1. State Standard 32794–2014. Polymer composites. Terms and Definitions. Moscow: Standartinform, 2015, 98 p.
2. ASTM D 3878-04a. Standard Terminology for Composite Materials. American Society for Testing and Materials, 2004, 5 p.
3. Vasiliev V.V., Protasov V.D., Bolotin V.V. et al. Composite materials: a reference book. Ed. V.V. Vasilyeva, Yu.M. Tarnopolsky. Moscow: Mashinostroenie, 1990, 512 p.
4. Bondaletova L.I., Bondaletov V.G. Polymer composite materials: allowance. Tomsk: Publ. House of Tomsk Polytech. Univ., 2013, 118 p.
5. Lobanov D.S. Experimental studies of deformation and strength properties of polymer composite materials and panels with filler: thesis, Cand. Sc. (Tech.). Perm: Perm Nat. Research Polytech. Univ., 2015, 148 p.
6. Beletsky E.N., Petrov V.M., Bezpalchuk S.N. Accounting for the physical and mechanical characteristics of carbon plastics that affect the processes of destruction during the implementation of the technological process of mechanical processing and extreme operating conditions. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova, 2014, no. 2 (24), pp. 66–73. DOI: 10.21821/2309-5180-2014-6-2-66-73.
7. Bitkin V.E., Zhidkova O.G., Komarov V.A. The choice of materials for the manufacture of dimensionally stable load-bearing structures. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroyeniye, 2018, vol. 17, no. 1, pp. 100–117. DOI: 10.18287/2541-7533-2018-17-1-100-117.
8. Lizunov D.A. Development of high-strength carbon plastics based on epoxy-containing oligomers: thesis, cand. Sc. (Chem.). Moscow: Mendeleev Univ., 2014, 237 p.
9. Gubanov A.A. Development of the process of electrochemical modification of the surface of carbon fiber in order to increase the strength of carbon fiber: thesis, Cand. Sc. (Tech.). Moscow: Mendeleev Univ., 2015, 148 p.
10. Sovetova Yu.V., Sidorenko Yu.N., Skripnyak V.A. Multilevel approach to the study of the influence of the volume ratio of the components of a fibrous unidirectional carbon fiber on its mechanical characteristics. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 2 (28), pp. 77–189.
11. Ruslantsev A.N. Development of models of deformation of polymeric fibrous layers with different stacking: thesis, Cand. Sc. (Tech.). Moscow: Bauman National Research University, 2018, 172 p.
12. Kablov E.N. Composites: today and tomorrow. Metally of Evrazii, 2015, no. 1, pp. 36–39.
13. Elmanov G.N., Zaluzhny A.G., Skrytny V.I. et al. Physical materials science: a textbook for universities in 6 vols. Ed. B.A. Kalina. M.: MEPhI, 2007, vol. 1: Solid state physics, pp. 307–617.
14. Lavrov A.V., Yakovlev N.O., Erasov V.S. Destruction of ceramic materials under the influence of high-speed indenter. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 88–94. DOI: 10.18577/2071-9140-2018-0-2-88-94.
15. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Qualification tests and researches of durability of aviation materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 440–448.
16. Yakovlev N.O., Erasov V.S., Krylov V.D., Popov Yu.O. Methods for determining the shear characteristics of polymer composite materials. Aviatsionnaya promyshlennost, 2014, no. 1, pp. 20–23.
17. Yakovlev N.O., Erasov V.S., Popov Yu.O., Kolokoltseva T.V. Tear (mode III) of thin laminate polymer composite materials for aircraft. Trudy VIAM, 2014, no. 6, paper no. 12. Available at: http://www.viam-works.ru (accessed: April 07, 2022). DOI: 10.18577/2307-6046-2014-0-6-12-12.
18. Akhmetov N.S. General and inorganic chemistry: a textbook for universities. Moscow: Vysshaya shkola; Akademiya, 2001, 743 p.
19. Erasov V.S., Zaitsev S.V. Evaluation of the strength of metals by the magnitude of the charge of ions detached from their surface by an electric field. Aviacionnye materiali i tehnologii, 2003, no. 3, pp. 59–62.
