1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Babkin V.I., Lanshin A.I., Polev A.S. Sozdaniye konkurentosposobnykh aviatsionnykh dvigateley 2025–2030 g. [Creation of competitive aircraft engines of 2025–2030] // Mezhotraslevoy almanakh. 2015. №49. S. 25–29.
3. Babkin V.I. Rol nauki v reshenii prakticheskikh zadach aviatsionnogo dvigatelestroyeniya [The role of science in solving practical problems of the aviation engine industry] // Dvigatel. 2013. №3 (87). S. 2–6.
4. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin V.P. Intermetallidnyye splavy na osnove titana i nikelya / pod obshch. red. E.N. Kablova [Intermetallic alloys based on titanium and nickel / gen. ed. by E.N. Kablov]. M.: VIAM, 2018. 308 s.
5. Bondarenko Yu.A., Bazyleva O.A., Yechin A.B., Surova V.A., Narskiy A.R. Vysokogradiyentnaya napravlennaya kristallizatsiya detaley iz splava VKNA-1V [High-gradient directional crystallization of parts from VKNA-1B alloy] // Liteynoye proizvodstvo. 2012. №6. S. 12–16.
6. Kablov E.N. Lityye lopatki gazoturbinnykh dvigateley: splavy, tekhnologii, pokrytiya. 2-ye izd. [Cast blades of gas turbine engines: alloys, technologies, coatings. 2nd ed.]. M.: Nauka, 2006. 632 s.
7. Kablov E.N., Bondarenko Yu.A., Echin A.B. Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
8. Svetlov I.L., Muboyadzhyan S.A., Budinovskiy S.A., Petrushin N.V. Vliyaniye zashchitnykh pokrytiy na zharostoykost i dlitelnuyu prochnost monokristallov nikelevykh zharoprochnykh splavov IV pokoleniya [The influence of protective coatings on heat resistance and long-term strength of single crystals of nickel-based superally strong alloys of the fourth generation] // Zhurnal funktsionalnykh materialov. 2007. T. 1. №9. S. 339–346.
9. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynyye zharoprochnyye nikelevyye splavy dlya perspektivnykh aviatsionnykh GTD [Casting heat-resistant nickel alloys for advanced aviation GTE] // Tekhnologiya legkikh splavov. 2007. №2. S. 6–16.
10. Walston S., Cetel A., MacKay R. et al. Joint development of a fourth generation single crystal superalloys // Superalloys 2004. Minerals, Metals & Materials Society, 2004. P. 15–24.
11. Morinaga M., Yukawa N., Adachi H., Ezaki H., Murata Y. New PHACOMP and its application to alloy design // Superalloys 1984. The Metallurgical Society of AIME, 1984. P. 523–532.
12. Koizumi Y., Kobayashi T., Yokokawa T. et al. Development of next-generation Ni-base single crystal superalloys // Superalloys 2004. Minerals, Metals & Materials Society, 2004. P. 35–43.
13. Sato A., Harada H., Yeh A. et al. A 5th generation SC superalloy with balanced high temperature properties and processability // Superalloys 2008. Minerals, Metals & Materials Society, 2008. P. 131–138.
14. Kawagishi K., Yeh A., Yokokawa T. et al. Development of an Oxidation-Resistant high-strength sixth-Generation Single-Crystal Superalloy TSM-238 // Superalloys 2012. TMS, 2012. P. 189–195.
15. Reed R.C., Mottura A., Crudden D.J. et al. Alloys-By-Design: Towards optimization of compositions of Nickel-based superalloys // Superalloys 2016. TSM, 2016. P. 15–23.
16. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
17. Kablov E.N., Petrushin N.V., Sidorov V.V. Rhenium in nickel-base superalloys for single crystal gas turbine blades // 7th International Symposium on Technetium and Rhenium – Science and Utilization book of proceedings. 2011. C. 17.
