УДК 666.7

M.O. Беляченков l , H.E. Щеголева l , A.C. Чайникова l , M.Л. Ваганова l , A.A. Шавнев l

ВЛИЯНИЕ СПЕКАЮЩИХ И МОДИФИЦИРУЮЩИХ ДОБАВОК НА ПРОЦЕСС СПЕКАНИЯ И СВОЙСТВА НИТРИДОКРЕМНИЕВОЙ КЕРАМИКИ

DOI: 10.18577/2071-9140-2020-0-1-70-78

Методом горячего прессования получены образцы нитридокремниевой керамики с комплексными оксидными спекающими добавками $(Al_2O_3+Y_2O_3,\ Al_2O_3+CeO_2)$. Полученные образцы характеризуются относительной плотностью более 98%. В состав керамики вводили модифицирующую добавку многослойных углеродных нанотрубок (MVHT) с целью снижения коэффициента трения. Выявлено, что интенсивное спекание образцов с добавкой $Al_2O_3+Y_2O_3$ начинается при более низких температурах, чем спекание образцов со спекающей композицией $Al_2O_3+CeO_2$. Введение MVHT в состав материала приводит к повышению температуры начала спекания. Установлено, что введение MVHT в нитридокремниевую керамику со спекающей композицией $Al_2O_3+Y_2O_3$ позволяет снизить коэффициент трения в паре со сталью, однако это приводит к увеличению износа керамического материала.

Ключевые слова: нитрид кремния, углеродные нанотрубки, сухие смазки, горячее прессование, гибридные подшипники.

I.O. Belyachenkov¹, N.E. Schegoleva¹, A.S. Chainikova¹, M.L. Vaganova¹, A.A. Shavnev¹

THE INFLUENCE OF SINTERING AND MODIFYING ADDITIVES ON THE SINTERING PROCESS AND THE PROPERTIES OF SILICON NITRIDE CERAMICS

The samples of silicon nitride ceramics with complex sintering additions of oxides $(Al_2O_3+Y_2O_3,Al_2O_3+CeO_2)$ were obtained by hot pressing. Samples' relative density is more than 98%. Modifying addition of multi-wall carbon nanotubes (MWNTs) used for reducing the coefficient of friction. It was revealed that intensive sintering of samples with the addition of $Al_2O_3+Y_2O_3$ starts at lower temperature than sintering of samples with sintering composition $Al_2O_3+CeO_2$. The addition of MWNTs also increases the sintering temperature. It was determined that the adding MWNTs to silicon nitride ceramics with the sintering addition of $Al_2O_3+Y_2O_3$ reduces the friction coefficient in a pair with steel, but at the same time it led to an increase of the wear and tear of the ceramic material.

Keywords: silicon nitride, carbon nanotubes, dry lubricants, hot pressing, hybrid bearings.

¹Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации [Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials» State Research Center of the Russian Federation]; e-mail: admin@viam.ru

Введение

В настоящее время большой интерес ученых вызывает разработка керамических материалов различного назначения [1–5]. Такие материалы находят применение в качестве конструкционных и функциональных материалов в условиях высоких температур и механических нагрузок.

Так, к материалам, применяемым для изготовления различных узлов авиационных газотурбинных двигателей (ГТД), предъявляются повышенные требования по механическим и термическим характеристикам. Не являются исключением и материалы для создания подшипников опор роторов ГТД.

В данной области разрабатываются новые теплостойкие стали [6] и органопластики [7].

Однако стремление к увеличению коэффициента полезного действия (КПД) и мощности авиационных двигателей приводит к увеличению температуры газа перед турбиной и скорости вращения ротора [8]. При высоких скоростях вращения из-за действия центробежных сил увеличивается износ элементов подшипников [9].

Снижение действия центробежных сил в подшипниках качения возможно за счет применения тел качения, изготовленных из керамических или металлокерамических материалов [10–12]. Перспективным в данной области

материалом для изготовления тел качения является нитрид кремния, отличающийся пониженной в 2,5 раза плотностью по сравнению с подшипниковой сталью и характеризующийся низкими значениями коэффициента трения [13, 14].