20. Mechanical engineering: encyclopedia in 40 vols. Moscow: Mashinostroenie, 2001, vol. II-3: Non-ferrous metals and alloys. Composite metallic materials. Ed. I.N. Fridlyander, 880 p.
21. Erasov V.S., Yakovlev N.O., Podzhivotov N.Yu., Gladkikh A.V., Goncharov A.A., Skiba O.V., Boyarskikh A.V. Tests of large-sized structures made of polymer composite materials on the power floor of the GTsKI "VIAM" named after. G.V. Akimova. Fundamental research in the field of protection against corrosion, aging, biodamage of materials and structures in various climatic conditions and natural environments, in order to ensure the safe operation of complex technical systems: collection of reports conf. Moscow: VIAM, 2013, p. 5.
22. Кочнев А.С., Овидько И.А. Механические характеристики листов графена с 5-5-5-9 дефектами. Materials Physics and Mechanics, 2016, vol. 27, pp. 60–67.
23. Erasov V.S., Oreshko E.I., Lutsenko A.N. Multilevel large-scale complex research of deformation of metal materials. Aviation materials and technologies, 2022, no. 1 (66), paper no. 11. Available at: http://www.journal.viam.ru (accessed: April 07, 22). DOI: 10.18577/2713-0193-2022-0-1-129-142.
24. Kiselev V.V. Quantum macrophysics. Ekaterinburg: UB of the RAS, 2010, 356 p.
25. Bukhurova M.M., Rekhviashvili S.Sh. Application of interatomic interaction potentials for modeling nanosystems. Vestnik KRAUNTS. Fiz.-mat. nauki, 2020, vol. 33, no. 4, pp. 166–187. DOI: 10.26117/2079-6641-2020-33-4-166-187.
26. Aleksandrov V.M. Material science and technology of structural materials: allowance at 2 parts. Arkhangelsk: Northern (Arctic) Feder. Univ., 2015, рart 1: Materials Science. third generation standard, 327 p.
27. Glinka N.L. General chemistry. Moscow: Khimiya, 1965, 688 p.
28. Mikhailin Yu.A. Structural polymeric composite materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2015, 824 p.
29. Sladkov A.M. Carbyne is the third allotropic form of carbon. Moscow: Nauka, 2003, 152 p.
30. Aleksenko V.O. Wear-resistant composites based on ultra-high molecular weight polyethylene with reinforcing fibers for polymer-metal tribo-couplings in mechanical engineering: thesis, Cand. Sc. (Tech.). Tomsk: Tomsk Nat. Research. Polytech. Univ., 2019, 132 p.
31. Mezheumov I.N. Influence of the morphology of reactor powders of ultrahigh molecular weight polyethylene on their ability to monolithization and subsequent orientational stretching: thesis, Cand. Sc. (Chem.). Tver: Tver State Univ., 2019, 115 p.
32. Galitsyn V.P. Physical and chemical properties and structure of reactor powders, gels and oriented fibers from ultra-high molecular weight polyethylene: thesis, Cand. Sc. (Chem.). Tver: VNIISV, 2012, 339 p.
33. Gordeev S.K., Ezhov A.Yu., Karimbaev T.D. et al. Dispersion-strengthened diamond-silicon carbide compositions – new materials for mechanical engineering. Kompozity i nanostruktura, 2015, vol. 7, no. 2, pp. 61–71.
34. Zhmurikov E.I., Bubnenkov I.A., Dremov V.V. Graphite in science and nuclear technology. Novosibirsk: SB of the RAS, 2013, 193 p.
35. Virgiliev Yu.S., Chugunova T.K., Pikulik R.G. Changes in the properties of siliconized graphite under neutron irradiation. Atomnaya energiya, 1986, vol. 60, is. 3, pp. 209–210.
36. Bogdanova Yu.G. Adhesion and its role in ensuring the strength of polymer composites: allowance. Moscow: Lomonosov Univ., 2010, 68 p.
