1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Stra-tegic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Trofimov N.V., Leonov A.A., Duyunova V.A., Uridiya Z.P. Litejnye magnievye splavy (obzor) [Cast magnesium alloys (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №12. St. 01. Available at: http://www.viam-works.ru (accessed: December 14, 2018). DOI: 10.18577/2307-6046-2016-0-12-1-1.
3. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
4. Zeng R.-C., Zhou W., Han E.-H., Ke W. Effect of pH value on corrosion of as-extruded AM60 magnesium alloy // Acta Metallurgica Sinica. 2005. Vol. 44. Issue 3. Р. 307–311.
5. Zeng R.-С., Han E.-Н., Ke W. et al. Corrosion fatigue of as-extruded AM60 magnesium alloy // Chinese Journal of Materials Research. 2005. Vol. 19. Issue 1. Р. 1–7.
6. Song G.-L., Atrens A. Corrosion mechanisms of magnesium alloys // Advance Engineering Materials. 1999. Vol. l. Issue 1. Р. 11–33.
7. Song G.-L., Atrens A. Understanding magnesium corrosion // Advance Engineering Materials. 2003. Vol. 5. Issue 12. Р. 837–858.
8. Eliezer D., Uzan P., Aghion E. Effect of second phases on the corrosion behavior of magnesium alloys // Materials Science Forum. 2003. Vol. 419–422. Р. 857–866.
9. Kablov E.N., Volkova E.F., Filonova E.V. Effect of ree on the phase composition and properties of a new refractory magnesium alloy of the Mg–Zn–Zr–REE system // Metal Science and Heat Treatment. 2017. Vol. 59. Issue 7–8. Р. 415–421.
10. Song G. Recent progress in corrosion and protection of magnesium alloys // Advanced Engineering Materials. 2005. Vol. 7. Issue 7. P. 563–586.
11. Ko Y.J., Chang D.Y., Lim J.D., Shin K.S. Effect of Mg17Al12 precipitate on corrosion behavior of AZ91D magnesium alloy // Materials Science Forum. 2003. Vol. 419–422. P. 851–856.
12. Lefebvre F., Nussbaum G. Extraction, Refining and fabrication of light metals. Ontario: Pergamon Press, 1991. Р. 19–31.
13. Kozlov I.A., Kulyushina N.V., Vinogradov S.S. Khimicheskiye nemetallicheskiye zashchitnyye pokrytiya dlya detaley iz magniyevykh splavov. Obzor [Chemical nonmetallic protective coatings for parts made from magnesium alloys. Review] // Korroziya: materialy, zashchita. 2017. №6. S. 37–48.
14. Kozlov I.A., Karimova S.A. Korrozija magnievyh splavov i sovremennye metody ih zashhity [Corrosion of magnesium alloys and modern methods of their protection] // Aviacionnye materialy i tehnologii. 2014. №2. S. 15–20. DOI: 10.18577/2071-9140-2014-0-2-15-20.
15. Karimova S.A., Kozlov I.A., Volkov I.A. Povyshenie zashhitnyh svojstv nemetallicheskih neorganicheskih pokrytij na magnievyh splavah [Increase of protective properties of non-metallic inorganic on magnesium alloys] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 09. Available at: http://viam-works.ru (accessed: December 14, 2018). DOI: 10.18577/2307-6046-2014-0-9-9-9.
16. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviatsionnye materialy i tekhnologii. 2015. №4 (37). S. 38–52. DOI: 10/18577/2071-9140-2015-0-4-38-52.
17. Karimova S.A., Duyunova V.A., Kozlov I.A. Konversionnoye pokrytiye dlya zharoprochnogo liteynogo magniyevogo splava ML10 [Conversion coating for heat-resistant foundry magnesium alloy ML10] // Liteyshchik Rossii. 2012. №2. S. 26–28.
18. Kozlova A.A., Kondrashov Je.K. Sistemy lakokrasochnyh pokrytij dlja protivokorro-zionnoj zashhity magnievyh splavov [Systems of paint coatings for anticorrosive protection of magnesium alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 44–47. DOI: 10.18577/2071-9140-2014-0-2-44-47.
