- Kablov E.N. Materials and Chemical Technologies for Aircraft Engineering. Herald of the Russian Academy of Sciences, 2012, vol. 82, no. 6, pp. 520–530.
2. Rambabu P., Prasad E.N., Kutumbarao V.V., Wanhill R.J.H. Aluminium Alloys for Aerospace Applications, Aerospace Materials and Material Technologies. Singapore: Springer Science and Business Media, 2017, vol. 1, pp. 29–52.
3. Prasad E.N., Gokhale A.A., Wanhill R.J.H. Aluminium–Lithium Alloys, Aerospace Materials and Material Technologies. Singapore: Springer Science and Business Media, 2017, vol. 1, pp. 53–72.
4. Rioja R.J., Bretz P.E., Sawtell R.R. et al. Precipitation Reactions, Strength and Toughness of Al–Li–Cu Alloys. Aluminum Alloys: Their Physical and Mechanical Properties, 1986, vol. 3, pp. 1781–1797.
5. Rioja R.J., Liu J. The Evolution of Al–Li Base Products for Aerospace and Space Applications. Metallurgical and Materials Transactions A, 2012, vol. 43, no. 9, pp. 25–37.
6. Antipov V.V., Klochkova Yu.Yu. Promising welded aluminum-lithium alloys of the third generation. Materialy i tekhnologii novogo pokoleniya dlya perspektivnykh izdeliy aviatsionnoy i kosmicheskoy tekhniki: sb. dokl. II Mezhdunar. nauch.-tekhnich. konf., Moscow: VIAM, 2015, paper no. 02.
7. Airware® 2050-T84 Plate: Constellium Soft Alloys Europe. Available at: https://www.arconic.com/hard_alloy_extrusions/catalog/pdf/alloy2099techs... (accessed: March 09, 2019).
8. Niedzinski М. The evolution of constellium Al–Li alloys for space launch and crew module applications. Light Metal Age. South San Francisco: Fellom Publishing, 2019, p. 36.
9. Airware® 2198-T8 Extrusions: Constellium Soft Alloys Europe. Available at: https://www.constellium.com/sites/default/files/markets/airware_2065_t84... (accessed: March 09, 2019).
10. Kablov E.N., Morozova L.V., Grigorenko I.B., Zhegina I.P., Fomina M.A. Investigation of the influence of a corrosive medium on the damage accumulation process and the fracture pattern of structural aluminum alloys 1441 and B-1469 during tensile tests and low-cycle fatigue. Nauka i tekhnologii, 2017, no. 1, pp. 41–48.
11. Gayle F.W., Tack W.T., Heubaum F.H., Pickens J.R. High Strength aluminium alloy design and practice pickens. Sixth International Aluminium-Lithium Conference, 1991, pp. 203–208.
12. Betsofen S.Ya., Lukin V.I., Dolgova M.I., Panteleev M.D., Kabanova Yu.A. Phase composition, texture and residual stresses in compounds of alloy B-1469 obtained by friction stir welding. Deformatsiya i razrusheniye materialov, 2017, no. 11, pp. 33–41.
13. Huang B.P., Zheng Z.Q. Effect of Li Content on Precipitation in Al–Cu–(Li)–Mg–Ag–Zr Alloys. Scripta Materialia, 1998, vol. 38, no. 3, pp. 357–362.
14. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Aluminum-lithium alloys. Structure and properties, Kiev: Naukova Dumka, 1992,192 p.
15. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Lukina E.A., Sbitneva S.V. Change in the phase composition depending on the aging conditions and structure of the semi-finished alloys of the B-1461 alloy. Metallurgy and heat treatment of metals, 2012, no. 6, pp. 22–23.
16. Cassada W.A., Shiflet G.J., Starke E.A. The Effect of Plastic Deformation on Al2CuLi (T1). Metallurgical and Materials Transactions A, 1991, vol. 22, no. 2, pp. 299–306.
17. Karabin L.M., Bray G.H., Rioja R.L., Venema G. Al–Li–Cu–Mg–(Ag) products for lower wing skin applications. The Minerals, Metals and Materials Society, 2012, pp. 529–534.
18. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2107-9140-2017-0-S-195-211.
19. Kolobnev N.I. Development history, phase composition and properties of Al–Cu–Li system alloys. Tekhnologiya legkikh splavov, 2015, no. 2, pp. 46–52.
20. Zhang S.-F., Zeng W.-D., Yang W.-H. et al. Ageing response of a Al–Cu–Li 2198 alloy. Materials and Design, 2014, vol. 63, pp. 368–374.