Нитрид кремния, являющийся соединением с преимущественно ковалентным типом связи, характеризуется низкими значениями удельной массы и коэффициента линейного теплового расширения (КЛТР), высокими значениями характеристик упругости, твердости и жаростойкости [13, 14]. Однако он обладает высокой температурой хрупковязкого перехода и низкой диффузионной подвижностью, в связи с чем получение плотноспеченных материалов с относительной плотностью >85% затруднительно. Для интенсификации процесса спекания нитридокремниевых материалов применяют различные оксидные и нитридные спекающие добавки, образующие жидкую фазу и позволяющие проводить спекание по жидкофазному механизму. Присутствие жидкой фазы способствует переходу α -Si₃N₄ в β -Si₃N₄ путем растворения-кристаллизации.

Наиболее часто используют оксидные добавки Al₂O₃, Y₂O₃ и MgO [15–19]. При введении добавок в виде отдельных оксидов трудно достичь относительной плотности >90%, поэтому более эффективным является использование сложных оксидных добавок например, Al₂O₃-Y₂O₃, приводящих при нагревании к образованию жидкой фазы, интенсифицирующей процесс спекания. Привлекают внимание активирующие добавки оксидов редкоземельных элементов (РЗЭ), которые, согласно научно-техническим литературным данным [16], оказывают активное влияние на формирование так называемых самоармированных волокнистых структур, что, в свою очередь, ведет к повышению механической прочности и трещиностойкости. За счет введения оксидов Al₂O₃ и MgO наибольшее уплотнение может достигаться благодаря образованию с их участием низковязкой стеклофазы, однако данные добавки негативно влияют на эксплуатационные характеристики нитридокремниевой керамики (существенно снижают высокотемпературную прочность из-за снижения температуры плавления и вязкости межзеренной стеклофазы). Поэтому для повышения высокотемпературной прочности следует использовать добавку Y_2O_3 . Хорошо может быть уплотнена система Si_3N_4 – Al_2O_3 – Y_2O_3 , которая обладает высоким уровнем эксплуатационных характеристик и легко кристаллизуется с образованием высокотемпературных силикатов иттрия и алюмоиттриевого граната $Y_2Al_5O_{12}$.

Таким образом, для проведения исследований выбраны системы Si_3N_4 – Al_2O_3 – Y_2O_3 и Si_3N_4 – Al_2O_3 – CeO_2 .

Для снижения коэффициента трения при невозможности использования традиционных жидких смазок из-за высоких температур или скоростей вращения перспективно использование в триботехнических материалах твердых смазок [20–26]. В качестве модифицирующей добавки, играющей роль твердой смазки, в данной работе используются многослойные углеродные нанотрубки (МУНТ) в количестве 5% (объемн.).

Материалы и методы

В табл. 1 представлены составы исследуемых материалов, выбранные на основе данных исследований [15–19].

При проведении работы в качестве исходных компонентов взяты промышленные порошки нитрида кремния, оксидов алюминия Al_2O_3 , иттрия Y_2O_3 и церия CeO_2 и МУНТ.

Помол оксидов Al₂O₃, Y₂O₃ и CeO₂ проводили на планетарной шаровой мельнице РМ 400 (фирма Retsch, Германия) в барабанах из карбида вольфрама с карбидвольфрамовыми шарами в среде изопропилового спирта (ГОСТ 9805–84) при массовом соотношении порошка и шаров, равном 1:4.

Смешивание компонентов проводили с помощью магнитной мешалки и ультразвукового диспергатора И100-6/6 (фирма «Александра-Плюс», Россия) в течение 1 ч в среде изопропилового спирта с последующей сушкой в сушильном шкафу при температуре 100 °С и просевом через сито с размером ячейки 0,1 мм.

Образцы нитридокремниевой керамики получали в виде дисков размером Ø36×5 мм на горячем прессе HPW 100/150-2200-50 LA (фирма FCT, Германия) в графитовых пресс-формах в среде азота при давлении прессования

Таблица 1

Составы исходных смесей

Условный номер	Массовая доля компонента, %					
состава	α-Si ₃ N ₄	Al_2O_3	Y_2O_3	CeO ₂	МУНТ	
3-1	94	2,4	3,6	_	_	
3-2	91,1	2,4	3,7	_	2,8	
10-1	94	1	_	5	_	
10-2	89,9	1	_	6,4	2,8	

50 МПа, продолжительности выдержки 1–2 ч в интервале температур 1750–1900 °C.