19. Kozlov I.A., Kulyushina N.V., Kutyrev A.E. Vliyaniye formy polyarizuyushchego toka na zashchitnyye svoystva plazmennogo elektroliticheskogo pokrytiya na splave ML5 [Influence of the shape of the polarizing current on the protective properties of the plasma electrolytic coating on the ML5 alloy] // Materialovedeniye. 2015. №9 (222). S. 25–31.
20. Gray J.E., Luan B. Protective coatings on magnesium and its alloys – a critical review // Journal of Alloys and Compounds. 2002. Vol. 336. Issue 1–2. Р. 88–113.
21. Markov G.A., Terleyeva O.P., Shulepko Ye.K. Mikrodugovyye i dugovyye metody naneseniya zashchitnykh pokrytiy [Microarc and arc methods of applying protective coatings] // Tr. Mosk. in-ta nefti i gaza im. I.M. Gubkina. M., 1985. S. 54–56.
22. Markov G.A., Belevantsev V.I., Slonova A.I., Terleyeva O.P. Stadiynost v anodno-katodnykh mikroplazmennykh protsessakh [Staging in anodic-cathode microplasma processes] // Elektrokhimiya. 1989. T. 25. S. 1473–1479.
23. Suminov I.V., Epelfeld A.V., Lyudin V.B. i dr. Mikrodugovoye oksidirovaniye (teoriya, tekhnologiya, oborudovaniye) [Microarc oxidation (theory, technology, equipment)]. M.: Ekomet, 2005. 368 s.
24. Suminov I.V., Belkin P.N., Epelfeld A.V. i dr. Plazmenno-elektroliticheskoye modifitsirovaniye poverkhnosti metallov i splavov [Plasma electrolytic modification of the surface of metals and alloys]. M.: Tekhnosfera, 2011. T. 2. 512 s.
25. Kozlov I.A., Vinogradov S.S., Kulyushina N.V. Povysheniye zashchitnykh svoystv liteynykh magniyevykh splavov [Improving the protective properties of casting magnesium alloys] // Sb. dokl. nauchn.-tekhnich. konf. «Metallovedeniye i sovremennyye razrabotki v oblasti tekhnologiy lit\'ya, deformatsii i termicheskoy obrabotki legkikh splavov». M., 2016. S. 22.
26. Rakoch A.G., Khokhlov V.V., Bautin V.A. et al. Model concepts on the mechanism of microarc oxidation of metal materials and the control over this process // Protection of Metals. 2006. Vol. 42. Р. 158–169.
27. Rokoch A.G., Bardin I.V. Mikrodugovoye oksidirovaniye legkikh splavov [Microarc oxidation of light alloys] // Metallurg. 2010. №6. S. 58–61.
28. Vladimirov V.V. Mikrodugovoye oksidirovaniye magniyevykh splavov (obzor) [Microarc oxidation of magnesium alloys (review)] // Elektronnaya obrabotka materialov. 2014. T. 50. №3. S. 1–38.
29. Li Q., Linag J., Wang Q. Plasma Electrolytic Oxidation coatings on lightweight metals // Modern Surface Engineering Treatments. 2013. Vol. 4. Р. 75–99.
30. Song X., Lu J., Yin X., Jiang J., Wang J. The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy // Journal of Magnesium and Alloys. 2013. Vol. 1. Р. 318–322.
31. Rudnev V.S., Boguta D.L., Yarovaya T.P. et al. Microplasma oxidation of aluminum alloy in aqueous electrolytes with polyphosphate-Mg2+ complex anions // Protection of Metals. 1999. Vol. 35. Р. 473–476.
32. Wernick S., Pinner R., Sheasby P.G. The Surface Treatment and Finishing of Aluminium and its Alloys // British Corrosion Journal. 1974. Vol. 9. Р. 1–2.
33. Wang P., Liu D., Li. J. Growth process and corrosion resistance of micro-arc oxidation coating on Mg–Zn–Cd magnesium alloys // Transaction of Nonferrous Metals Society of China. 2010. Vol. 20. P. 2198–2203.
34. Jovović J., Stojadinović S., Šišović N.M., Konjević N. Spectroscopic characterization of plasma during electrolytic oxidation (PEO) of aluminium // Surface and Coatings Technology. 2011. Vol. 206. Р. 24–28.
