1. Bova V.V., Dukkardt A.N. The use of artificial neural networks for the collective solution of intellectual problems. Izvestiya YUFU. Tekhnicheskiye nauki, 2012, no. 7, pp. 131–138.
2. Nikolenko S.I., Kadurin A.A., Arkhangelskaya E.O. Deep learning. Immersion in the world of neural networks. St. Petersburg: Piter, 2021, 480 p.
3. Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006. 738 p.
4. Murphy K.P. Machine Learning: a Probabilistic Perspective. Cambridge University Press, 2013, 1067 p.
5. Quick start in artificial intelligence. Online courses. Available at: https://www.stepik.org/course/80782/promo (accessed: September 24, 2021).
6. Spizhevoi A.S., Balandin D.V. Reducing the dimension of the feature space in the problem of automatically determining the sex of a person. Trudy NGTU im. R.Ye. Alekseyeva, 2020, no. 2 (129), pp. 42–51.
7. Solntsev Yu.P., Pryakhin E.I. Materials science: textbook for universities. Ed. 7th. St. Petersburg: Khimizdat, 2020, 784 p.
8. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
9. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Buznik V.M., Kablov E.N., Koshurina A.A. Materials for complex technical devices for arctic applications. Scientific and technical problems of the development of the Arctic. Moscow: Nauka, 2015, pp. 275–285.
11. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
12. Oreshko E.I., Erasov V.S., Krylov V.D. Construction of 3D stress-strain diagram for the analysis of mechanical behavior of the material tested at various loading rates. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 59–66. DOI: 10.18577/2071-9140-2018-0-2-59-66.
13. Antipov V.V., Oreshko E.I., Erasov V.S., Serebrennikova N.Yu. Hybrid layered materials for use in the conditions of the North. Mekhanika kompozitnykh materialov, 2016, vol. 52, no. 5, pp. 687–698.
14. Gavryushina N.T., Buketkin B.V. Investigation of the strength of reinforced composite specimens in three-point bending. Nauka i obrazovanie: elektron. sci.-tech. ed. MSTU im. N.E. Bauman, 2014, no. 12, pp. 128–136. Fvailable at: http://www.technomag.bmstu.ru (accessed: October 03, 2021). DOI: 10.7463/0815.9328000.
15. Fedyuk R.S., Liseytsev Yu.L., Taskin A.V. et al. Increasing the impact strength of fibrous concrete. Stroitelnye materialy i izdeliya, 2020, vol. 3, no. 6, pp. 5–16.
16. Bugaev V.G., Novikov V.V., Molokov K.A., Slavgorodskaya D.V. Numerical analysis of shock pressures on board when a vessel moves in ice. Morskie intellektualnye tekhnologii, 2020, no. 2-1 (48), pp. 47–55.
17. Nagieva N.M. Cyclic strength of a prismatic beam of oval cross-section under alternating torsion. Tyazheloe mashinostroyenie, 2019, no. 9, pp. 33–36.
18. Tsybulko A.E., Romanenko E.A. Conditions of strength in bending and torsion according to known theories of the limit state. Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2020, no. 1, pp. 3–6.
19. Ilichev A.V., Gubin A.M., Akmeev A.R., Ivanov N.V. Definition of area of the maximum shear deformations for CFRP samples on Iosipescu method, with use of optical system of measurements. Trudy VIAM, 2018, no. 6 (66), paper no. 10. Available at: http://www.viam-works.ru (accessed: October 3, 2021). DOI: 10.18577/2071-6046-2018-0-6-99-109.
20. Oreshko E.I., Erasov V.S., Yastrebov A.S. Prediction of strength and deformation characteristics of materials during tensile and creep tests. Materialovedenie, 2019, no. 1, pp. 3–9.
21. Erasov V.S., Oreshko E.I. Evaluation of the quality of materials during creep testing. Electrometallurgy, 2020, no. 9, pp. 30–39.
22. Pavlov P.A. Fundamentals of engineering calculations of machine elements for fatigue and long-term strength. Leningrad: Mashinostroenie, 1988, 252 p.
23. Lokoshchenkom A.M., Namestnikova I.V., Shesterikov S.A. Description of long-term strength with a step change in stress. Problemy prochnosti, 1981, no. 10, pp. 47–51.
24. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
25. Erasov V.S., Oreshko E.I., Lutsenko A.N. Formation of new surfaces in a firm body at stages of elastic and plastic deformations, the beginning and destruction development. Trudy VIAM, 2018, no. 2 (62), paper no. 12. Available at: http://viam-works.ru (accessed: October 3, 2021). DOI: 10.18577/2071-6046-2018-0-2-12-12.