Образцы для изучения процесса усадки изготавливали методом полусухого прессования. Порошки исследуемых составов смешивали с 5%-ным водным раствором поливинилового спирта в количестве 2,5% от массы. Прессование образцов в виде балочек размером $80 \times 5 \times 5$ мм проводили в стальной пресс-форме на гидравлическом прессе при удельном давлении 150 МПа. Исследование процесса усадки проводили на высокотемпературном дилатометре DIL 402 C/7/G (фирма Netzsch, Германия) в среде защитного газа до температуры 1800 °C со скоростью нагрева 10 °C/мин.

Гранулометрический анализ порошков исходных компонентов до и после помола проводили на лазерном дифракционном анализаторе размера частиц Analysette 22 Micro-Tec (фирма Fritsch, Германия) в блоке мокрого диспергирования.

Исследования фазового состава исходных компонентов и образцов нитридокремниевой керамики проводили с помощью рентгенофазового анализа на дифрактометре D2 Phaser (фирма Bruker, Германия) с использованием Си K_{α} -излучения и никелевого фильтра. Исследования проводили при комнатной температуре в интервале значений углов 2θ =10–80 градусов. Идентификацию фаз проводили на основании электронного каталога дифрактограмм ICDD PDF-2. Рентгенофазовый анализ нитридокремниевой керамики проводили с предварительно полированной поверхности образцов.

Анализ микроструктуры материалов проводили с помощью растрового (сканирующего) электронного микроскопа JSM-6480LV (фирма Jeol, Япония) на предварительно напыленных золотом образцах. Обработка результатов произведена при помощи профессионального лицензионного программного обеспечения SEM Control User Interface.

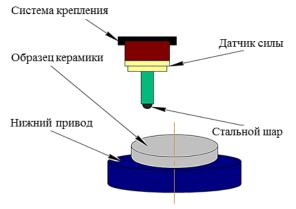


Рис. 1. Схема определения триботехнических характеристик

Плотность и открытую пористость образцов керамики определяли методом насыщения керамического тела жидкостью (водой) с последующим гидростатическим взвешиванием.

Микротвердость образцов измеряли с помощью прибора Microhardness Tester HV-1000В методом вдавливания алмазной пирамиды Виккерса в течение 10 с при нагрузке в 10 Н.

Шероховатость поверхности образцов определяли с помощью профилометрапрофилографа Hommel Tester T500 (фирма Hommelwerke, Германия). Шероховатость оценивали по параметру R_a (среднее арифметическое из абсолютных значений отклонений профиля в пределах базовой длины). Определяли средние значения параметра R_a по трем измерениям. Длина исследуемой зоны образца составляла 15 мм.

Определение триботехнических характеристик, таких как коэффициент трения и величина износа, проводили на приборе UMT TriboLab (фирма Bruker, Германия) по схеме «шарик–диск» (рис. 1).

Образцы нитридокремниевой керамики в виде дисков диаметром 36 мм и толщиной 4–5 мм с помощью клея закрепляли на нижнем приводе. Стальной шар в системе крепления помещался сверху диска и прижимался силой 5 Н к поверхности образца. Нижний привод приводили в движение с такой скоростью, чтобы скорость перемещения шарика по диску составляла 0,3 м/мин.

Результаты и обсуждение Исследование дисперсности исходных компонентов в зависимости от технологических параметров помола

После гранулометрического анализа порошки исходных компонентов (за исключением α -Si₃N₄) подвергали помолу в планетарной мельнице при скорости вращения барабанов 300 об/мин. На рис. 2 представлена зависимость

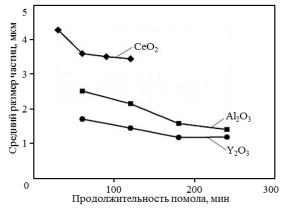


Рис. 2. Зависимость среднего размера частиц от продолжительности помола

среднего размера частиц порошков от продолжительности помола.

На основании данной зависимости для порошков Al_2O_3 , Y_2O_3 и CeO_2 определены оптимальные значения продолжительности помола. За оптимальную принята продолжительность, при увеличении которой не происходит существенного уменьшения среднего размера частиц либо наблюдается его увеличение за счет протекания процесса агломерации частиц.