37. Kraus E. Increasing the strength of adhesive joints of polymeric materials by laser and plasma surface treatment: thesis, Cand. Sc. (Tech.). Kazan: Kazan Nat. Research Tech. Univ., 2017, 181 p.
38. Kriven' G.I., Lykosova E.D. Analysis of the strength of fibrous composites modified with various nanofibers in the case of pure shear along the fiber. Mekhanika kompozitsionnykh materialov i konstruktsii, 2021, vol. 27, no. 1, pp. 125–142.
39. Kochengin A.E. Structure and properties of polymorphic varieties of graphene: thesis, Cand. Sc. (Phys.&Math.). Chelyabinsk: Chelyabinsk State Univ., 2017, 138 p.
40. Palekha V.A., Getman A.A. Bor. Properties and application in nuclear power. Litye i metallurgiya, 2017, no. 3 (88), pp. 91–94.
41. Zhigach A.F., Tsirlin A.M. Obtaining boron threads and their properties. Fibrous and dispersion-strengthened composite materials. Moscow: Nauka, 1976, pp. 20–24.
42. Ivantsov E.A., Rozhkova G.A. Borides: Thematic consultation for students of mechanical specialties. Kazan: Kazan State Tech. Univ., 2006, 19 p.
43. Urbanovich V.S., Kopylov A.V., Kukareko V.A. Physico-mechanical properties of titanium diboride sintered under high pressure. Fizika i tekhnika vysokikh davleniy, 2011, vol. 21, no. 4, pp. 77–85.
44. Ashitkov S.I., Komarov P.S., Struleva E.V. Mechanical properties of titanium diboride films under impact loads in the picosecond range. Teplofizika vysokikh temperatur, 2018, vol. 56, is. 6, pp. 959–962.
45. Urbanovich V.S., Shipilo N.V., Yavorska L. et al. Influence of boron carbide powder fineness and high-pressure sintering conditions on the microstructure and properties of the obtained ceramics. Fizika i tekhnika vysokikh davleniy, 2018, vol. 28, no. 4, pp. 5–15.
46. Pokatashkin P.A. Molecular Dynamics Study of the Mechanical Properties of Boron-Saturated Compounds with an α-Boron Type Structure: thesis, Cand. Sc. (Phys.&Math.). Moscow: All-Rus. Research Institute of Automation N.L. Dukhov, 2018, 107 p.
47. Moskovskikh D.I. Obtaining submicron powder of silicon carbide and nanostructured ceramics based on it: thesis, Cand. Sc. (Tech.). Moscow: Nat. Research Tech. Univ. "MISiS", 2015, 166 p.
48. Khin M. Composite Ceramics Based on Silicon Carbide with Eutectic Additives in Al2O3–TiO2–MnO, Al2O3–MnO–SiO2, MgO–SiO2, Al2O3(MgO)–MgO–SiO2 Systems: thesis, Cand. Sc. (Tech.). Moscow: Mendeleev Univ., 2019, 109 p.
49. Lizunkova D.A. Investigation of the electrical and optical properties of photosensitive structures on nanostructured silicon: thesis, Cand. Sc. (Phys.&Math.). Samara: Samara Nat. Research Univ. after Acad. S.P. Korolev, 2018, 150 p.
50. Grishina O.I., Serpova V.M. Influence of diameter of fibers of silicon carbide on mechanical properties of the metalmatrix composite (review). Trudy VIAM, 2018, no. 5 (65), paper no. 07. Available at: http://www.viam-works.ru (accessed: April 15, 2022). DOI: 10.18577/2307-6046-2018-0-5-55-63.
51. Frolova M.G. Composite ceramics based on silicon carbide reinforced with silicon carbide fibers: thesis, Cand. Sc. (Tech.). Moscow: IMET im. A.A. Baikov RAN, 2021, 140 p.
52. Perevislov S.N., Afanaseva L.E., Baklanova N.I. Mechanical properties of reaction-sintered silicon carbide reinforced with silicon carbide fibers. Neorganicheskiye materialy, 2020, vol. 56, no. 4, pp. 446–451. DOI: 10.31857/S0002337X20040120.