26. Gulyaev A.I., Erasov V.S., Oreshko E.I., Utkin D.A. Analysis of the destruction of carbon fiber when pushing out a multifilament cylinder. Klei. Germetiki. Tekhnologii, 2021, no. 1, pp. 28–35.
27. State Standard 56232–2014. Determination of the «stress-strain» diagram by the method of instrumental indentation of the ball. Moscow: Standartinform, 2014, 44 p.
28. Obraztsov S.M., Birzhevoi G.A., Konobeev Yu.V., Rachkov V.I. Neural network experiments on the mutual influence of alloying elements on the mechanical properties of ferritic-martensitic steels with a 12 % chromium content. Izvestiya vuzov. Yadernaya energetika, 2008, no. 3, pp. 119–124.
29. Aborkin A.V., Vaganov V.E., Alymov M.I., Elkin A.I., Bukarev I.M. Physico-mechanical properties and wear resistance of coatings of the CrN/AlN system obtained by magnetron sputtering. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2017, no. 3, pp. 65–74.
30. Kachanovsky Yu.P., Korotkov E.A. Basic principles of building a neural network model for the formation of the properties of auto sheet steel. Vesti vysshikh uchebnykh zavedeniy Chernozemya, 2009, no. 4 (18), pp. 70–74.
31. Smirnova N.A., Zamyshlyaeva V.V., Lapshin V.V. et al. The use of information technology to predict the deformation properties of elastic fabrics under spatial stretching. Dizayn i tekhnologii, 2018, no. 68 (110). pp. 74–79.
32. Karnaukh S.G., Vinnikov M.A., Karnaukh D.S. Application of criteria for the destruction of materials to select a method for separating rolled products. Obrabotka metallov davleniyem, 2011, no. 1 (61), pp. 25–31.
33. Meshalkin V.P., Dli M.I., Stoyanova O.V. Study of artificial neural networks used to model the properties of created composite materials. Khimiya i khimicheskaya tekhnologiya, 2011, vol. 54, is. 5, pp. 124–127.
34. Gholampour Ali.A., Mansouri I., Kisi O., Oxbakkaloglu T. Evaluation of mechanical properties of recycled aggregate concrete using LSSVR, MARS, and M5Tree models. Neural Computing and Applications, 2018. Available at: https://www.researchgate.net/publication/326623737 (accessed: October 3, 2021).
35. Chen Li. A Multiple Linear Regression Prediction of Concrete Compressive Strength Based on Physical Properties of Electric Arc Furnace Oxidizing Slag. International Journal of Applied Science and Engineering, 2010, vol. 7, no. 2, pp. 153–158.
36. Nik M.A. A comparative study of metamodeling methods for the design optimization of variable stiffness composites. Composite structures, 2014, no. 107, pp. 494–501.
37. Arafa M., Alqedra M., An-Najjar H. Neural Network Models for Predicting Shear Strength of Reinforced Normal and High-strength Concrete Deep Beams. Journal of Applied Science, 2011, no. 11(2), pp. 266–274.
38. Narayan V., Abad R., Lopez B. et al. Estimation of Hot Torsion Stress Strain Curves in Iron Alloys Using a Neural Network Analysis. ISIJ International, 1999, vol. 39, no. 10, pp. 999–1005.
39. Vasiliev A.N., Tarkhov D.A., Shemyakina T.A. Neural network approach to problems of mathematical physics. St. Petersburg: Nestor-Istoriya, 2015, pp. 216–220.
40. Chukanov A.N., Khonelidze D.M., Gvozdev A.E., Sergeev A.N. Neural networks in predicting the long-term strength of steels under hydrogen stress corrosion. XV International Congress of Steelmakers, Tula, 2018, pp. 612–617.
41. Orekhova E.E., Abramov A.A., Andreev V.V. Development of a methodology for determining the endurance limit of metals, taking into account influencing factors based on an artificial neural network. Sovremennye problemy nauki i obrazovaniya, 2014, no. 6, p. 194.
42. Muravev K.A., Makarenko V.D., Evpak T.F., Bondarev A.A. Neural network analysis of indicators of crack resistance of welded joints of structural steels. Kompressornoe i energeticheskoe mashinostroyenie, 2014, no. 1, pp. 21–25.
43. Mishulina O.A., Kruglov I.A., Bakirov M.B. Neural networks committee decision making for estimation of metal’s hardness properties from indentation data. Optical Memory and Neural Networks (Information Optics), 2011, vol. 20, no. 2, pp. 132–138.
44. Bakirov M.B., Mishulina O.A., Kiselev I.A., Kruglov I.A. Investigation of the possibility of restoring deformation diagrams using a neural network approach. Zavodskaya laboratoriya. Diagnostika materialov, 2010, vol. 76, no. 7, pp. 42–48.