1. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
3. Kablov E.N., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A., Narsky A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya, 2020, no. 4 (104), pp. 64–78.
4. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Nochovnaya N.A., Ivanov V.I. Prospects for the use of heat-resistant materials based on titanium aluminides. Int. conf. "Ti-2006 in the CIS" (Suzdal, May 21–24, 2006). Verhnyaya Salda, 2006, pp. 39–43.
6. Borisova E.A., Sklyarov N.M. Combustion and fire safety of titanium alloys. Moscow: VIAM, 2007, рр. 69–80.
7. Nochovnaya H.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 308 p.
8. Leyens C., Hausmann J., Kumfert J. Continuous Fiber Reinforced Titanium Matrix Composites Fabrication, Properties and Applcation. Titanium and Titanium Alloys. Fundamental and Application. Eds. C. Leyens, M. Peters. Weinheim: Wiley-VCH Verlag GnbH & Co. KGaA, 2003, рр. 305–331.
9. Ward-Close C.M., Minor R., Doorbar P.J. Intermetallics-Matrix Composites – a review. Journal of Intermetallics, 1996, vol. 4, no. 3, pp. 217–229.
10. Metals Matrix Composites. Costom-made Materials for Automotive and Aerospace Engineering / ed. by R.U. Kainer. Wiemheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 51–62.
11. Мочалова О.Н., Саленков В.С. Орто-сплавы в семействе жаропрочных титановых сплавов. Технология легких сплавов, 2013, no. 4, рр. 77–83.
12. Lasalmonie A. Intermetallics: Why is its so difficult to introduce them in gas turbine engines. Journal of Intermetallics, 2006, vol. 14, pp. 1123–1129.
13. LIU D. One generation of new material, one generation of new type engine: development trend of aero- engine and its requirement for materials. Journal of Materials Engineering, 2017, vol. 45, no. 10, pp. 1–5.
14. Muraleedharan K., Banerjee D., Banerjee S., Lele S. The α2 – to – O transformation in Ti–Al–Nb alloys. Journal of Phisophical Magazine A, 1995, vol. 71, no. 5, pp. 1011–1036.
15. Boehlert C.J., Majumdar B.S., Seetharaman V. et al. The microstructural evolution in Ti–Al–Nb O-bcc orthorhombic alloys. Journal of Metallurgical and Materials Transactions A, 1999, vol. 30, no. 9, pp. 2305–2323.
16. Dey S.R., Roy S., Suwas S. et al. Annealing response of the intermetallic alloy T–22Al–25Nb. Journal of Intermetallics, 2010, vol. 18, nо. 6, pp. 1122–1131.
17. Kazantseva N.V., Lepikhin S.V. Study of the Ti–Al–Nb phase diagram. Journal of The Phisics of Metall and Matallography, 2006, vol. 102, no. 2, pp. 169–180.
18. Xue C., Zeng W., Wang V. et al. Quantitative analysis on microstructure evolution and tensile properties for the isothermally forged Ti2AlNb based alloy during heat treatment. Journal of Materials Science and Engineering A, 2013, vol. 573, no. 6, pp. 183–189.
19. Muraleedrahan K., Nandy T.K., Banerjee L., Lele S. Phase stability and ordered behavior of the O phase in Ti2AlNb. Journal of Intermetallics, 1995, vol. 3, no. 3, pp. 187–199.
20. Cowen C.J., Boehlert C.J. Microstructure, creep and tensile behavior of Ti–21Al–29Nb (at. %) orthorhombic + B2 alloys. Journal of Intermetallics, 2006, vol. 14, no. 4, pp. 412–422.
21. Wu Y., Yang D.Z., Song G.-M. The formation on the O phase in Ti3Al–Nb alloy. Journal of Intermetallics, 2000, vol. 8, no. 5–6, pp. 629–632.
22. Goal K., Sardana N. Phase stability and microstructure evolution of Ti2AlNb – a revew. Journal of Materials Today: Proceedings, 2021, vol. 41, no. 4, pp. 951–968.
