1. Galyshev S., Atanov B. The Dependence of the Strength of a Carbon Fiber/Aluminum Matrix Composite on the Interface Shear Strength between the Matrix and Fiber // Metals. 2022. Vol. 12. P. 1753. DOI: 10.3390/met12101753.
2. Хохлов А.В., Галышев С.Н., Атанов Б.И., Орлов В.И. Влияние расслоения материалов с низкой сдвиговой прочностью на процесс разрушения и результаты испытаний на трехточечный изгиб // Физическая мезомеханика. 2025. Т. 28. № 2. C. 13–43. DOI: 10.55652/1683-805X_2025_28_2_13-43.
3. Галышев С.Н., Хохлов А.В., Орлов В.И., Атанов Б.И. Испытания на изгиб и свойства углеволоконного композита с алюминиевой матрицей, легированной висмутом, при температурах до 500 °С // Физическая мезомеханика (в печати).
4. Atanov B., Khokhlov A., Khasanova E. et al. The Effect of Bismuth Content on the Microstructure and Strength of Carbon Fiber/Al–Bi Alloy Matrix Composite // Mechanics of Composite Materials. 2025. Vol. 61. No. 4. P. 683–698. DOI: 10.1007/s11029-025-10302-w.
5. Наконечный Е.И., Хохлов А.В., Галышев С.Н. и др. Математическая обработка и анализ данных электронной и лазерной сканирующей конфокальной микроскопий поверхностей разрушения однонаправленных композитов // Композиты и наноструктуры. 2025. Т. 17. № 2. С. 102–133. DOI: 10.36236/1999-7590-2025-17-2-102-133.
6. Galyshev S. On the Strength of the CF/Al-Wire Depending on the Fabrication Process Parameters: Melt Temperature, Time, Ultrasonic Power, and Thickness of Carbon Fiber Coating // Metals. 2021. Vol. 11. P. 1006. DOI: 10.3390/met11071006.
7. Galyshev S., Atanov B., Orlov V. On the Pressure and Rate of Infiltration Made by a Carbon Fiber Yarn with an Aluminum Melt during Ultrasonic Treatment // Fibers. 2023. Vol. 11. Art. 41. DOI: 10.3390/fib11050041.
8. Костиков В.И., Варенков А.Н. Композиционные материалы на основе алюминиевых сплавов, армированных углеродными волокнами. М.: Интермет Инжиниринг, 2000. 445 с.
9. Xu W., Chenchong W., Zhichao Z. et al. Interfacial microstructure and growth mechanism of Al4C3 in Grf/Al composites fabricated by liquid pressure method // Micron. 2014. Vol. 65. P. 10–14.
10. Bai Y., Zhou J., Zhao C. et al. Inhibition of interfacial reaction and enhancement of mechanical properties of CF/Al composite // Materials Characterization. 2024. Vol. 216. P. 114258. DOI: 10.1016/j.matchar.2024.114258.
11. Gao M., Gao P., Wang Y. et al. Study on Metallurgically Prepared Copper-Coated Carbon Fibers Reinforced Aluminum Matrix Composites // Metals and Materials International. 2021. Vol. 27. P. 5425–5435. DOI: 10.1007/s12540-020-00897-1.
12. Galyshev S., Orlov V., Atanov B. et al. The effect of tin content on the strength of a carbon fiber/Al–Sn-matrix composite wire // Metals. 2021. Vol. 11. P. 2057. DOI: 10.3390/met11122057.
13. Kangdi Z., Jiming Z., Chentong Z. et al. The effect of nickel coating on the mechanical properties and failure modes of continuous carbon fiber reinforced aluminum matrix composites // Journal of Alloys and Compounds. 2022. Vol. 904. P. 164134. DOI: 10.1016/j.jallcom.2022.164134.
14. Evans A.G., Zok F.W. Review. The physics and mechanics of fibre-reinforced brittle matrix composites // Journal of Materials Science. 1994. Vol. 29. P. 3857–3896.
15. Fridlyander J.N. Metal Matrix Composites. London: Chapman and Hall, 1995. 682 р.
16. Mileiko S.T. Metal and Ceramic Based Composite. Amsterdam: Elsevier, 1997. 690 р.
17. Kelly A., Zweben C.H. Comprehensive composite materials. New York: Elsevier, 2000. 810 p.
18. Машиностроение: энциклопедия в 40 т. М.: Машиностроение, 2001. Т. II-3: Цветные металлы и сплавы. Композиционные металлические материалы / под ред. И.Н. Фридляндера, 880 с.