Исследование фазового состава и морфологии порошка нитрида кремния

Для порошка нитрида кремния проведен рентгенофазовый анализ и анализ морфологии на сканирующем электронном микроскопе (рис. 3 и 4).

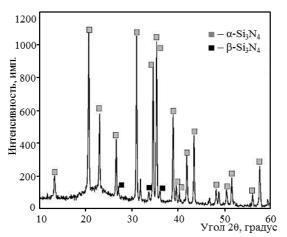


Рис. 3. Рентгенограмма исходного порошка нитрида кремния

Рентгенофазовый анализ показал, что доминирующей фазой является α -Si₃N₄, также в

незначительных количествах присутствует β-фаза, которая на микрофотографиях представлена кристаллами вытянутой формы.

Исследование процесса спекания керамических нитридокремниевых материалов методом дилатометрии

При изучении процесса спекания исследуемых материалов (рис. 5) установлено, что усадка образца состава 3-1 до температуры $1800\,^{\circ}\mathrm{C}$ составила >9%. Процесс усадки начинается при температуре $1344\,^{\circ}\mathrm{C}$ и интенсифицируется при температуре >1741 °C. На кривой усадки наблюдается точка перегиба при $1364\,^{\circ}\mathrm{C}$, что может свидетельствовать об образовании расплава эвтектического состава (тройная точка системы Y_2O_3 – Al_2O_3 – SiO_2 , % (по массе): $32,0\,Y_2O_3$ + $22,0\,Al_2O_3$ + $46,0\,SiO_2$, при температуре $1345\,^{\circ}\mathrm{C}$), точка перегиба на кривой усадки при $1589\,^{\circ}\mathrm{C}$ – об образовании жидкой фазы (тройная точка той же системы, % (по массе): $60,0\,Y_2O_3$ + $16,6\,Al_2O_3$ + $23,4\,SiO_2$, при температуре $1600\,^{\circ}\mathrm{C}$).

По сравнению с образцом состава 3-1 усадка образца состава 3-2 до температуры 1800 °C составила >13%. Спекание образца начинается при температуре 1298 °C, однако ускоряется только при температуре >1765 °C. Точка перегиба на кривой усадки при 1345 °C соответствует образованию эвтектического расплава того же состава, что и для образца состава 3-1.

Для образца состава 10-1 усадка составила >12% до температуры ~ 1800 °C. Спекание образца начинается при температуре 1430 °C и интенсифицируется при температуре >1663 °C, что может быть обусловлено появлением эвтектического расплава состава, % (мольн.): 27 SiO₂+73 CeO₂.

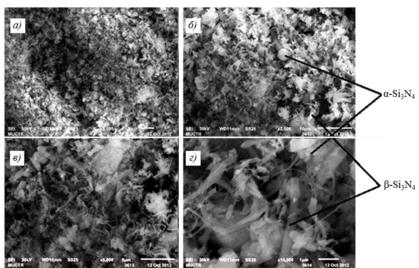


Рис. 4. Сканирующая электронная микроскопия исходного порошка нитрида кремния (регистрация изображения в обратноотраженных электронах)

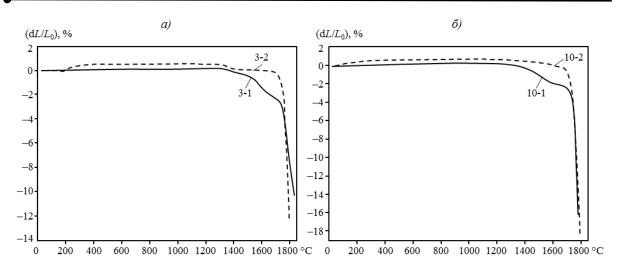


Рис. 5. Кривые усадки образцов составов 3-1 и 3-2 (a) и 10-1 и 10-2 (б)

Суммарная усадка до температуры ~1800 °C для образца состава 10-2 составила >18%. Усадка начинается при температуре 1280 °C и интенсифицируется при температуре >1565 °C.

Сравнительный анализ кривых усадки исследуемых материалов (рис. 5) показал, что интенсивная усадка не содержащих МУНТ образцов составов 3-1 и 10-1 начинается при более низких температурах по сравнению с образцами составов 3-2 и 10-2, содержащими МУНТ, из чего можно заключить, что МУНТ в определенной степени замедляют процесс спекания.

