1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Pogodina E. Lite poroshkovyh smesej [Molding of powder mixes] // Plastiks. 2013. №6 (124). S. 34–36.
3. Singh Sarabjot, Yunior B. Tech, Ryssel Heiner. Lifetime of power modules // 7th Indo-German winter academy: proceedings. Germany. 2008.
4. Gilleo K. MEMS/MOEMS Packaging Concepts, Designs, Materials and Processes // Nanoscience and Technology Series. USA. NY-Chicago: McGraw-Hill. 2005. 239 p.
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
7. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science ] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
8. Manohin A.I., Enikolopov N.S., Fridlyander I.N. i dr. Kompozicionnye materialy [Composite material]. M.: Nauka, 1981. C. 92–98.
9. Occhionero M.A., Adams R.W., Saums D. AlSiC for Optoelectronic Thermal Management and Packaging Designs. 2001. Available at: http://www.alsic.com (accessed: March 03, 2015).
10. Occhionero M.A., Fennessy K.P., Sundberg G.J. AlSiC Baseplates for Power IGBT Modules: Design, Performance and Reliability, Ceramics Process Systems. 2003. Available at: http://www.alsic.com (accessed: March 03, 2015).
11. Aksenov A.A. Metallicheskie kompozicionnye materialy, poluchaemye zhidkofaznymi metodami [The metal composite materials received by liquid-phase methods] // Izvestiya vuzov. Cvetnaya metallurgiya. 1996. №2. C. 34–46.
12. Alyuminievye splavy [Aluminum alloy] / V kn. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi; pod obshh. red. E.N. Kablova. M.: VIAM, 2012. S. 143–156.
13. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
14. Kablov E.N., Grashhenkov D.V., Shhetanov B.V., Shavnev A.A., Nyafkin A.N., Vdovin S.M., Nishhev K.N., Chibirkin V.V., Eliseev V.V., Emih L.A. Metallicheskie kompozicionnye materialy na osnove Al–SiC dlya silovoj elektroniki [Metal composite materials on the basis of Al–SiC for power electronics] // Mehanika kompozicionnyh materialov i konstrukcij. 2012. T. 18. №3. S. 359–368.
15. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodyashchih osnovanij iz MMK Al–SiC v silovoj elektronike i preobrazovatelnoj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] // Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
16. Erasov V.S., Grinevich A.V., Senik V.Ya., Konovalov V.V., Trunin Yu.P., Nesterenko G.I. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
17. Grinevich A.V., Lutsenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [The design characteristic of metallic materials taking into account the humidity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 10. Available at: http://www.viam-works.ru (accessed: March 03, 2015). DOI: 10.18577/2307-6046-2014-0-7-10-10.
18. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: March 03, 2015). DOI: 10.18577/2307-6046-2014-0-4-2-2.
19. Kumai S., King J.E., Knott J.F. Fatigue in SiC-particulate-reinforced aluminum alloy composites // Mater. Sci. and Eng. A. 1991. V. 146. P. 317–326.
20. Trunec M., Cihlar J. Thermal debinding of injection moulded ceramics // J. Eur. Ceram. Soc. 1997. V. 17. P. 203–209.
21. Li S. et al. A new type of binder for metal injection molding // Journal of Materials Processing Technology. 2003. V. 137. P. 70–73.
22. Tsai D.-S., Chen W.-W. Solvent Debinding Kinetics of Alumina Green Bodies by Powder Injection Molding // Ceramics International. 1995. V. 21. P. 257–264.
23. Yang W.-W. et al. Solvent debinding mechanism for alumina injection molded compacts with water-soluble binders // Ceramics International. 2003. V. 29. P. 745–756.
24. Cao M.Y., OConnor J.W., Chung C.I. A new water soluble solid polymer solution binder for powder injection molding / In: Powder Injection Molding Symposium. 1992.
25. Park M.S., Kim J.K., Sangho Ahn H.J.S. Water-soluble binder of cellulose acetate butyrate/poly(ethylene glycol) blend for powder injection molding // Journal of Materials Science. 2001. V. 36. P. 5531–5536.
26. Krug S., Evans J.R.G., ter Maat J.H.H. Reaction and Transport Kinetics for Depolymerization within a Porous Body // AIChE Journal. 2002. V. 48(7). P. 1533–1541.
27. Starting a New Era in Catalytic Debinding of MIM Components. CFI – Ceramic Forum International. 2006.
28. German R.M. Powder injection molding // Princeton, USA: Metal Powd. Industr. Fed. (MPIF). 1990. 521 p.
29. Gribovskij P.O. Keramicheskie tverdye shemy [Ceramic firm schemes]. M.: Energiya, 1971. 448 s.
30. Li Y., Huang B., Qu X. Viscosity and melt rheology of metal injection moulding feedstocks // Powder Metallurgy. 1999. V. 42. №1. P. 86–90.
31. Hsu K.C., Lin C.C., Lo G.M. Effect of wax composition on injection moulding of 304L stainless steel powder // Powder Metallurgy. 1994. V. 37 (4). P. 272–276.
32. HE XinBo, QU Xuan Hui, REN Shu Bin & KF Cheng Chang. Net-shape forming of composite packages with high thermal conductivity // Sci. China Ser E-Tech Sci. Jan. 2009. V. 52. №1. P. 238–242.
33. Chu K. et al. The thermal conductivity of pressure infiltrated SiCp/Al composites with various size distributions: Experimental study and modeling // Materials and Design. 2009. V. 30. Р. 3497–3503.
34. Ivzhenko V.V., Novikov N.V., Sarnavskaya G.F., Popov V.A., Loshak M.G., Aleksandrova L.I. Issledovanie uprugogo posledejstviya pri inzhekcionnom lite termoplastichnyh mass na osnove poroshkov SiC, AlN, WC i ego vliyaniya na mehanicheskie svojstva materiala zagotovok izdelij [Research of elastic postaction at injection molding of thermoflexible masses on the basis of the powders SiC, AlN, WC and its influence on mechanical properties of material of preparations of products] // Sverhtverdye materialy. 2009. №1. S. 49–57.