19. Metal Matrix Composites. Custom-made Materials for Automotive and Aerospace Engineering / ed. K.U. Kainer. Wiley-VCH, 2006. 314 p.
20. Handbook of Ceramic Composites / ed. N.P. Bansal. N.-Y.: Springer, 2005. 554 p.
21. Hatta H., Goto K., Aoki T. Strengths of C/C Composites Under Tensile, Shear, and Compressive Loading: Role of Interfacial Shear Strength // Composites Science and Technology. 2005. Vol. 65. P. 2550–2562.
22. Campbell F.C. Manufacturing Technology for Aerospace Structural Materials. Amsterdam: Elsevier, 2006. 617 p.
23. Schmauder S., Mishnaevsky Jr.L. Micromechanics and Nanosimulation of Metals and Composites. Springer, 2008. 430 p.
24. Берлин А.А., Баженов С.Л., Кульков А.А., Ошмян В.Г. Полимерные композиционные материалы. Прочность и технология. Долгопрудный: Интеллект, 2009. 352 с.
25. Mechanical testing of advanced fibеr composites / ed. J.M. Hodgkinson. Woodhead Publ., 2010. 378 p.
26. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. № 1 (34). С. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
27. Gloria A., Montanari R., Richetta M., Varone A. Alloys for aeronautic applications: state of the art and perspectives // Metals. 2019. Vol. 9. Art. 662. DOI: 10.3390/met9060662.
28. Georgantzia E., Gkantou M., Kamaris G.S. Aluminium alloys as structural material: a review of research // Engineering Structures. 2021. Vol. 227. DOI: 10.1016/j.engstruct.2020.111372.
29. Zheng J., Pang Q., Hu Z., Sun Q. Recent progress on regulating strategies for the strengthening and toughening of high-strength aluminum alloys // Materials. 2022. Vol. 15. P. 4725. DOI: 10.3390/ma15134725.
30. Иванов М.С., Сагомонова В.А., Морозова В.С. Отечественный термопластичный углепластик на основе полиэфирэфиркетона // Труды ВИАМ. 2022. № 12 (118). С. 49–62. URL: http://www.viam-works.ru (дата обращения: 20.03.2025). DOI: 10.18577/2307-6046-2022-0-12-49-62.
31. Jacquesson M., Girard A., Vidal-Sétif M.H. et al. Tensile and fatigue behavior of Al-based metal matrix composites reinforced with continuous carbon or alumina fibers: Part I. Quasi-unidirectional composites // Metallurgical and Materials Transactions A. 2004. Vol. 35. P. 3289–3305. DOI: 10.1007/s11661-004-0071-2.
32. Shirvanimoghaddam K., Hamim S.U., Akbari M.K. et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties // Composites: Part A: Applied Science and Manufacturing. 2017. Vol. 92. P. 70–96. DOI: 10.1016/j.compositesa.2016.10.032.
33. Garg P., Jamwal A., Kumar D. et al. Advance research progresses in aluminium matrix composites: manufacturing & applications // Journal of Materials Research and Technology. 2019. Vol. 8. No. 5. P. 4924–4939. DOI: 10.1016/j.jmrt.2019.06.028.
34. Балинова Ю.А., Гращенков Д.В., Шавнев А.А. и др. Высокотемпературные теплозащитные керамические и металлокерамические композиционные материалы для авиационной техники нового поколения // Вестник Концерна ВКО «Алмаз – Антей». 2020. № 2. С. 83–92.
35. Mileiko S. Carbon-fibre/metal-matrix composites: A review // Journal of Composites Science. 2022. Vol. 6. P. 297. DOI: 10.3390/jcs6100297.
36. Khalid M.Y., Umer R., Khan K.A. Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications // Results in Engineering. 2023. Vol. 20. Art. 101372. DOI: 10.1016/j.rineng.2023.101372.
37. Vidal-Sétif M., Lancin M., Marhic C. et al. On the role of brittle interfacial phases on the mechanical properties of carbon fibre reinforced Al-based matrix composites // Materials Science and Engineering: A. 1999. Vol. 272 (2). P. 321–333. DOI: 10.1016/s0921-5093(99)00487-6.
38. Tavares R.P., Otero F., Turon A., Camanho P.Р. Effective simulation of the mechanics of longitudinal tensile failure of unidirectional polymer composites // International Journal of Fracture. 2017. Vol. 208. P. 269–285. DOI: 10.1007/s10704-017-0252-9.