53. Belyaeva E.A. Layered organocomposites and hybrid composites based on ultra-high molecular weight polyethylene fibers: thesis, Cand. Sc. (Tech.). Moscow: Mendeleev Univ., 2019, 165 p.
54. Timofeev P.A. Formation of matrices of composite materials from silicon carbides, nitrides and borides by pyrolysis of polymeric precursors: thesis, Cand. Sc. (Tech.). Moscow: Bauman Univ., 2017, 126 p.
55. Yuskaev V.B. Composite materials. Sumy: Publ. House of SSU, 2006, 199 p.
56. Zaplatin V.N., Sapozhnikov Yu.I., Dubov A.V., Dukhneev E.M. Fundamentals of materials science (metalworking). Moscow: Academiya, 2017, 272 p.
57. Ozherelkov D.I. Fracture Viscosity of Carbon-Carbon Composite Materials for Friction Purpose: thesis, Cand. Sc. (Tech.). Moscow: Nat. Research Tech. Univ. "MISiS", 2018, 126 p.
58. Abstract bulletin of scientific, technical and patent information on carbon materials. Moscow: NIIgrafit, 2018, no. 10, 39 p.
59. Gunyaev G.M., Gofin M.Ya. Carbon-carbon composite materials. Aviacionnye materialy i tehnologii, 2013, special issue 1, pp. 62–90.
60. Bardin N.G. Heat-resistant coatings for carbon and carbon-silicon-carbide composite materials: thesis, Cand. Sc. (Tech.). Moscow: Mendeleev Univ., 2020, 145 p.
61. Bamborin M.Yu., Vorontsov V.A., Kolesnikov S.A. Investigation of the formation of the physical interaction of structural phases carbon matrix – carbon fiber by electrophysical methods in carbon-carbon composite materials with different levels of density. Novye ogneupory, 2014, no. 2, pp. 22–28.
62. Kolesnikov S.A., Maksimova D.S. Formation of physical and mechanical characteristics of carbon-carbon composite materials in isostatic technology for obtaining a carbon matrix. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2018, vol. 61, is. 11, no. 2, pp. 50–61. DOI: 10.6060/ivkkt.20186111.14y.
63. State Standard R 58016–2017. Composites are ceramic. Silicon carbide composites reinforced with silicon carbide fiber. Classification. Moscow: Standartinform, 2018, 11 p.
64. ASTM C 1835-16. Standard Classification for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures. American Society for Testing and Materials, 2016, 6 p.
65. Garshin A.P., Kulik V.I., Matveev S.A., Nilov A.S. Modern technologies for obtaining fiber-reinforced composite materials with a ceramic refractory matrix (review). Novye ogneupory, 2017, no. 4, pp. 20–35.
66. Solntsev S.S. High-temperature glass-ceramic materials and coatings – a promising direction in aviation materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2009, no. 1, pp. 26–40.
67. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. High-Temperature Structural Composite Materials Based on Glass and Ceramics for Advanced Aircraft Products. Steklo i keramika, 2012, no. 4, pp. 7–11.
68. Minakov V.T., Solntsev S.S. Ceramic matrix composites. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 2, pp. 5–9.
69. Grashchenkov D.V., Vaganova M.L., Shchyogoleva N.E., Chainikova A.S., Lebedeva Yu.E. High-temperature glass crystal material of barium aluminosilicate structure, received using sol-gel of synthesis and composite materials on its basis. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 290–305. DOI: 10.18577/2071-9140-2017-0-S-290-305.
70. Mileiko S.T., Galyshev S.N., Kolchin A.A. et al. Carbon-titanium composites: microstructure, strength and crack resistance. Kompozity i nanostruktury, 2019, vol. 11, is. 4, рр. 35–49.
71. Kablov E.N. VIAM: New generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8. pp. 54–58.
72. History of aviation materials science: VIAM – 75 years of search, creativity, discoveries. Ed. E.N. Kablov. Moscow: Nauka, 2007, p. 6.
73. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, 519 p.
