communication 1. Traditional methods. Problemy prochnosti, 2010, no. 6, pp. 26–43.
51. Troshchenko V.T. Dispersed fatigue damage to metals and alloys. Message 3. Deformation and energy criteria. Problemy prochnosti, 2006, no. 1, pp. 5–31.
52. Erasov V.S., Oreshko E.I., Lucenko A.N. Area of a free surface as criterion of brittle fracture. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 69–79. DOI: 10.18577/2071-9140-2017-0-2-69-79.
53. Erasov V.S., Oreshko E.I. Force, deformation and energy criteria of destruction. Trudy VIAM, 2017, no. 10 (58), paper no. 11. Available at: http://viam-works.ru (accessed: August 23, 2020). DOI: 10.18577/2307-6046-2017-0-10-11-11.
54. Erasov V.S., Oreshko E.I. Reasons for dependence of mechanical characteristics of material fracture resistanceon sample sizes. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 56–64. DOI: 10.18577/2071-9140-2018-0-3-56-64.
55. Podzhivotov N.Yu., Erasov V.S., Oreshko E.I. On methods for assessing the static strength of materials obtained using additive technological processes. Vse materialy. Entsiklopedicheskiy spravochnik, 2017, no. 10, pp. 54–59.
56. Erasov V.S., Oreshko E.I., Lutsenko A.N. Formation of new surfaces in a firm body at stages of elastic and plastic deformations, the beginning and destruction development. Trudy VIAM, 2018, no. 2, paper no. 12. Available at: http://www.viam-works.ru (accessed: August 4, 2020). DOI: 10.18577/2307-6046-2018-0-2-12-12.
57. Erasov V.S., Oreshko E.I. Poisson ratio and poisson force. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 79–86. DOI: 10.18577/2071-9140-2018-0-4-79-86.
58. State Standard 25.502–79. Calculations and tests for strength in mechanical engineering. Methods for mechanical testing of metals. Fatigue test methods. Moscow: Standartinform, 2005, 25 p.
59. State Standard 25.504–82. Calculations and strength tests. Methods for calculating the characteristics of fatigue resistance. Moscow: Standartinform, 1988, 132 p.
60. ASTM E606/E606M-19. Standard Test Method for Strain-Controlled Fatigue Testing. American Society for Testing and Materials, 2018, 16 p.
61 ISO 12106:2017. Metallic materials – Fatigue testing – Axial-strain-controlled method. ICS 77.040.10 Mechanical testing of metals, 2017, 38 p.
62. Serensen S.V., Kogaev V.P., Shneiderovich R.M. Bearing capacity and strength calculation of machine parts: manual and reference manual. Moscow: Mashinostroenie, 1975, 488 p.
63. Makhutov N.A. Deformation Criteria for Fracture and Strength Analysis of Structural Elements. Moscow: Mashinostroenie, 1981, 272 p.
64. Belyaev M.S., Khvatskiy K.K., Gorbovets M.A. Comparative analysis of national standards of RF and the USA on methods of metals fatigue testing. Trudy VIAM, 2014, no. 9, paper no. 11. Available at: http://www.viam-works.ru (accessed: August 23, 2020). DOI: 10.18577/2307-6046-2014-0-9-11-11.
65. ASTM E466-15. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. American Society for Testing and Materials, 2015, 6 p.
66. ASTM E739-10. Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Date. American Society for Testing and Materials, 2015, 7 p.
67. Erasov V.S., Avtaev V.V., Oreshko E.I., Yakovlev N.O. Strain-controlled testing advantages at static tension and repeated-static tension. Trudy VIAM, 2018, no. 9 (69), paper no. 10. Available at: http://www.viam-works.ru (accessed: August 23, 2020). DOI: 10.18577/2307-6046-2018-0-9-92-104.
68. Erasov V.S., Oreshko E.I. Short-term creep under soft and hard loading. Materialovedenie, 2019, no. 6 (267), pp. 11–17.
69. Petushkov V.G. Explosion application in welding technology. Kiev. Naukova dumka. 2005, pp. 85–86.
70. Oreshko E.I., Erasov V.S., Krylov V.D. Construction of 3D stress-strain diagram for the analysis of mechanical behavior of the material tested at various loading rates. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 59–66. DOI: 10.18577/2071-9140-2018-0-2-59-66.
71. Oreshko E.I., Erasov V.S., Yastrebov A.S. Prediction of strength and deformation characteristics of materials during tensile and creep tests. Materialovedenie, 2019, no. 2, pp. 3–8.
72. Valger S.A., Fedorov A.V., Fedorova N.N. Simulation of incompressible turbulent flows in the vicinity of bluff bodies using the ANSYS software. Vychislitelnye tekhnologii, 2013, vol. 18, no. 5, pp. 27–40.
73. Mishin V.A., Maklakov S.F. Simulation of stress distribution in the presence of concentrators using ANSYS. Trudy Rostov. Gos. un-ta putey soobshcheniya, 2019, no. 4, pp. 81–84.
74. Cherpakov A.V., Shilyaeva OV, Zenkovsky I.A. et al. Parametric modeling of floor slabs in the ANSYS complex. Inzhenernyy vestnik Dona, 2019, no. 7 (58), p. 40.
75. Usmanova R.R. Analysis of contact stresses of gearing in the ANSYS software package. Science-intensive technologies in mechanical engineering: materials of the All-Russian. scientific-practical conf. Ufa, 2020, pp. 207–211.
76. Efryushin S.V., Yuriev V.V. Mathematical modeling of the bearing capacity of reinforced concrete structures in case of fire using the ANSYS Mechanical PC. Stroitelnaya mekhanika i konstruktsii, 2020, vol. 2, no.25, pp. 78–85.
77. Kozhanov D.A., Lyubimov A.K. Modeling of flexible woven composites in the ANSYS Mechanical APDL system. Kompyuternye issledovaniya i modelirovaniye, 2018, vol. 10, no. 6, pp. 789–799.
78. Oreshko E.I., Erasov V.S., Lutsenko A.N. Critical stresses of buckling in hybrid layered plates. Materialovedenie, 2016, no. 11, pp. 17–21.
79. Oreshko E.I., Erasov V.S. Numerical studies of the stability of plates with hinged transverse edges. Deformatsiya i razrusheniye materialov, 2018, no. 6, pp. 7–11.