23. Sadi F.A., Servant C. On the B2 → O phase transformation in Ti–Al–Nb alloy. Journal of Materials Science and Engineering A, 2003, vol. 346, no. 1–2, pp. 19–28.
24. Rhodes C.G. Ordered/disordered temperature of the BCC phase in Ti–21Al–26Nb. Journal of Scripta Materialia, 1998, vol. 38, no. 4, pp. 681–685.
25. Ravi C., Vajeesion P., Mathijaya S., Asokamani R. Electronic structure, phase stability and cohesive properties of Ti2AlX (X = V, Nb, Zr). Journal of Physical Review B, 1999, vol. 60, no. 23, pp. 15683–15690.
26. Kazantseva N.V. Phase transformations and properties of orthorhombic titanium aluminides: thesis, Dr. (Phys.&Math.) Sc. Ekaterinburg, 2011, 32 p.
27. Kazantseva N.V. Materials for high-speed transport systems. Ekaterinburg: Ur GUPS, 2016, 169 p.
28. Chu F., Mitchell T.E., Majumdar B. et al. Elastic properties of the O-phase in Ti–Al–Nb alloys. Journal of Intermetallics, 1997, vol. 5, no. 2, pp. 147–156.
29. Hu K., Huang J., Zheng W. et al. Elastic and thermodynamic properties of the Ti2AlNb orthorhombic phase from first-principles calculation. Journal of Physical Status Solidi B, 2017, vol. 254, no. 6, art. 16006634 (1–9).
30. Gogia A.K., Nandy N.K., Banerjee D. Microstructure and mechanical properties of orthorhombic alloys. Journal of Intermetallics, 1998, vol. 6, no. 7–8, pp. 741–748.
31. Li S., Mao Y., Cao J. et al. Effect of microstructure on tensile properties and fracture behavior of intermetallic Ti2AlNb alloys. Journal of Transaction of Nonferrous Metals of China, 2002, vol. 12, no. 4, pp. 582–586.
32. Wu Y., Yang D.Z., Song G.M. The formation mechanism of the O phase in Ti3Al–Nb alloys. Journal of Intermetallics, 2000, vol. 8, no. 5–6, pp. 629–632.
33. Zheng Y., Zeng W., Li D. et al. Fracture toughness of the bimodal size lamellar O phase microstructures in Ti–22Al–25Nb (at. %) orthorhombic alloys. Journal of Alloys and Compounds, 2017, vol. 709, no. 6, pp. 511–515.
34. Gogia A.K., Banerjee D., Nandy T.K. Structure, tensile deformation, and fracture of a Ti3Al–Nb alloy. Journal of Metallurgical Transactions A, 1990, vol. 21, no. 2, pp. 609–625.
35. Emura S., Araoka A. B2 grain size refinement and its effect on room temperature tensile properties of Ti–22Al–27Nb orthorhombic intermetallic alloy. Journal of Scripta Materialia, 2003, vol. 48, no. 5, pp. 629–634.
36. Hagiwara M., Emura S., Araoka A. et al. The effect of lamellar morphology on tensile and high-cycle fatigue behavior of orthorhombic Ti–22Al–27Nb alloy. Journal of Metallurgical and Materials Transactions A, 2004, vol. 35A, no. 6, pp. 2161–2170.
37. Boehlert C.J. The effect of forging and rolling on microstructure in O + BCC Ti–Al–Nb alloys. Journal of Materials Science and Engineering A, 2000, vol. 279, no. 1–2, pp. 118–129.
38. Strychor R., William J.C., Soffa W.A. Phase Transformation and modulated microstructures in Ti–Al–Nb alloys. Journal of Metallurgical Transactions A, 1988, vol. 19, no. 2, pp. 225–234.
39. Peng J., Mao Y., Li S., Sun X. Microstructure controlling by heat treatment and complex processing for Ti2AlNb based alloys. Journal of Materials Science and Engineering A, 2001, vol. 299, no. 1–2, pp. 75–80.