Исследование фазового состава и микроструктуры нитридокремниевой керамики

Согласно данным рентгенофазового анализа (рис. 6), основной фазой в горячепрессованных образцах нитридокремниевой керамики является фаза β -Si₃N₄ (карточка PDF 00-033-1160).

Исходный нитрид кремния α -Si₃N₄ (карточка PDF 00-040-1129) почти полностью перешел

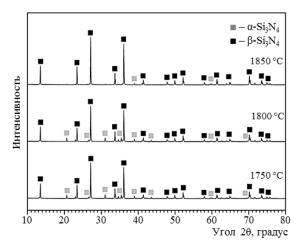
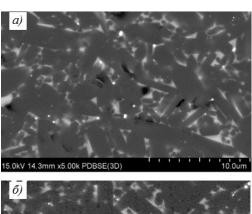



Рис. 6. Рентгенограммы образцов состава 3-1

в β -фазу путем растворения-кристаллизации через жидкую фазу. Количество остаточного нитрида кремния α -Si₃N₄ уменьшается при увеличении температуры выдержки в процессе горячего прессования, что, вероятно, связано с уменьшением вязкости жидкой фазы и интенсификацией процесса перекристаллизации.

На рис. 7 приведена микроструктура образцов состава 3-1. Микроструктура нитридокремниевой керамики, полученной методом горячего прессования, представлена преимущественно вытянутыми кристаллами фазы β -Si₃N₄ (темно-серые области) и межзеренной

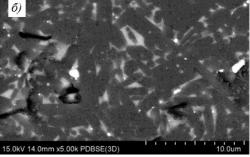


Рис. 7. Сканирующая электронная микроскопия образцов состава 3-1 (регистрация изображения в обратноотраженных электронах) при температуре прессования 1750 (a) и 1850 °C (δ)

Плотность, пористость и водопоглощение образцов нитридокремниевой керамики Условный номер В Π_{0} Температура $\rho_{\text{каж}}$ $\rho_{\text{отн}}$, ρ_{Teop} выдержки, °С % % состава Γ/cm^3 0,06 98,1 3-1 1750 0,18 3,174 3,236 1800 0,05 0,15 3,185 3,236 98,4 1850 0,06 0,19 3,187 3,236 98,5 0,39 99,3 3-2 0,13 3,144 1750 3,167 0,28 3,153 99,6 1800 0,09 3,167 1850 0,07 0,21 3,167 3,167 100.0 10-1 1800 0,09 0,31 3,238 3,268 99,1 3,216 3,268 98,4 1850 0,06 0,20 1900 0,01 0,02 3,210 3,268 98,2 99,8 10-2 1800 0 0,01 3,233 3,238 1850 0,01 0,02 3,237 3,238 100,0 1900 0,11 0,37 3,227 3,238 99.7

Таблица 2

фазой – затвердевшей жидкой фазой, окружающей зерна нитрида кремния (светло-серые области).

Кристаллы β -Si₃N₄ и межзеренная фаза, представленная алюмосиликатами иттрия, распределены равномерно. Размеры кристаллов не превышают 10 и 15 мкм для образцов, полученных при температурах 1750 и 1850 °C соответственно.

Изучение плотности, пористости и водопоглощения нитридокремниевой керамики

Результаты определения плотности (ρ), открытой пористости (Π_o) и водопоглощения (B) образцов нитридокремниевой керамики, полученной методом горячего прессования, представлены в табл. 2.

Относительную плотность рассчитывали по формуле

$$\rho_{\text{oth}} = \frac{\rho_{\text{kaw}}}{\rho_{\text{teop}}} \cdot 100\%,$$

где $\rho_{\text{отн}}$ — относительная плотность, %; $\rho_{\text{каж}}$ — кажущаяся плотность, г/см³; $\rho_{\text{теор}}$ — теоретическая плотность, г/см³.

Как видно из данных табл. 2, водопоглощение полученных образцов не превышает 0,13%, открытая пористость не превышает 0,4%, относительная плотность составляет >98%.