74. Sklyarov N.M. A journey of 70 years – from wood to supermaterials. Ed. E.N. Kablov. Moscow: MISiS; VIAM, 2002, 488 p.
75. Noton B. Composite materials: in 8 vols. Eds. L. Brautman, R. Krok. Moscow: Mir, 1978, vol. 3: Application of composite materials in engineering, 512 p.
76. Chernyshev S.L. A new stage in the use of composite materials in the aircraft industry. Problemy mashinostroyeniya i avtomatizatsii, 2013, no. 1, рр. 3–10.
77. Zuev L.B., Danilov V.I. Physical foundations of the strength of materials: textbook. 2nd ed. Dolgoprudny: Intellekt, 2016, pp. 218–220.
78. Ashby M., Jones D. Structural materials. Full course: textbook. Dolgoprudny: Intelligence, 2010. 672 p.
79. Abraimov N.V., Eliseev Yu.S., Krymov V.V. Aviation materials science and metal processing technology: textbook for aviation universities. Moscow: Higher school, 1998, 444 p.
80. Vozdvizhensky V.M., Zhukov A.A., Postnova A.D., Vozdvizhenskaya M.V. Alloys of non-ferrous metals for aviation equipment. Rybinsk: RGATA, 2002, 219 p.
81. Kolachev B.A., Elagin V.I., Livanov V.A. Metal science and heat treatment of non-ferrous metals and alloys: a textbook for universities. 4th ed., rev. and add. Moscow: MISiS, 2005, 432 p.
82. Belov A.F., Benediktova G.P., Viskov A.S. Structure and properties of aviation materials: a textbook for universities. Moscow: Metallurgiya, 1989, 368 p.
83. Engineering: an encyclopedia of 40 vols. Ed. K.V. Frolov. Moscow: Mashinostroenie, 2001, vol. II-3: Non-ferrous metals and alloys. Composite metallic materials. Ed. I.N. Friedlander, 880 p.
84. Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.A. Industrial development of strength alloy V-1469 of Al–Cu–Li–Mg. Trudy VIAM, 2014, no. 7, paper no. 01. Available at: http://viam-works.ru (accessed: April 07, 2022). DOI: 10.18577/2307-6046-2014-0-7-1-1.
85. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Development aluminum lithium alloys and multistage modes of thermal processing. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 183–195.
86. Volkova E.F., Duyunova V.A., Mostyaev I.V., Akinina M.V. Patterns of formation and features of the influence of fine structure on the properties of a magnesium alloy of a new generation. Vestnik Kontserna VKO «Almaz-Antey», 2020, no. 1 (32), pp. 55–63. DOI: 10.38013/2542-0542-2020-1-55-63.
87. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
88. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
89. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dynamics of the development of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
90. Volkova E.F., Antipov V.V. Magnesium wrought alloys. All materials. Encyclopedic reference book. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 5, pp. 20–26.
91. Volkova E.F. Modern wrought alloys and composite materials based on magnesium. Metallovedeniye i termicheskaya obrabotka metallov, 2006, no. 11, pp. 5–9.
92. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspectives of application of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 212–222.
93. Mukhina I.Yu., Uridiya Z.P. Magnesium is the basis of ultralight materials. Metallurgiya mashinostroyeniya, 2005, no. 6, pp. 29–31.
94. Mukhina I.Yu., Duyunova V.A., Uridiya Z.P. Perspective foundry magnesium alloys. Liteynoe proizvodstvo, 2013, no. 5, pp. 2–5.
95. Duyunova V.A., Goncharenko N.S., Mukhina I.Yu., Uridiya Z.P., Volkova E.F. Scientific legacy of Academician I.N. Friedlander. Modern studies of magnesium and aluminum casting alloys at VIAM. Tsvetnye metally, 2013, no. 9, pp. 71–78.
96. Volkova E.F., Mukhina I.Yu. New magnesium-based materials and high-resource technologies for their production. Tekhnologiya legkikh splavov, 2007, no. 2, pp. 28–34.