39. Conde F.M., Coelho P.G., Tavares R.P. et al. Optimization of hybrid polymer composites under uniaxial traction // Engineering Computations. 2018. Vol. 35. No. 2. P. 904–931. DOI: 10.1108/EC-11-201.
40. Tavares R.P., Turon A., Camanho P.C. Mechanics of deformation and failure of hybrid polymer composites // Revista de Materiales Compuestos. 2022. DOI: 10.23967/r.matcomp.2021.10.004.
41. Swolfs Y., Verpoes I., Gorbatikh L. A review of input data and modelling assumptions in longitudinal strength models for unidirectional fibre-reinforced composites // Composite Structures. 2016. Vol. 150. P. 153–172. DOI: 10.1016/j.compstruct.2016.05.002.
42. Shih G.C., Ebert L.J. Theoretical modelling of the effect of the interfacial shear strength on the longitudinal tensile strength of unidirectional composites // Journal of Composite Materials. 1987. Vol. 21 (3). P. 207–224.
43. Curtin W.A., Takeda N. Tensile strength of fiber-reinforced composites: II. Application to polymer matrix composites // Journal of Composite Materials. 1998. Vol. 32. No. 22. P. 2060–2081.
44. Beyerlein I.J., Phoenix S.L., Raj R. Time evolution of stress redistribution around multiple fiber breaks in a composite with viscous and viscoelastic matrices // International Journal of Solids and Structures. 1998. Vol. 35 (24). P. 3177–3211.
45. Zhao F.M., Takeda N. Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part I: experiment results // Composites, Part A. 2000. Vol. 31(11). P. 1203–1214.
46. Xia Z.H., Curtin W.A. Multiscale modeling of damage and failure in aluminum matrix composites // Composites Science and Technology. 2001. Vol. 61 (15). P. 2247–2257.
47. Blassiau S., Thionnet A., Bunsell A.R. Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures. Part 2: influence of viscoelastic and plastic matrices on the mechanisms of load transfer // Composite Structures. 2006. Vol. 74 (3). P. 319–331.
48. Zhandarov S., Mäder E. Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters // Composites Science and Technology. 2005. Vol. 65 (1). P. 149–160.
49. Mishnaevskyjr L., Brondsted P. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: a review // Computational Material Science. 2009. Vol. 44. No. 4. P.1351–1359.
50. Koyanagi J., Hatta H., Kotani M., Kawada H. A comprehensive model for determining tensile strengths of various unidirectional composites // Journal of Composite Materials. 2009. Vol. 43. P. 1901–1914.
51. Handbook of Biological Confocal Microscopy / ed. J.B. Pawley. New York: Plenum Press, 1995. 1024 p.
52. Corle T.R., Kino G.S. Confocal Scanning Optical Microscopy and Related Imaging Systems. New York: Academic Press, 1996. 335 p.
53. Gu M. Principles of Three-Dimensional Imaging in Confocal Microscopes. New Jersey: World Scientiic, 1996. 337 p.
54. Confocal Microscopy: Methods and Protocols / ed. S.W. Paddock. New Jersey: Humana Press, 1999. 446 р.
55. Cell Biological Applications of Confocal Microscopy / ed. B. Matsumoto. Amsterdam – New York – Tokyo: Academic Press, 2002. 512 p.
56. Halbhuger K.-J., Konig K. Modern Laser Scanning Microscopy in Biology, Biotechnology and Medicine // Annals of Anatomy. 2003. Vol. 185. Is. 1. P. 1–20.
57. Hibbs A.R. Confocal Microscopy for Biologists. New York: Kluwer Academic, 2004. 474 p.
58. Claxton N.S., Fellers T.J., Davidson M.W. Laser scanning confocal microscopy // Encyclopedia of Medical Devices and Instrumentation. Second Ed. John Wiley & Son, 2006. DOI: 10.1007/978-94-017-9780-1_100459.
59. Paddock S.W., Eliceiri K.W. Laser Scanning Confocal Microscopy: History, Applications, and Related Optical Sectioning Techniques // Methods in Molecular Biology. 2014. Vol. 1075. P. 9–47. DOI: 10.1007/978-1-60761-847-8_2.
60. Феофанов А.В. Спектральная лазерная сканирующая конфокальная микроскопия в биологических исследованиях // Успехи биологической химии. 2007. T. 47. C. 371–410.