Поскольку с увеличением температуры происходит уменьшение вязкости жидкой фазы, образующейся при взаимодействии компонентов спекающей добавки друг с другом и с SiO_2 на поверхности зерен Si_3N_4 , то процесс жидкофазного спекания с ростом температуры интенсифицируется. Таким образом, при фиксированном времени выдержки при максимальной температуре в процессе

горячего прессования с ростом температуры выдержки увеличивается полнота процесса спекания, что необходимо для достижения требуемого уровня свойств нитридокремниевой керамики.

Такая зависимость наблюдается для образцов со спекающей композицией $Al_2O_3+Y_2O_3$. Для образцов же со спекающей композицией $Al_2O_3+CeO_2$ температурная зависимость плотности носит иной характер, при этом ее величина изменяется незначительно.

Изучение микротвердости нитридокремниевой керамики

Микротвердость по Виккерсу для полученных образцов горячепрессованной нитридокремниевой керамики составила 12,4—17,2 ГПа.

Образцы со спекающей добавкой $Al_2O_3+Y_2O_3$ характеризуются более высокими значениями микротвердости по сравнению с образцами со спекающей добавкой $Al_2O_3+CeO_2$. При этом микротвердость образцов, содержащих МУНТ (образцы 3-2 и 10-2), меньше микротвердости для соответствующих образцов, не содержащих модифицирующую добавку нанотрубок (образцы 3-1 и 10-1).

Для образцов со спекающей композицией $Al_2O_3+Y_2O_3$ наблюдается снижение микротвердости при увеличении температуры выдержки независимо от наличия в составе материала МУНТ (образцы 3-1 и 3-2), что, вероятно, связано с различиями микроструктуры материалов.

Изучение триботехнических характеристик нитридокремниевой керамики

Поскольку на значения триботехнических характеристик существенное влияние оказывает состояние поверхностей трения, перед проведением испытаний определяли

Таблица 3

Шероховатость образцов из нитридокремниевой керамики

Условный номер состава	Температура выдержки, °С	R_a , мкм
3-1	1750	0,03
	1800	0,02
	1850	0,02
3-2	1750	0,04
	1800	0,04
	1850	0,07
10-1	1800	0,08
	1850	0,10
	1900	0,11
10-2	1800	0,12
	1850	0,11
	1900	0,14

шероховатость полированной поверхности образцов, которую оценивали по параметру R_a (табл. 3).

Значения средних коэффициентов трения, полученных в процессе триботехнических испытаний по схеме «шарик—диск», а также величина износа образцов приведены в табл. 4.

Более низкие значения коэффициента трения характерны для образцов со спекающей добавкой $Al_2O_3+Y_2O_3$ (образцы 3-1 и 3-2), при введении в материал МУНТ коэффициент трения уменьшается на 9–10%. Однако введение МУНТ приводит к увеличению износа материала в результате трения, поскольку соединение зерен нитрида кремния более прочное, чем соединение зерен нитрида кремния с МУНТ.

Вполне вероятно, что более низкие значения коэффициентов трения для образцов 3-1

и 3-2 по сравнению с образцами 10-1 и 10-2 связаны с разницей в шероховатости поверхности, на которой проводились триботехнические испытания. Однако сравнение коэффициентов трения для пар образцов (3-1)/(3-2) и (10-1)/(10-2) исходя из значений шероховатости вполне корректно.

На рис. 8 представлены микрофотографии дорожек износа на образцах после трибологических испытаний. На фотографиях видно, что дорожки износа образцов, содержащих МУНТ (образцы 3-2 и 10-2), несколько шире и глубже по сравнению с дорожками износа на образцах без добавления нанотрубок (образцы 3-1 и 10-1), которые оказываются более износостойкими.

Вероятно, при трении образцов составов 3-2 и 10-2 происходит «выкрашивание» нанотрубок и фрагментов поверхностного слоя.