35. Jovović J., Stojadinović S., Šišović N.M., Konjević N. Spectroscopic study of plasma during electrolytic oxidation of magnesium- and aluminium-alloy // Journal of Quantitative Spectroscopy and Radiative Transfer. 2012. Vol. 113. Р. 1928–1937.
36. Hussein R.O., Northwood D.O., Nie X. Coating growth behavior during the plasma electrolytic oxidation process // Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. 2010. Vol. 28. Р. 766–773.
37. Stojadinovic S., Vasilic R., Belca I. et al. Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate // Corrosion Science. 2010. Vol. 52. Р. 3258–3265.
38. Sarvan M., Radić-Perić J., Kasalica B. et al. Investigation of long-duration plasma electrolytic oxidation of aluminum by means of optical spectroscopy // Surface and Coatings Technology. 2014. Vol. 254. Р. 270–276.
39. Parfenov E.V., Yerokhin A., Nevyantseva R.R. et al. Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling // Surface and Coatings Technology. 2015. Vol. 269. Р. 2–22.
40. Nechaev G.G., Popova S.S. Dynamic model of single discharge during microarc oxidation // Theoretical Foundations of Chemical Engineering. 2015. Vol. 49. Р. 447–452.
41. Belevantsev V.I., Terleyeva O.P., Markov G.A. i dr. Mikroplazmennyye elektrokhimicheskiye protsessy [Microplasma electrochemical processes] // Zashchita metallov. 1998. T. 34. №5. S. 471–486.
42. Zhang R.F. Film formation in the second step of micro-arc oxidation on magnesium alloys // Corrosion Science. 2010. Vol. 52. Р. 1285–1290.
43. Chai L., Yu X., Yang Z. et al. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking // Corrosion Science. 2008. Vol. 50. Р. 3274–3279.
44. Lu G.-H., Chen H., Li L. et al. Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy // Current Applied Physics. 2009. Vol. 9. Р. 126–130.
45. Khaselev O., Weiss D., Yahalom J. Structure and composition of anodic films formed on binary Mg–Al alloys in KOH-aluminate solutions under continuous sparking // Corrosion Science. 2001. Vol. 43. Р. 1295–1307.
46. Shen D., Ma H., Guo C. et al. Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy // Journal of Rare Earths. 2013. Vol. 31. Р. 1208–1213.
47. Lee S.-J., Do L.H.T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy // Surface and Coatings Technology. 2016. Vol. 307. Р. 781–789.
48. Hwang D.Y., Kim Y.M., Shin D.H. Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride // Materials Transactions. 2009. Vol. 50. Р. 671–678.
49. Kazanski B., Kossenko A., Zinigrad M., Lugovskoy A. Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy // Applied Surface Science. 2013. Vol. 287. Р. 461–466.
50. Němcová A., Skeldon P., Thompson G.E., Pacal B. Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy // Surface and Coatings Technology. 2013. Vol. 232. Р. 827–838.
51. Ghasemi A., Raja V.S., Blawert C. et al. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings // Surface and Coatings Technology. 2010. Vol. 204. Р. 1469–1478.
52. Liang J., Srinivasan P.B., Blawert C. et al. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes // Electrochimica Acta. 2009. Vol. 54. Р. 3842–3850.
53. Mori Y., Koshi A., Liao J. et al. Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate – Silicate mixture electrolytes // Corrosion Science. 2014. Vol. 88. Р. 254–262.
54. Wen Q., Cao F.-H., Shi Y.-Y. et al. The effect of phosphate on MAO of AZ91D magnesium using AC power source // Materials and Corrosion. 2008. Vol. 59. Р. 819–824.
55. Kozlov I.A., Vinogradov S.S., Napriyenko S.A. Struktura i svoystva PEO-pokrytiya, formiruyemogo na splave ML5 v silikatno-fosfatnom elektrolite [The structure and properties of the PEO-coating formed on the ML5 alloy in silicate-phosphate electrolyte] // Korroziya: materialy, zashchita. 2017. №8. S. 35–41.
56. Luo H., Cai Q., Wei B. et al. Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy // Journal of Alloys and Compounds. 2008. Vol. 464. Р. 537–543.
57. Cho J.-Y., Hwang D.-Y., Lee D.-H. et al. Influence of potassium pyrophosphate in electrolyte on coated layer of AZ91 Mg alloy formed by plasma electrolytic oxidation // Transactions of Nonferrous Metals Society of China (English Edition). 2009. Vol. 19. Р. 824–828.
