1. Breeze P. Power Generation Technologies: Natural Gas–Fired Gas Turbine and Combined Cycle Power Plants. Elsevier, 2019, pp. 71–97.
2. Álvarez T.T. Gas turbine materials selection, life management and performance improvement. Elsevier Ltd, 2011, pp. 330–419.
3. Gianfrancesco A.D. Materials for ultra-supercritical and advanced ultra-supercritical power plants. Elsevier Inc., 2017, 900 p.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
6. Senkov O.N., Wilks G.B., Scott J.M. et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, no. 5 (19), pp. 698–706.
7. Zhang Y., Zhou Y.J., Lin J. et al. Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2008, no. 6 (10), pp. 534–538.
8. Yeh J.W., Chen Y.L., Lin S.J. High-Entropy Alloys – A New Era of Exploitation. Materials Science Forum, 2007, vol. 560, pp. 1–9.
9. Bhardwaj V., Zhou Q., Zhang F. et al. Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribology International, 2021, vol. 160, pp. 107031.
10. Rogal L., Czerwinski F., Jochym P.T. et al. Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions. Materials and Design, 2016, vol. 92, pp. 8–17.
11. Nagase T., Todai M., Hori T. et al. Microstructure of equiatomic and non-equiatomic Ti–Nb–Ta–Zr–Mo high-entropy alloys for metallic biomaterials. Journal of Alloys and Compounds, 2018, vol. 753, pp. 412–421.
12. Ishimoto T., Ozasa R., Nakano K. et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility. Scripta Materialia, 2021, vol. 194, pp. 113658.
13. Hori T., Nagase T., Todai M. et al. Development of non-equiatomic Ti–Nb–Ta–Zr–Mo high-entropy alloys for metallic biomaterials. Scripta Materialia, 2019, vol. 172, pp. 83–87.
14. Zhou K., Zhijun W., He F. et al. A precipitation-strengthened high-entropy alloy for additive manufacturing. Additive Manufacturing, 2020, vol. 35, pp. 101410.
15. Dobbelstein H., Gurevich E.L., George E.P. et al. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy. Additive Manufacturing, 2018, vol. 24, pp. 386–390.
16. Juan C.C., Tsai M.H., Tsai C.W. et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics. 2015, vol. 62, pp. 76–83.
17. Muftah W., Allport J., Vishnyakov V. Corrosion performance and mechanical properties of FeCrSiNb amorphous equitation HEA thin film. Surface and Coating Technology, 2021, vol. 422, pp. 127486.
18. Juan C.C., Tsai M.H., Tsai C.W. et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Materials Letters, 2016, vol. 184, pp. 200–203.
19. An Z., Mao S., Liu Y. et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion. Journal of Materials Science and Technology, 2021, vol. 79, pp. 109–117.
20. Senkov O.N., Scott J.M., Senkova S.V. et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011, no. 20 (509), pp. 6043–6048.
21. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nickel foundry heat resisting alloys of new generation. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 36–52.
22. Nie X.W., Cai M.D., Cai S. Microstructure and mechanical properties of a novel refractory high entropy alloy HfMoScTaZr. International Journal of Refractory Metals and Hard Materials, 2021, vol. 98, pp. 105568.
23. Wang S.P., Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Materials Science and Engineering C, 2017, vol. 73, pp. 80–89.
24. Todai M., Nagase T., Hori T. et al. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scripta Materialia, 2017, vol. 129, pp. 65–68.
25. Huang H., Wu Y., He J. et al. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering. Advanced Materials, 2017, no. 30 (29), pp. 1701678.
26. Sheikh S., Shafeie S., Hu Q. et al. Alloy design for intrinsically ductile refractory high-entropy alloys. Journal of Applied Physics, 2016, no. 16 (120), pp. 164902.
27. Senkov O.N., Senkova S.V., Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Materialia, 2014, vol. 68, pp. 214–228.
28. Cao Y., Lio Y., Lio B. et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys. Transactions of Nonferrous Metals Society of China (English Edition), 2019, no. 7 (29), pp. 1476–1483.
29. Takeuchi A., Amiva K., Wada T. et al. Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy. Intermetallics, 2016, vol. 69, pp. 103–109.
30. Wang S., Wu M., Shu D. et al. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures. Acta Materialia, 2020, vol. 201, pp. 517–527.
31. Wang L., Chen S., Li B. et al. Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility. Materials Science and Engineering A, 2021, vol. 814, pp. 141234.
32. Chen Y., Xu Z., Wang M. et al. A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties. Materials Science and Engineering A, 2020, vol. 792, pp. 139774.
33. Tu C.H., Wu S.K., Lin C. A study on severely cold-rolled and intermediate temperature aged HfNbTiZr refractory high-entropy alloy. Intermetallics, 2020, vol. 126, pp. 106935.
34. Xiang T., Cai Z., Du P. et al. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering. Journal of Materials Science and Technology, 2021, vol. 90, pp. 150–158.
35. Cao Y., Zhang W., Lio B. et al. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy. Journal of Materials Science and Technology, 2021, vol. 66, pp. 10–20.
36. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
37. Trofimenko N.N., Efimochkin I.Yu., Osin I.V., Dvoretskov R.M. The research of the possibility of high entropy alloy VNbMoTaW production by mixing elementary powders with further hybrid spark plasma sintering. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 12–20. DOI: 10.18577/2071-9140-2019-0-2-12-20.
38. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problems of creation and prospects for the use of heat-resistant high-entropy alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
39. Ospennikova O.G. Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.