Условный номер состава	Температура прессования, °С	Средний коэффициент трения	Износ, мм
3-1	1750	0,7881	0,011
	1800	0,6782	0,022
	1850	0,7066	0,016
3-2	1750	0,7907	0,0235
	1800	0,6103	0,0275
	1850	0,6439	0,026
10-1	1800	0,8064	0,033
	1850	0,7859	0,0185
	1900	0,7224	0,025
10-2	1800	0,7065	0,0335
	1850	0,8124	0,041
	1900	0,8525	0,027

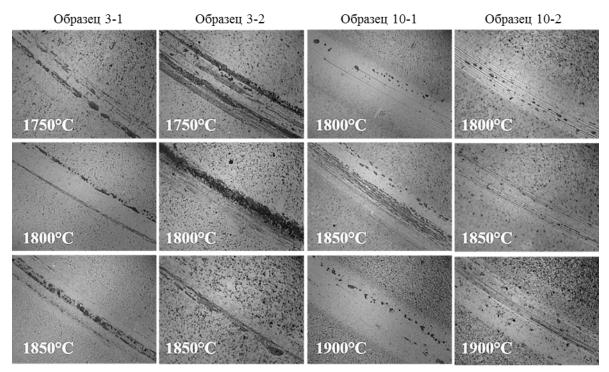


Рис. 8. Микрофотографии дорожек износа после триботехнических испытаний образцов нитридокремниевой керамики

Заключения

Керамические материалы на основе нитрида кремния являются перспективными при изготовлении тел качения гибридных подшипников перспективных ГТД в целях импортозамещения и развития отечественной подшипниковой промышленности.

При консолидации порошков нитрида кремния необходимо применение спекающих добавок для обеспечения протекания процесса спекания по жидкофазному механизму. При этом вид и количество добавок должны обеспечивать образование оптимального количества жидкой фазы для обеспечения полного уплотнения материала и одновременно оказывать минимальное влияние на механические и триботехнические свойства керамики.

В работе методом горячего прессования получены образцы нитридокремниевой кера-

мики с применением комплексных оксидных спекающих добавок $Al_2O_3+Y_2O_3$ и $Al_2O_3+CeO_2$ и модифицирующей добавки многослойных углеродных нанотрубок (МУНТ). Относительная плотность образцов составила >98%.

Введение модифицирующей добавки МУНТ в качестве твердой смазки в нитридокремниевую керамику со спекающей композицией $Al_2O_3+Y_2O_3$ позволило снизить коэффициент трения в паре со сталью на 10%, однако это привело к увеличению износа керамического материала на 25%.

Корректировка составов и технологических параметров получения и механической обработки керамических материалов на основе нитрида кремния позволит получать керамику триботехнического назначения с высоким уровнем эксплуатационных свойств.

Библиографический список

- 1. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
- 2. Каблов Е.Н., Гращенков Д.В., Щеголева Н.Е., Орлова Л.А., Суздальцев Е.И. Радиопрозрачная стеклокерамика на основе стронций-алюмосиликатного стекла // Огнеупоры и техническая керамика. 2016. №6. С. 31–38.
- 3. Севастьянов В.Г., Симоненко Е.П., Симоненко Н.П., Гращенков Д.В., Солнцев С.Ст., Ермакова Г.В., Прокопченко Г.М., Каблов Е.Н., Кузнецов Н.Т. Получение нитевидных кристаллов карбида кремния с применением золь-гель метода в объеме SiC-керамики // Композиты и наноструктуры. 2014. Т. 6. №4. С. 198–211.