61. Pfrang A., Schimmel T. Quantitative measurement of fiber pull-out by laser scanning confocal microscopy // Chemical Vapor Deposition. 2015. Vol. 21 (10–12). P. 260–262.
62. Yu B., Katafiasz T.J., Nguyen S. et al. Characterizing and predicting the relationship between translaminar fracture toughness and pull-out length distributions under distinct temperatures // Philosophical Transactions of the Royal Society A. 2022. Vol. 381 (2240). DOI: 10.1098/rsta.2021.0220.
63. Usami H., Iwahori Y., Adachi Y. et al. Neural network based shape recovery from SEM images using secondary electron image and reflecting electron image // Journal of Robotics and Mechanical Engineering Research. 2017. Vol. 2 (1). P. 7–17.
64. Borzunov A.A., Karaulov V.Y., Koshev N.A. et al. 3D surface topography imaging in SEM with improved backscattered electron detector: Arrangement and reconstruction algorithm // Ultramicroscopy. 2019. Vol. 207. DOI: 10.1016/j.ultramic.2019.112830.
65. Borzunov A.A., Lukyanenko D.V., Rau E.I., Yagola A.G. Reconstruction algorithm of 3d surface in scanning electron microscopy with backscattered electron detector // Journal of Inverse and Ill-posed Problems. 2021. Vol. 29. No. 5. P. 753–758.
66. Zhao Z., Wu H., Zhang M. et al. Fiber orientation reconstruction from SEM images of fiber-reinforced composites // Applied Sciences. 2023. Vol. 13 (6). DOI: 10.1016/j.ultramic.2019.112830.
67. Matsunaga T., Ogata K., Hatayama T. et al. Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method // Composites: Part A: Applied Science and Manufacturing. 2007. Vol. 38. P. 771–778. DOI: 10.1016/j.compositesa.2006.09.003.
68. Хохлов А.В. Анализ погрешности и повышение точности определения модулей упругости и сдвига в испытаниях на изгиб коротких образцов // Заводская лаборатория. Диагностика материалов. 2025. Т. 91. № 2. С. 54–67. DOI: 10.26896/1028-6861-2025-91-2-54-67.
69. Matsunaga T., Matsuda K., Hatayama T. et al. Fabrication of continuous carbon fiber-reinforced aluminum–magnesium alloy composite wires using ultrasonic infiltration method // Composites: Part A: Applied Science and Manufacturing. 2007. Vol. 38 (8). P. 1902–1911. DOI: 10.1016/j.compositesa.2007.03.007.
70. Cheng H.M., Lin Z.H., Zhou B.L. et al. Preparation of carbon fibre reinforced aluminium via ultrasonic liquid infiltration technique // Materials Science and Technology. 1993. Vol. 9. No 7. P. 609–614. DOI: 10.1179/mst.1993.9.7.609.
71. Bai Y., Zhou J., Zhong K. et al. Study on Process Parameters of Liquid–Solid Infiltration Extrusion of Continuous Carbon Fiber-Reinforced Aluminum Matrix Composites // Metallurgical and Materials Transactions B. 2024. Vol. 55. No. 6. P. 4981–4996. DOI: 10.1007/s11663-024-03283-z.
72. Wu A., Shi Y., Lu R., Zhang Z. Sequence image registration for large depth of microscopic focus stacking // IEEE Access. 2020. Vol. 8. P. 6533–6542.
73. Rublee E., Rabaud V., Konolige K., Bradski G. ORB: An efficient alternative to SIFT or SURF // IEEE International Conference on Computer Vision (ICCV 2011). Barcelona, 2011. P. 2564–2571.
74. Fischler M.A., Bolles R.C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography // Communications of the ACM. 1981. Vol. 24. No. 6. P. 381–395.
75. Lowekamp B.C., Chen D.T., Ibáñez L., Blezek D. The design of SimpleITK // Frontiers in neuroinformatics. 2013. Vol. 7. DOI: 10.3389/fninf.2013.00045.
76. Duda R.O., Hart P.E. Use of the Hough transformation to detect lines and curves in pictures // Communications of the ACM. 1972. Vol. 15 (1). P. 11–15.
77. Хохлов А.В., Наконечный Е.И., Галышев С.Н. и др. Зависимость прочности и распределения длин выдернутых волокон на поверхностях разрушения однонаправленных углеалюминиевых композитов от скорости протяжки нити волокон сквозь расплав матрицы // Композиты и наноструктуры (в печати).