21. Liu Q., Chen C.Z., Cui J.Z. Effect of copper content on mechanical properties and fracture behaviors of Al–Li–Cu alloy. Metallurgical and Materials Transactions A, 2005, vol. 36, no. 9, pp. 1389–1394.
22. Holroyd N.H., Scamans G.M., Newman R.C., Vasudevan A.K. Corrosion and stress corrosion of Aluminum Lithium alloys. Aluminum–Lithium alloys: processing, properties and applications. New York: Butterworth-Heinemann Publication, An Imprint of Elsevier Publications, 2014, pp. 457–500.
23. Jiang N., Li J.-F., Zheng Z.-Q., Wei X.-Y., Li Y.-F. Effect of aging on mechanical properties and localized corrosion behaviors of Al–Cu–Li alloys. Transactions of Nonferrous Metals Society of China, 2005, vol. 15, no. 1, pp. 23–29.
24. Shih J., Weyland M., Muddle B. Precipitation in a High-Strength Al–Cu–Li Alloy. Proceedings of the 12th International Conference on Aluminium Alloy. Yokohama, 2010, pp. 2375–2380.
25. Kertz J.I., Gouma P.I., Buchheit R.G. Localized Corrosion Susceptibility of Al–Li–Cu–Mg–Zn alloy AF/C458 Due to interrupted quenching from solutionizing temperatures. Metallurgical and Materials Transactions A, 2001, vol. 32A, pp. 2561–2573.
26. Khokhlatova L.B., Kolobnev N.I., Samokhvalov S.V. Alloy Development: An Effect of Chemical Composition and Heat Treatment on Phase Composition and Properties of Al–Cu–Li–Zn alloy V-1461 with Zr, Sc Additives. Proceed of the 11-th International Conference on Aluminium Alloys, 2008, pp. 234–240.
27. Lukina E.A., Alekseev A.A., Antipov V.V., Zaitsev D.V., Klochkova Yu.Yu. Application of phase transition diagrams during aging to optimize aging conditions in Al–Li alloys B-1469, 1441. Available at: https://www.viam.ru/public/files/2009/2009-205379.pdf (accessed: August: 06, 2019).
28. Kolobnev N.I., Khokhlatova LB, Oglodkov M.S., Klochkova Yu.Yu. High-strength alloys of the Al–Cu–Li system with increased fracture toughness for aircraft structures. Tsvetnye metally, 2013, no. 9, pp. 66–70.
29. Shamray V.F., Klochkova Yu.Yu., Lazarev E.M., Gordeev A.S., Klochkov G.G., Sirotinkin V.P. The structure of sheets of alloy B-1469 with high characteristics of fracture toughness. Metally, 2015, no. 1, pp. 76–82.
30. Grechnikov F.V. Deformation of anisotropic materials. M .: Mechanical Engineering, 1998, 448 p.
31. Choia S.H., Barlat F. Prediction of macroscopic anisotropy in rolled aluminum-lithium sheet. Scripta Materialia, 1999, vol. 41, no. 9, pp. 981–987.
32. Longzhou M., Jianzhong C., Xiaobo Z.A. A Study on Improving the Cold-Forming Property of Al–Mg–Li Alloy 01420. Advanced Performance Materials. 1994, vol. 4. no. 1. Р. 105–114.
33. Setyukov O.A., Kolobnev N.I., Khokhlatova L.B., Oglodkov M.S. The influence of crystallographic orientations on the properties of plates of Al–Li alloys B-1461 and 1424. Tekhnologiya legkikh splavov, 2010, no. 1, pp. 100–106.
34. Klochkova Yu.Yu., Grushko O.E., Lantsova L.P., Burlyaeva I.P., Ovsyannikov B.V. Development in industrial production of semi-finished products from perspective aluminum lithium alloy V-1469. Aviacionnye materialy i tehnologii, 2011, no. 1, pp. 8–12.
35. Hales S.J., Hafley R.A. Texture and anisotropy in Al–Li alloy 2195 plate and near-net-shape extrusions. Materials Science and Engineering A, 1998, vol. 257, no. 1, pp. 153–164.
36. Zakharov V.V., Rostova T.D. The role of shear bands in sheets of aluminum-lithium alloys. Tekhnologiya legkikh splavov, 1996, no. 5, pp. 35–39.
37. Chuistov K.B. Localization of deformation and the possibility of its elimination in alloys with a coherent precipitation phase based on Al – Li. Metallofizika, 1991, vol. 13, no. 7, pp. 23–40.