- 4. Каблов Е.Н., Жестков Б.Е., Гращенков Д.В., Сорокин О.Ю., Лебедева Ю.Е., Ваганова М.Л. Исследование окислительной стойкости высокотемпературного покрытия на SiC-материале под воздействием высокоэнтальпийного потока // Теплофизика высоких температур. 2017. Т. 55. №6. С. 704–711.
- 5. Евдокимов С.А., Щеголева Н.Е., Сорокин О.Ю. Керамические материалы в авиационном двигателестроении (обзор) // Труды ВИАМ: электрон. науч.-техн. журн. 2018. №12 (72). Ст. 06. URL: http://www.viam-works.ru (дата обращения: 10.03.2019). DOI: 10.18577/2307-6046-2018-0-12-54-61.
- 6. Громов В.И., Курпякова Н.А., Коробова Е.Н., Седов О.В. Новая теплостойкая сталь для авиационных подшипников // Труды ВИАМ: электрон. науч.-техн. журн. 2019. №2 (74). Ст. 02. URL: http://www.viam-works.ru (дата обращения: 10.03.2019). DOI: 10.18577/2307-6046-2019-0-2-17-23.
- 7. Кулагина Г.С., Железина Г.Ф., Левакова Н.М. Антифрикционные органопластики для высоконагруженных узлов трения // Труды ВИАМ: электрон. науч.-техн. журн. 2019. №2 (74). Ст. 09. URL: http://www.viam-works.ru (дата обращения: 10.03.2019). DOI: 10.18577/2307-6046-2019-0-2-89-96.
- 8. Иноземцев А.А., Сандрацкий В.Л. Газотурбинные двигатели. Пермь: Авиадвигатель, 2006. С. 278–280.
- Макарчук В.В. Стратегия развития методов расчета и конструирования высокоскоростных подшипников аэрокосмического применения // Авиационная и ракетно-космическая техника. 2009. №3 (19). С. 361–365.
- 10. Критский В.Ю., Зубко А.И. Исследование возможности использования керамических авиационных подшипников скольжения нового поколения в конструкциях опор роторов газотурбинных двигателей // Двигатель. 2013. №3. С. 24–26.
- 11. Pallini R.A. Turbine engine bearings for ultra-high temperatures // SKF Ball Bearing Journal. 1989. Vol. 234. P. 12–15.
- 12. Specialty Products Catalog // The Barden Corporation [Электронный ресурс]. URL: http//www.bardenbearings.com (дата обращения: 10.03.2019).
- Андриевский Р.А. Нитрид кремния синтез и свойства // Успехи химии. 1995. Т. 64. №4. С. 311–329.
- 14. Petzow G., Herrmann M. Silicon nitride ceramics // High performance non-oxide ceramics II. Springer, Berlin, Heidelberg, 2002. P. 47–167.
- 15. Liu X.J., Huang Z.Y., Ge Q.M. et al. Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO–Al₂O₃–SiO₂ as sintering additive // Journal of the European Ceramic Society. 2005. Vol. 25. No. 14. P. 3353–3359.
- 16. Tatarko P., Kasiarova M., Dusza J. et al. Wear resistance of hot-pressed Si₃N₄/SiC micro/nanocomposites sintered with rare-earth oxide additives // Wear. 2010. Vol. 269. No. 11. P. 867–874.
- 17. Bal B.S., Rahaman M. The rationale for silicon nitride bearings in orthopaedic applications // Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment: IntechOpen. 2011. P. 421–432.
- 18. Перевислов С.Н. Механизм жидкофазного спекания карбида и нитрида кремния с оксидными активирующими добавками // Стекло и керамика. 2013. №7. С. 34–38.
- 19. Лысенков А.С. Конструкционная керамика на основе нитрида кремния с добавкой алюминатов кальция: дис. ... канд. техн. наук. М., 2014. 139 с.
- 20. Болсуновская Т.А., Ефимочкин И.Ю., Севостьянов Н.В., Бурковская Н.П. Влияние марки графита в качестве твердой смазки на триботехнические свойства металлического композиционного материала // Труды ВИАМ: электрон. науч.-техн. журн. 2018. №7 (67). Ст. 08. URL: http://www.viamworks.ru (дата обращения: 10.03.2019). DOI: 10.18577/2307-6046-2018-0-7-69-77.
- 21. Zhu S., Cheng J., Qiao Z., Yang J. High temperature solid-lubricating materials: A review // Tribology International, 2019. Vol. 133, P. 206–223.
- 22. Gangopadhyay A., Jahanmir S., Peterson M.B. Self-lubricating ceramic matrix composites // Friction and wear of ceramics. CRC Press, 1994. P. 163–197.
- 23. Carrapichano J.M., Gomes J.R., Silva R.F. Tribological behaviour of Si₃N₄–BN ceramic materials for dry sliding applications // Wear. 2002. Vol. 253. No. 9–10. P. 1070–1076.
- 24. Liu J., Yang J., Yu Y. et al. Self-Lubricating Si₃N₄-based composites toughened by in situ formation of silver // Ceramics International. 2018. Vol. 44. No. 12. P. 14327–14334.
- 25. Sun Q., Yang J., Yin B. et al. High toughness integrated with self-lubricity of Cu-doped Sialon ceramics at elevated temperature // Journal of the European Ceramic Society. 2018. Vol. 38. No. 7. P. 2708–2715.
- 26. Sun Q., Wang Z., Yang J. et al. High-performance TiN reinforced Sialon matrix composites: A good combination of excellent toughness and tribological properties at a wide temperature range // Ceramics International. 2018. Vol. 44. No. 14. P. 17258–17265.