97. Frolov A.V., Muhina I.Yu., Leonov A.A., Uridiya Z.P. An influence of rare-earth metals doping on properties and structure of the experimental Mg–Zr–Zn–Y–Nd casting magnesium alloy. Trudy VIAM, 2016, no. 3, paper no. 03. Available at: http://www.viam-works.ru (accessed: November 25, 2021). DOI: 10.18577/2307-6046-2016-0-3-3-3.
98. Frolov A.V., Mukhina I.Yu., Duyunova V.A., Uridiya Z.P. Influence of technological parameters of melting on the structure and properties of new magnesium alloys. Metallurgiya mashinostroyeniya, 2014, no. 2, pp. 26–29.
99. Izotova A.Yu., Grishina O.I., Shavnev A.A. Fiber-reinforced titanium based composites (review). Trudy VIAM, 2017, no. 5 (53), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 11, 2022). DOI: 10.18577/2307-6046-2017-0-5-5-5.
100. Sirotkin O.O., Sirotkin R.O. Fundamental foundations of the evolutionary development of the theory of the chemical structure of substances A.M. Butlerov into a unified theory of the structure of chemical compounds. Butlerovskiye soobshcheniya, 2018, no. 5, pp. 13–31.
101. Sirotkin R.O. Physicochemistry of homo- and heteronuclear binary substances and materials based on them (features of the complex effect of elemental composition on structure and properties). Moscow: Rusayns, 2018. 238 p.
102. Sirotkin O.O., Sirotkin R.O. Chemistry (basics of unified chemistry): textbook. Moscow: Knorus, 2017, 364 p.
103. Nelyub V.A. Characteristics of interfacial layers of polymer composite materials. Klei. Germetiki. Tekhnologii, 2013, no. 6, рр. 23–25.
104. Nelyub V.A. High-strength carbon plastics on an epoxy matrix with controlled adhesive interaction: thesis, Cand. Sc. (Tech.). Moscow: Bauman University, 2015, 157 p.
105. Nelyub V.A. Multifunctional polymer composites based on metallized carbon fiber materials: thesis, Dr. Sc. (Tech.). Moscow: Bauman University, 2020, 307 p.
106. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Layered metal-polymer materials in the structural elements of aircraft. Perspektivnye materialy, 2016, no. 10, pp. 5–19.
107. Podzhivotov N.Yu., Erasov V.S., Grinevich A.V., Mitrakov O.V. Development of elementary structurally similar samples and their compression tests. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 4 (22), paper no. 09. Available at: http:// http://www.materialsnews.ru (accessed: April 05, 2022).
108. Antipov V.V., Oreshko E.I., Erasov V.S., Serebrennikova N.Y. Hybrid laminates for north conditions. Mechanics of Composite Materials, 2016, vol. 52, no. 5, pp. 687–698.
109. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lutsenko A.N. Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass. Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
110. Sorokin O.Yu., Kuznetsov B.Yu., Lunegova Yu.V., V.S. Erasov. High-temperature composites with a multi-layered structure (review). Trudy VIAM, 2020, no. 4–5 (88), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 07, 2022). DOI: 10.18577/2307-6046-2020-0-45-42-53.
111. Gorbatkina Yu.A., Sopotov R.I., Gorbunova I.Yu., Ivanova-Mumzhieva V.G., Kerber M.L., Koroteev V.A. Comparison of various methods for assessing the strength of compounds modified epoxy polymer – solid body. Klei. Germetiki. Tekhnologii, 2015, no. 1, pp. 16–20.
112. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
113. Gulyaev A.I., Erasov V.S., Oreshko E.I., Utkin D.A. Analysis of the destruction of carbon fiber when pushing out a multifilament cylinder. Klei. Germetiki. Tekhnologii, 2021, no. 1, pp. 28–35. DOI: 10.31044/1813-7008-2021-0-1-28-35.
114. Oreshko E.I., Erasov V.S., Utkin D.A., Yakovlev N.O. Determination of the shear strength of polymer composite materials during indentation. Mekhanika kompozitnykh materialov i konstruktsiy, 2021, vol. 27, no. 1, pp. 73–88. DOI: 10.31044/1813-7008-2021-0-1-28-35.