1. Каблов Е.Н. Авиационное материаловедение: итоги и перспективы // Вестник Российской академии наук. 2002. Т. 72. № 1. С. 3–12.
2. Каблов Е.Н. Авиационное материаловедение в XXI веке. Перспективы и задачи // Авиационные материалы. Избранные труды ВИАМ 1932–2002. М.: МИСИС; ВИАМ, 2002. С. 23–47.
3. Polmear I.J. Recent Developments in Light Alloys // Materials Transactions. 1996. Vol. 37 (1). P. 12–37.
4. Mordike B., Ebert T. Magnesium: Properties-Applications-Potential // Materials Science and Engineering: A. 2001. Vol. 302 (1). P. 37–45.
5. Agnew S.R. Wrought magnesium: A 21st century outlook // JOM: the journal of the Minerals, Metals & Materials Society. 2004. Vol. 56 (5). P. 20–21.
6. Bettles C., Gibson M. Current wrought magnesium alloys: Strengths and weaknesses // JOM: the journal of the Minerals, Metals & Materials Society. 2005. Vol. 57 (5). P. 46–49.
7. Yang Z., Li J., Zhang J., Lorimer G., Robson J. Review on Research and Development of Magnesium Alloys // Acta Metallurgica Sinica (English Letters). 2008. Vol. 21 (5). P. 313–328.
8. Papenberg N.P., Gneiger S., Weibensteiner I. et al. Mg-Alloys for Forging Applications – A Review // Materials. 2020. Vol. 13 (4). P. 985. DOI: 10.3390/ma13040985.
9. Каблов Е.Н., Акинина М.В., Волкова Е.Ф., Мостяев И.В., Леонов А.А. Исследование особенностей фазового состава и тонкой структуры литейного магниевого сплава МЛ9 в литом и термообработанном состояниях // Авиационные материалы и технологии. 2020. № 2 (59). С. 17‒24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
10. Волкова Е.Ф., Акинина М.В., Мостяев И.В. Пути повышения основных механических характеристик магниевых деформируемых сплавов // Труды ВИАМ. 2017. № 10 (58). Ст. 02. URL: http://www.viam-works.ru (дата обращения: 02.02.2022). DOI: 10.18577/2307-6046-2017-0-10-2-2.
11. Волкова Е.Ф., Мостяев И.В., Акинина М.В. Сравнительный анализ анизотропии механических свойств и микроструктуры деформированных полуфабрикатов из высокопрочных магниевых сплавов с РЗЭ // Труды ВИАМ. 2018. № 5 (65). Ст. 04. URL: http://www.viam-works.ru (дата обращения: 02.02.2022). DOI: 10.18577/2307-6046-2018-0-5-24-33.
12. Карачевцев Ф.Н., Ерошкин С.Г., Мостяев И.В., Акинина М.В., Славин А.В. Разработка стандартных образцов состава магниевых сплавов марок ВМЛ20 и ВМД16 // Труды ВИАМ. 2021. № 5 (99). Ст. 04. URL: http://www.viam-works.ru (дата обращения: 02.02.2022). DOI: 10.18577/2307-6046-2021-0-5-39-47.
13. Волкова Е.Ф., Мостяев И.В., Акинина М.В. Сравнительные исследования влияния фазового состава на механические и технологические свойства магниевых сплавов МА20-СП и МА2-1 // Труды ВИАМ. 2018. № 1 (61). Ст. 05. URL: http://www.viam-works.ru (дата обращения: 03.02.2022). DOI: 10.18577/2307-6046-2018-0-1-5-5.
14. Магниевые сплавы: справочник в 2 т. / под ред. И.И. Гурьева, М.В. Чухрова. М.: Металлургия, 1978. T. 2. 295 с.
15. Бондарев Б.И. Плавка и литье деформируемых магниевых сплавов. М.: Металлургия, 1973. 287 с.
16. Briffod F., Ito S., Shiraiwa T., Enoki M. Effect of long period stacking ordered phase on the fatigue properties extruded Mg–Y–Zn alloys // International Journal of Fatigue. 2019. Vol. 128. P. 105–205.
17. Yoshimoto S., Yamasaki M., Kawamura Y. Microstructure and mechanical properties of extruded Mg–Zn–Y alloys with 14H long period ordered structure // Materials Transactions. 2006. Vol. 47. P. 959–965.
18. Zhang J.H., Leng Z., Liu S.J. et al. Microstructure and mechanical properties of Mg–Gd–Dy–Zn alloy with long period stacking ordered structure or stacking faults // Journal of Alloys and Compounds. 2011. Vol. 509. P. 7717–7722.
19. Shao J.B., Chen Z.Y., Chen T. et al. Texture evolution, deformation mechanism and mechanical properties of the hot rolled Mg–Gd–Y–Zn–Zr alloy containing LPSO phase // Materials Science and Engineering: A. 2018. Vol. 731. P. 479–486.
20. Kim J.K., Sandlobes S., Rabbe D. On the room temperature deformation mechanisms of a Mg–Y–Zn alloy with long-period-stacking ordered structure // Acta Materialia. 2015. Vol. 82. P. 414–423.