18. Protasova N.A., Svetlov I.L., Bronfin M.B., Petrushin N.V. Razmernoye nesootvetstviye periodov kristallicheskikh reshetok γ- i γʹ-faz v monokristallakh zharoprochnykh nikelevykh splavov [Dimensional discrepancy of the periods of crystal lattices γ- and γʹ-phases in monocrystals of heat resisting nickel alloys] // Fizika metallov i metallovedeniye. 2008. T. 106. №5. S. 512–519.
19. Yokokawa T., Harada H., Mori Y. et al. Design of Next Generation Ni-Base Single Crystal Superalloys Containing Ir: Towards 1150°C Temperature Capability // Superalloy 2016. TMS, 2016. P. 123–130.
20. Bondarenko Yu.A., Kablov E.N., Morozova G.I. Vliyaniye vysokogradiyentnoy napravlennoy kristallizatsii na strukturu i fazovyy sostav zharoprochnogo splava tipa Rene N5 [The effect of high gradient directional crystallization on the structure and phase composition of a high-temperature alloy of the Rene N5 type] // Metallovedeniye i termicheskaya obrabotka metallov. 1999. №2. S. 15–18.
21. Bondarenko Yu.A., Kablov E.N. Napravlennaya kristallizatsiya zharoprochnykh splavov s povyshennym temperaturnym gradiyentom [Directional crystallization of high-temperature alloys with a high temperature gradient] // Metallovedeniye i termicheskaya obrabotka metallov. 2002. №7. S. 20–23.
22. Hugo F., Betz U., Ren J., Huang S.-C., Bondarenko J. Casting of Directionally Solidified and Single Crystal Components Using Liquid Metal Cooling (LMC): Results from Experimental Trials and Computer Simulations // International Symposium on Liquid Metal Processing and Casting. Santa Fe. VMD-AVS. 1999. P. 16–30.
23. Elliott A.J., Tin S., King W.T., Huang S.-C. et al. Directional Solidification of Large Superalloy Casting with Radiation and Liquid-Metal Cooling: A Comparative Assessment // Metallurgical and Materials Transactions A. 2004. Vol. 35A. No. 3. P. 3221–3231.
24. Bondarenko Yu.A., Echin A.B. Napravlennaya kristallizatsiya zharoprochnogo splava s peremennym upravlyayemym gradiyentom [Directional crystallization of a heat-resistant alloy with a variable controlled gradient] // Voprosy materialovedeniya. 2016. №3 (87). S. 50–58.
25. Echin A.B., Bondarenko Yu.A. Promyshlennaya vysokogradiyentnaya ustanovka napravlennoy kristallizatsii UVNS-6 [Industrial high gradient installation of directional solidification UVNS-6] // Metallurgiya mashinostroyeniya. 2013. №3. S. 32–34.
26. Bondarenko Yu.A., Kuzmina N.A., Bazyleva O.A., Rayevskikh A.N. Issledovaniye struktury i fazovogo sostava intermetallidnogo splava sistemy NiAl–Ni3Al, poluchennogo metodom vysokogradiyentnoy napravlennoy kristallizatsii [Study of the structure and phase composition of the intermetallic alloy of the NiAl–Ni3Al system obtained by the method of high-gradient directional crystallization] // Voprosy materialovedeniya. 2018. №2 (94). S. 52–60.
27. Khan T. Further assessment and improvement of high strength g/gʹ-NbC composites for advanced turbine blades // Proceeding of Conference on In-Situ Composites 111 // Lexington: Ginn Custom Publishing, 1978. P. 378–389.
28. Damerval C. Contributions a l¢etude du comportement mecanique des composites COTAS γ/γʹ-NbC a moyennc et naute temperature // Note technique ONERA. 1986. 156 p.
29. Stohr J.F. Stubilite thermique de composites de solidification metal-carbure // Annales des Chimie. 1980. Vol. 5. No. 2–3. P. 226–241.
30. Woodford D.A. Creep and rupture of an advanced fiber strengthened eutectic composite superalloy // Metallurgical Transaction. 1977. Vol. 8a. No. 4. P. 639–650.