58. Wu D., Liu X., Lu K. et al. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface // Applied Surface Science. 2009. Vol. 255. Р. 7115–7120.
59. Zhang R.F., Xiong G.Y., Hu C.Y. Comparison of coating properties obtained by MAO on magnesium alloys in silicate and phytic acid electrolytes // Current Applied Physics. 2010. Vol. 10. Р. 255–259.
60. Zhang R.F., Zhang S.F., Yang N. et al. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys // Journal of Alloys and Compounds. 2012. Vol. 539. Р. 249–255.
61. Hussein R.O., Zhang P., Nie X. et al. The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62 // Surface and Coatings Technology. 2011. Vol. 206. Р. 1990–1997.
62. Rakoch A.G., Dub A.V., Bapdin I.V. i dr. Vliyaniye katodnoy sostavlyayushchey toka na kinetiku rosta mikrodugovykh pokrytiy na poverkhnosti alyuminiyevykh splavov [The influence of the cathode component of the current on the growth kinetics of microarc coatings on the surface of aluminum alloys] // Korroziya: materialy, zashchita. 2008. №11. S. 30.
63. Rakoch A.G., Mogurova Yu.V., Bardin I.V. Ekzotermicheskoye okisleniye dna kanalov mikrorazryadov pri mikrodugovom oksidirovanii alyuminiyevykh splavov [Exothermic oxidation of the bottom of the channels of microdischarges during microarc oxidation of aluminum alloys] // Korroziya: materialy, zashchita. 2007. №12. S. 36–40.
64. Kozlov I.A., Kulyushina N.V., Vinogradov S.S. Vliyaniye samoproizvol\'nogo i prinuditel\'nogo zatukhaniya mikroplazmennogo razryada na svoystva formiruyemogo PEO-pokrytiya na splave ML5 [Influence of spontaneous and forced attenuation of the microplasma discharge on the properties of the formed PEO-coating on the ML5 alloy] // Sb. nauchn.-tekhn. konf. «Fundamental\'nyye issledovaniya i posledniye dostizheniya v oblasti zashchity ot korrozii, stareniya i biopovrezhdeniy materialov i slozhnykh tekhnicheskikh sistem v razlichnykh klimaticheskikh usloviyakh». M.: VIAM, 2016. S. 8.
65. Kozlov I.A., Vinogradov S.S., Kulyushina N.V. Vliyanie formy polyarizuyushchikh impulsov na strukturu i zashchitnye svojstva PEO-pokrytiya, formiruemogo na splave ML5 [Influence of the form of the polarizing impulses on structure and protective properties PEO coating formed on alloy ML5] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №8 (56). St. 12. Available at: http://www.viam-works.ru (accessed: April 16, 2018). DOI: 10.18577/2307-6046-2017-0-8-12-12.
66. Yerokhin A.L., Snizhko L.O., Gurevina N.L. et al. Discharge characterization in plasma electrolytic oxidation of aluminum // Journal of Physics D: Applied Physics. 2003. Vol. 36. Р. 2110–2120.
67. Yerokhin A.L., Shatrov T.A., Samsonov V. et al. Oxide ceramic coatings on aluminum alloys produced by a pulsed bipolar plasma electrolytic oxidation process // Surface and Coatings Technology. 2005. Vol. 199. Р. 150–157.
68. Dunleavy C.S., Curran J.A., Clyne T.W. Time dependent statistics of plasmadischarge parameters during bulk AC plasma electrolytic oxidation of aluminium // Applied Surface Science. 2013. Vol. 268. Р. 397–409.
69. Nomine A., Troughton S.C., Nomine A.V. et al. High speed video evidence for localised discharge cascades during plasma electrolytic oxidation // Surface and Coatings Technology. 2015. Vol. 269. Р. 125–130.
70. Troughton S.C., Nomine A., Nomine A.V. et al. Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation // Applied Surface Science. 2015. Vol. 359. Р. 405–411.
