УДК 669.018.44:669.295

O.C. Кашапов l , Т.В. Павлова l , В.С. Калашников l , А.Р. Кондратьева l

ИССЛЕДОВАНИЕ ВЛИЯНИЯ
РЕЖИМОВ ТЕРМИЧЕСКОЙ ОБРАБОТКИ
НА СТРУКТУРУ И СВОЙСТВА ОПЫТНЫХ ПОКОВОК
ИЗ СПЛАВА ВТ41 С МЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ

DOI: 10.18577/2071-9140-2017-0-3-3-7

Проведено исследование влияния режимов двухступенчатого отжига на механические свойства – кратковременную прочность, жаропрочность и ударную вязкость крупногабаритных опытнопромышленных поковок с мелкозернистой структурой из жаропрочного псевдо-а-титанового сплава BT41 трех плавок. Полученные результаты позволяют сделать предварительные выводы для назначения режима отжига, а также провести сравнительный анализ с ранее полученными результатами по исследованию прутков и штамповок лопаток из сплава BT41.

Ключевые слова: жаропрочные титановые сплавы, механические свойства, структура, химический состав.

The study presents the influence of two-step annealing on mechanical properties – short-term strength, heat-resistance and impact toughness of large-scale experimental-industrial forgings with fine-grained structure made from three melting of pseudo-alpha titanium alloy VT41. The obtained results allow making preliminary conclusions in order to set annealing modes, as well as to carry out a comparative analysis with previous results on the study of bars and blades made of alloy VT41.

Keywords: heat-resistance titanium alloys, mechanical properties, structure, chemical composition.

¹Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации [Federal state unitary enterprise «All-Russian scientific research institute of aviation materials» State research center of the Russian Federation]; e-mail: admin@viam.ru

Введение

ФГУП «ВИАМ» является основным разработчиком материалов, применяемых в авиационной технике в Российской Федерации [1-5]. Научная школа по созданию авиационных титановых сплавов и технологии изготовления полуфабрикатов, действующая в ВИАМ, насчитывает более 65 лет [6-10]. Актуальными задачами при разработке новых титановых сплавов для газотурбинных двигателей являются: повышение удельных характеристик прочности и жаропрочности, повышение технологичности и снижение себестоимости изготовления полуфабрикатов, обеспечение стабильности комплекса механических свойств. Работа выполнена в рамках реализации комплексного научного направления 2.2. «Квалификация и исследование материалов» («Стратегические направления развития материалов и технологий их переработки на период до 2030 года») [1].

Новый жаропрочный псевдо-α-титановый сплав BT41 предназначен для изготовления деталей газотурбинных двигателей с рабочей температурой до 600°С. Известно, что наибольшие характеристики жаропрочности для титановых сплавов достигаются на крупнозернистой структуре пластинчатого типа. Однако такой тип структуры не

обеспечивает достаточную длительную прочность материала, что особенно важно для деталей, работающих в условиях многоциклового нагружения. Ранее при проведении исследований прутков и лопаток из сплава ВТ41 выбрали режимы термической обработки, обеспечивающие наилучшее сочетание прочностных характеристик сплава [11-13]. Особенностью этих полуфабрикатов является относительно малый размер β-зерна, сопоставимый с размерами частиц первичной а-фазы, а также другие особенности, вытекающие из технологической схемы их изготовления [14]. Для крупногабаритных поковок из сплава ВТ41 с мелкозернистой структурой, предназначенных для изготовления моноколес компрессора высокого давления [15, 16], необходимо уточнение режимов отжига заготовок.

Материалы и методы

Исследования проводили на поковках, изготовленных из трех промышленных слитков ПАО «Корпорация ВСМПО-АВИСМА». Химический состав плавок соответствует требованиям ОСТ1 90013 на химический состав сплава марки ВТ41. Химический состав, выраженный в структурных эквивалентах по содержанию алюминия и молибдена для каждой плавки, приведен в табл. 1.