40. Wang W., Zeng W., Xue Ch. et al. Designed bimodal size lamellar O microstructures in Ti2AlNb based alloy: Microstructural evolution, tensile and creep properties. Journal of Materials Science and Engineering A, 2014, vol. 618, no. 11, pp. 288–294.
41. Huang Y., Liu Y., Li C. et al. Microstructure evolution and phase transformations in Ti–22Al–25Nb alloys tailored by super transus solution treatment. Journal of Vacuum, 2019, vol. 161, pp. 209–219.
42. Xue Ch., Zeng W., Wang W. et al. Coarsening behavior of lamellar orthorhombic phase and its effect on tensile properties for the Ti–22Al–25Nb alloy. Journal of Materials Science and Engineering A, 2014, vol. 611, no. 6, pp. 320–325.
43. Xue Ch., Zeng W., Wang W. et al. The enhanced tensile properties by introducing bimodal size distribution of lamellar O phase for O + BCC Ti2AlNb based alloys. Journal of Material Science and Engineering A, 2013, vol. 587, no. 10, pp. 54–60.
44. Wang W., Zeng W., Liu Y. et al. Microstructural evolution and mechanical properties of
Ti–22Al–25Nb (at. %) orthorhombic alloy with tree typical microstructures. Journal of Materials Engineering Performance, 2018, vol. 27, pp. 293–303.
45. Wang W., Zeng W., Xue C. et al. Microstructure control and mechanical properties from isothermal forging and heat treatment of Ti–22Al–25Nb (at. %) orthorhombic alloy. Journal of Intermetallics, 2015, vol. 56, pp. 79–86.
46. Li M., Liu Y., Ma Z. et al. Microstructure and mechanical properties of Ti2AlNb-based alloys synthesized by spark plasma syntering from pre-alloyed and ball-mille powder. Journal of Advanced Engineering Materials, 2018, vol. 20, no. 4, pp. 1–9.
47. Peng J., Li S., Mao Y. Phase transformation in Ti–Al–Nb-ta system. Journal of Materials Letters, 2002, vol. 53, no. 1–2, pp. 57–62.
48. Alekseev Е.B., Nochovnaya N.A., Novak A.V., Panin P.V. Wrought intermetallic titanium ortho alloy doped with yttrium Part 1. Research on ingot microstructure and rheological curves plotting. Trudy VIAM, 2018, no. 6 (66), paper no. 02. Available at: http://www.viam-works.ru (accessed: January 14, 2021). DOI: 10.18577/2307-6046-2018-0-6-12-21.
49. Alexeev Е.B., Nochovnaya N.A., Novak A.V., Panin P.V. Wrought intermetallic titanium ortho alloy doped with yttrium. Part 2. Research on heat treatment effect on rolled slab microstructure and mechanical properties. Trudy VIAM, 2018, no. 12 (72), paper no. 04. Available at: http://www.viam-works.ru (accessed: January 14, 2021). DOI: 10.18577/2307-6046-2018-0-12-37-45.
50. Novak A.V., Alekseev E.B., Ivanov V.I., Dzunovich D.A. The study of the quenching parameters influence on structure and hardness of orthorhombic titanium aluminide alloy VТI-4. Trudy VIAM, 2018, no. 2, paper no. 05. Available at: http://www.viam-works.ru (accessed: August 09, 2021). DOI: 10.18577/2307-6046-2018-0-2-5-5.
51. Duyunova V.A., Putyrskiy S.V., Arislanov A.A., Krokhina V.A., Shiryaev A.A. Analysis of the effect of heat treatment on the structure and mechanical proper-ties of bars made of VT47 titanium alloy. Aviation materials and technologies, 2021, no. 4 (65), paper no. 03. Available at: http://www.journal.viam.ru (accessed: September 09, 2022). DOI: 10.18577/2713-0193-2021-0-4-26-34.