38. Zhu R.H., Liu Q., Li J.F. et al. Flow curve correction and processing map of 2050 Al−Li alloy. Transactions of Nonferrous Metals Society of China, 2018, no. 28, pp. 404−414.
39. Kablov E.N. The future of aviation lies with lithium aluminum alloys. Redkiye zemli, 2018. Available at: http://rareearth.ru (accessed: August 06, 2019).
40. Chaturvedi M.C. Welding and joining of aerospace materials. Woodhead Publishing Limited, 2012, pp. 75–103.
41. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Peculiarities of high-strength aluminum-lithium alloys laser welding). Trudy VIAM, 2016, no. 10, paper no. 07. Available at: http://www.viam-works.ru (accessed: September 01, 2019). DOI: 10.18577/2307-6046-2016-0-10-7-7.
42. Shiganov I.N., Kholopov A.A., Trushnikov A.V., Ioda E.N., Pantelev M.D., Skupov A.A. Laser welding of high-strength aluminum-lithium alloys with filler wire. Svarochnoye proizvodstvo, 2016, no. 6, pp. 44–50.
43. Lukin V.I., Ospennikova O.G., Ioda E.N., Pantelev M.D. Welding aluminum alloys in the aerospace industry. Svarka i diagnostika, 2013, no. 2, pp. 47–52.
44. Skupov A.A., Panteleev M.D., Ioda E.N. Microstructure and mechanical properties of V-1579 and V-1481 laser welds. Trudy VIAM, 2017, no. 7 (55), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 20, 2019). DOI: 10.18577/2307-6046-2017-0-7-7-7.
45. Kablov E.N., Lukin V.I., Antipov V.V., Ioda E.N., Panteleev M.D., Skupov A.A. The effectiveness of the use of filler materials in laser welding of high-strength aluminum-lithium alloys. Svarochnoye proizvodstvo, 2016, no. 10, pp. 17–21.
46. Sergeeva E.V. Friction welding with stirring in the aerospace industry (review). Avtomaticheskaya svarka, 2013, no. 5, pp. 58–62.
47. Tao Y., Ni D.R., Xiao B.L. et al. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al–Li alloy joints. Materials Science & Engineering, 2017, vol. 693, pp. 1–13.
48. Kablov E.N., Lukin V.I., Ospennikova O.G. Welding and soldering in the aerospace industry. Svarka i bezopasnost: mater. Vseros. nauch.-praktich. konf., Yakutsk, 2012, pp. 21–30.
49. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys. Trudy VIAM, 2015, no. 4, paper no. 06. Available at: http://www.viam-works.ru (accessed: April 17, 2019). DOI: 10.18577/2307-6046-2015-0-4-6-6.
50. Yu E.M., Zhen Q.Z., Bao Q.L., Li W.Y. Mechanical properties and fatigue crack growth rates in friction stir welded nugget of 2198-T8 Al–Li alloy joints. Materials Science & Engineering, 2013, vol. 563, pp. 41–47.
51. Chong G., Zhixiong Z., Han J., Li H. Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy. Materials Science & Engineering, 2015, vol. 639, pp. 489–499.
52. Dhondt M., Aubert I., Saintier S., Olive J.-M. Mechanical behavior of periodical microstructure induced by friction stir welding on Al–Cu–Li 2050 alloy. Materials Science & Engineering, 2015, vol. 644, pp. 69–75.
53. Betsofen S.Ya., Sbitneva S.V., Panteleev M.D., Bakradze M.M., Dolgova M.I., Kabanova Yu.V. Investigation of the formation of the phase composition of an alloy of the Al–Cu–Li B-1469 system during friction welding with stirring. Metally, 2018, no. 6, pp. 54–63.
54. Romanenko V.A., Klochkova Yu.Yu., Klochkov G.G., Burlyaeva I.P. Extruded panel from aluminum-lithium alloy V-1469. Trudy VIAM, 2016, no. 8, paper no.0 1. Available at: http://www.viam-works.ru (accessed: April 11, 2019). DOI: 10.18577/2307-6046-2016-0-8-1-1.
55. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
56. Lukin V.I., Kulik V.I., Betsofen S.Ya., Lukina E.A., Sharov A.V., Panteleyev M.D., Samorukov M.L. Friction stir welding of high-strength aluminum-lithium V-1469 alloy semiproducts. Trudy VIAM, 2017, no. 12 (60), paper no. 2. Available at: http://viam-works.ru (accessed: May 1, 2019). DOI: 10.18577/2307-6046-2017-0-12-2-2.