31. Meetnam G.W. Superalloys in gas turbine engines // The Metallurgist and Materials Technologist. 1982. Vol. 14. No. 9. P. 387–392.
32. Kachanov E.B., Petrushin N.V., Svetlov I.L. Zharoprochnyye evtekticheskiye splavy s karbidno-intermetallidnym uprochneniyem [Superalloys in gas turbine engines] // Metallovedeniye i termicheskaya obrabotka metallov. 1995. №4. S. 24–29.
33. Bondarenko Yu.A., Kablov E.N., Pankratov V.A. Osobennosti polucheniya rabochikh lopatok malogabaritnykh GTD iz splava VKLS-20 [Features of the production of working blades of small-sized GTEs made from VKLS-20 alloy] // Aviatsionnaya promyshlennost. 1993. №2. S. 9–10.
34. Zakharov M.V., Zakharov A.M. Zharoprochnyye splavy [Heat resistant alloys]. M.: Metallurgiya, 1972. 384 s.
35. Bewlay B.P., Jackson M.R., Sutliffe J.A. et al. Solidification processing of high temperature intermetallic eutectic-based alloys // Material Science and Engineering. 1995. P. 2. No. 192/193. P. 534–543.
36. Bewlay B.P., Jackson M.R., Lipsitt H.A. The Balance of Mechanical and Environmental Properties of a Multielement Niobium-Niobium Silicide-Based In-Situ Composite // Metallurgical and Materials Transactions A. 1996. Vol. 27A. No. 12. P. 3801–3808.
37. Bondarenko Yu.A., Kolodyazhnyj M.Yu., Echin A.B., Narskij A.R. Napravlennaya kristalli-zatsiya, struktura i svojstva estestvennogo kompozita na osnove evtektiki Nb–Si na rabochie temperatury do 1350°C dlya lopatok GTD [Directional solidification, structure and properties of natural composite based on eutectic Nb–Si at working temperatures up to 1350°С degrees for the blades of gas turbine engines] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №1. St. 01. Available at: http://www.viam-works.ru (accessed: March 04, 2019). DOI: 10.18577/2307-6046-2018-0-1-1-1.
38. Upadhyaya D., Wood M. et al. Casting and Fiber Effects on SiC – Reinforced Titanium // TMC. 1994. P. 62–67.
39. Valente T., Bartuli C. A plasma spzay process for the manufacture of long-fiber reinforced Ti–6Al–4V composites // JCCM-12. 1999. P. 924.
40. Serpova V.M., Kosolapov D.V., Zhabin A.N., Shavnev A.A. Metody formirovaniya polufabrikatov dlya izgotovleniya voloknistykh metallicheskikh kompozitsionnykh materialov (obzor) [Methods for forming semi-finished products for the production of continuous fiber reinforced metal matrix composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №7 (55). St. 08. Available at: http://www.viam-works.ru (accessed: March 18, 2019). DOI: 10.18577/2307-6046-2017-0-7-8-8.
41. Prager S.M., Solodova T.V., Tatarenko O.Yu. Issledovaniye mekhanicheskikh svoystv i struktury obraztsov, poluchennykh metodom selektivnogo lazernogo splavleniya (SLS) iz splava VZh159 [Research of mechanical properties and microstructure of samples obtained by SLS from metal powder composition of VZh159 alloy] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №11 (59). St. 01. Available at: http://www.viam-works.ru (accessed: March 04, 2019). DOI: 10.18577/2307-6046-2017-0-11-1-1.
42. Ramsperger M., Singer R.F., Korner C. Microstructure of Nickel Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting // Metallurgical and Materials Transactions A. 2016. Vol. 47A. P. 1469–1479.
43. Frazier W.E. Metal Additive Manufacturing: A Review // Journal Material Engineering and Performance. 2014. No. 23 (6). P. 1917–1928.
44. Morgunov Yu.A., Saushkin B.P. Additivnyye tekhnologii dlya aviakosmicheskoy tekhniki [Additive technologies for aerospace engineering] // Additivnyye tekhnologii. 2016. №1. S. 3–27.