71. Kozlov I.A., Vinogradov S.S., Uridiya Z.P., Duyunova V.A., Manchenko V.A. Energeticheski effektivnaya tekhnologiya plazmennogo elektroliticheskogo oksidirovaniya splava ML5 [Energetically efficient technology of plasma electrolytic oxidation of the alloy ML5] // Sb. IV Vseross. konf. «Rol\' fundamental\'nykh issledovaniy pri realizatsii «Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda» M.: VIAM, 2018. S. 138–151.
72. Nominéb A., Deana J., Clyne T.W. Effect of individual discharge cascades on the microstructure of plasma electrolytic oxidation coatings // Applied Surface Science. 2016. Vol. 389. Р. 260–269.
73. Zou B., Lü G.-H., Zhang G.-L., Tian Y.-Y. Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy // Transactions of Nonferrous Metals Society of China (English Edition). 2015. Vol. 25. Р. 1500–1505.
74. Hwang I.J., Hwang D.Y., Ko Y.G., Shin D.H. Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation // Surface and Coatings Technology. 2012. Vol. 206. Р. 3360–3365.
75. Lu G.-H., Chen H., Gu W.-C. et al. Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology // Journal of Materials Processing Technology. 2008. Vol. 208. Р. 9–13.
76. Gu Y.H., Chen C.-F., Bandopadhyay S. et al. Residual stress in pulsed dc microarc oxidation treated AZ31 alloy // Surface Engineering. 2012. Vol. 28. Р. 498–502.
77. Su P., Wu X., Jiang Z., Guo Y. Effects of working frequency on the structure and corrosion resistance of plasma electrolytic oxidation coatings formed on a ZK60 Mg alloy // International Journal of Applied Ceramic Technology. 2011. Vol. 8. Р. 112–119.
78. Wang Y., Wang J., Zhang J., Zhang Z. Characteristics of anodic coatings oxidized to different voltage on AZ91D Mg alloy by micro-arc oxidization technique // Materials and Corrosion. 2005. Vol. 56. Issue 2. P. 88–92.
79. Durdu S., Usta M. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation // Applied Surface Science. 2012. Vol. 261. P. 774–782.
80. Kozlov I.A., Vinogradov S.S., Kulyushina N.V., Kutyrev A.E., Pastukhov A.S. Vliyaniye sootnosheniya amplitud polyarizuyushchego toka na zashchitnyye svoystva PEO-pokrytiya, formiruyemogo na splave ML5 [Influence of the ratio of the amplitudes of the polarizing current on the protective properties of the PEO coating formed on the ML5 alloy] // Korroziya: materialy, zashchita. 2016. №11. S. 40–48.
81. Pezzato L., Brunelli K., Gross S. et al. Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys // Journal of Applied Electrochemistry. 2014. Vol. 44. Issue 7. P. 867–879.
82. Wang P., Liu D.-X., Li J.-P. et al. Growth process and corrosion resistance of micro-arc oxidation coating on Mg–Zn–Gd magnesium alloys // Transactions of Nonferrous Metals Society of China (English Edition). 2010. Vol. 20. Issue 11. P. 2198–2203.
83. Arrabal R., Matykina E., Hashimoto T., Skeldon P., Thompson G.E. Characterization of AC PEO coatings on magnesium alloys // Surface and Coatings Technology. 2009. Vol. 203. P. 2207–2220.
84. Song Y.L., Liu Y.H., Yu S.R. et al. Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance // Applied Surface Science. 2008. Vol. 254. Issue 10. P. 3014–3020.
85. Wang Y., Wang X., Zhang T. et al. Role of β Phase during Microarc Oxidation of Mg Alloy AZ91D and Corrosion Resistance of the Oxidation Coating // Journal of Materials Science & Technology. 2013. Vol. 20. Issue 10. P. 1129–1133.
86. Chen Y., Yang Y., Zhang W. et al. Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy // Journal of Alloys and Compounds. 2017. Vol. 718. P. 92–103.
87. Kozlov I.A., Vinogradov S.S., Uridiya Z.P., Duyunova V.A., Manchenko V.A. Effekt predvaritelnogo travleniya splava ML5 pered plazmennym elektroliticheskim oksidirovaniyem [Effect of preliminary etching of alloy ML5 before plasma electrolytic oxi-dation] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №9. St. 04. Available at: http://www.viam-works.ru (accessed: September 28, 2018). DOI: 10.18577/2307-6046-2018-0-9-32-42.