21. Hagihara K., Li Z., Yamasaki M. et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys // Acta Materialia. 2019. Vol. 163. P. 226–239.
22. Shao X.H., Yang Z.Q., Ma X.L. Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure // Acta Materialia. 2010. Vol. 58. P. 4760–4771.
23. Tahreen N., Zhang D.F., Pan F.S. et al. Characterization of hot deformation behavior of an extruded Mg–Zn–Mn–Y alloy containing LPSO phase // Journal of Alloys and Compounds. 2015. Vol. 644. P. 814–823.
24. Hagihara K., Yokotani N., Umakoshi Y. Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure // Intermetallics. 2010. Vol. 18. P. 267–276.
25. Somekawa H., Ando D., Hagihara K. et al. Intrinsic kink bands strengthening induced by several wrought-processes in Mg–Y–Zn alloys, containing LPSO phase // Materials Characterization. 2021. Vol. 179. Art. 111348.
26. Hagihara K., Kinoshita A., Sugino Y. et al. Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composted of long-period stacking ordered phase // Intermetallic. 2010. Vol. 18. P. 1079–1085.
27. Nakasuji Y., Somekawa H., Yuasa M. et al. Quantitative kink boundaries strengthening effect of Mg–Y–Zn alloy containing LPSO phase // Materials Letters. 2021. Vol. 292. Art. 192625.
28. Волкова Е.Ф., Акинина М.В., Мостяев И.В., Дуюнова В.А., Алиханян А.А. Новые исследования в области легирования и деформации современных магниевых сплавов. Обзор // Металлы. 2022. № 2. С. 1–11.
29. Волкова Е.Ф., Акинина М.В., Мостяев И.В., Алиханян А.А. Исследование влияния высокотемпературных нагревов на структуру, фазовый состав и свойства малогабаритных штамповок из магниевого сплава ВМД16 // Металлы. 2021. № 6. С. 26–33.
30. Hagihara K., Okamoto T., Izuno H. et al. Plastic deformation behavior of 10H-tyope synchronized LPSO phase in a Mg–Zn–Y system // Acta Materialia. 2016. Vol. 109. P. 90–102.
31. Hagihara K., Okamoto T., Yamasaki M. et al. Electron backscatter diffraction pattern analysis of the deformation band formed in the Mg-based long-period stacking ordered phase // Scripta Materialia. 2016. Vol. 117. P. 32–36.
32. Yamasaki M., Hagihara K., Inoue S. et al. Crystallographic classification of kink bands in an extruded Mg–Zn–Y alloy using intragranular misorientaion axis analysis // Acta Materialia. 2013. Vol. 61. P. 2065–2076.
33. Hagihara K., Kinoshita A., Fukusumi Y. et al. High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase // Materials Science and Engineering: A. 2013. Vol. 560. P. 71–79.
34. Somekawa H., Schuh C.A. Nanoindentation behavior and deformed microstructures in coarse-grained magnesium alloys // Scripta Materialia. 2013. Vol. 68. P. 416–419.
35. Zambaldi C., Zehnder C., Rabbe D. Orientation dependent deformation by slip and twinning magnesium during single crystal indentation // Acta Materialia. 2015. Vol. 91. P. 267–288.
36. Kitahara H., Mayama T., Okumura K. Anisotropic deformation induced by spherical indentation of pure Mg single crystals // Acta Materialia. 2014. Vol. 78. P. 290–300.
37. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. № 1 (34). С. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
38. Shi B., Chen R., Ke W. Effects of yttrium and zinc on thetexture, microstructure and tensile properties of hot-rolled magnesium plates // Materials Science and Engineering: A. 2013. Vol. 560. P. 62–70.
39. Wang Q., Du W., Liu K. et al. Microstructure, texture and mechanical properties of as-extruded Mg–Zn–Er alloys // Journal of Alloys and Compounds. 2014. Vol. 602. P. 32–39.
40. Xu X., Chen X., Du W. et al. Effect of Nd on microstructure and mechanical properties of as-extruded Mg–Y–Zr–Nd alloy // Journal of Materials Science & Technology. 2017. Vol. 33 (9). P. 926–934.
41. Yang Q., Jiang B., Pan H. et al. Influence of different extrusion processes on mechanical properties of magnesium alloy // Journal of Magnesium and Alloys. 2014. Vol. 2 (3). P. 220–224.
42. Wang H.Y., Rong J., Yu Z.Y. et al. Tensile properties, texture evolutions and deformation anisotropy of asextruded Mg–6Zn–1Zr magnesium alloy at room and elevated temperatures // Materials Science and Engineering: A. 2017. Vol. 697. Art. 149e157.
43. Hagihara K., Kinoshita A., Sugino Y. et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy // Acta Materialia. 2010. Vol. 58. P. 6282–6293.
44. Kawamura Y., Yamasaki M. Formation and Mechanical Properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered Structure // Materials Transactions. 2007. Vol. 48 (11). P. 2986–2992.
45. Abe E., Ono A., Itoi T. et al. Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg–Zn–Y alloy // Philosophical Magazine Letters. 2011. Vol. 91 (10). P. 690–696.
46. Hagihara K., Nakano T. Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands // Material Science and Engineering: A. 2019. Vol. 763. Art. 138163.