Таблица 1

Химический состав плавок, приведенный к структурным эквивалентам

Условный	Минимальная температура полного полиморфного превращения $T_{\text{п.п.}}$ °C	Содержание элементов, % (по массе)			
номер плавки		$[Al]_{_{\mathfrak{I}KB}}$	[Мо]экв	Si	C
1	1013	9,2	1,63	0,28	0,020
2	1028	9,14	1,95	0,30	0,025
3	1028	9.19	2.1	0.30	0.025

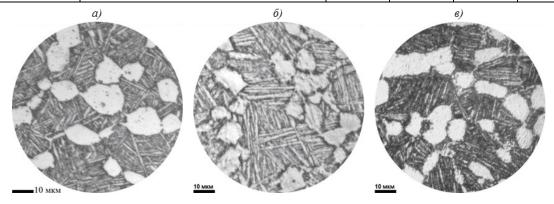


Рис. 1. Микроструктура заготовок плавок условного номера I(a), $2(\delta)$ и $3(\epsilon)$, отожженных в лабораторной печи по режиму двойного отжига: нагрев до $T_{\rm n.n}$ -30°C, выдержка, охлаждение на воздухе + нагрев до 550°C, выдержка, охлаждение на воздухе

Деформацию слитков проводили при температурах нагрева в однофазной области с последующей протяжкой в пруток при температурах двухфазной области. Полученные крупногабаритные прутки диаметром 180-220 мм обтачивали и контролировали ультразвуковым методом. Далее мерные заготовки осаживали при температурах нагрева в двухфазной области до получения заданных размеров на ковочных прессах (ПАО «Корпорация ВСМПО-АВИСМА») и на прессе, оборудованном изотермической установкой (ФГУП «ВИАМ»). Таким образом, получены поковки диаметром ~(320-640) мм и толщиной сечения ~(45-120) мм. Более подробно технология изготовления поковок приведена в работе [14].

Для проведения исследований использовали центральную часть поковок. Заготовки под образцы вырезали в хордовом и радиальном направлениях. Термическую обработку заготовок осуществляли в лабораторных

 $\sigma_{\rm\scriptscriptstyle B}^{20^\circ}$,

МΠа

1065-1081

1138-1167

1150-1151

1128-1155

1120-1160

1155-1167

1110-1155

1111-1123

7,6–9,6

8,0-12,0

6,2-12,0

7,6-9,0

6,0-7,6

печах с точностью поддержания температуры ±5°C.

Анализ микроструктуры материала проводили по ПИ1.2.785-2009, определение механических свойств осуществляли по стандартным методикам (ГОСТ 1497, ГОСТ 9454, ГОСТ 9651, ГОСТ 10145).

Результаты и обсуждение

На рис. 1 приведена типичная микроструктура заготовок от трех плавок, отожженных по режиму двойного отжига: отжиг при $T_{\pi\pi}$ -30°C с охлаждением на воздухе + отжиг при 550°C с охлаждением на воздухе.

Микроструктура всех поковок - глобулярнопластинчатого типа, характерная для деформированного и отожженного при температурах верхней части двухфазной области материала.

Механические свойства (табл. 2) материала заготовок в зависимости от режима старения определяли на пяти образцах от каждой плавки.

Таблица 2

112-131

Механические свойства материала заготовок в зависимости от температуры второй ступени отжига

Время до $\sigma_{_{B}}^{600^{\circ}},$ KCU, разрушения τ*, ч Дж/ cm^2 % (при σ=295 МПа) МΠа 24,2-28,5 15,3-18,0 24,5-33,5 642-961 60 - 11812,0-13,5 12,2-27,3 99-139 20,1-36,6 716-735 16,0-16,7 118-131 9,3-17,4 16,5-20,2 13,0-25,0 696-737 111-247 8,7-20,0 12,6-16,8 708-731 123-241 11,5-13,5 19,0-18,5 22,1-26,8 706-716 109-118

713-750

694-713

Температура

второй ступени

отжига, °С

Без отжига

550

570

590

630

650

700

750

7,9-15,0

6,9-7,9

12,9-13,7

12,9-13,7

^{*} Указан интервал значений для трех плавок.

Таблица 3

Механические свойства* материала заготовок в зависимости от температуры первой ступени отжига

Режим термической обработки		$\sigma_{_{B}}^{20^{\circ}}$, M Π a	δ ψ		$\sigma_{_{\rm B}}^{600^{\circ}}$, M Π a	
	(T _{п.п} -20°С)+630°С	1142–1160	6,4–6,9	8,2-9,1	724–749	
	$(T_{\text{п.п}}\text{-}30^{\circ}\text{C})\text{+}630^{\circ}\text{C}$	1151–1162	6,7–7,8	8,7–10,3	708–728	
	$(T_{\text{п.п}}\text{-}40^{\circ}\text{C})\text{+}630^{\circ}\text{C}$	1149–1157	6,0-8,2	7,0-8,1	707–722	

^{*} Указан интервал значений для двух плавок 1 и 3.

Рис. 2. Влияние температуры первой ступени отжига на прочностные характеристики материала (температура отжига на второй ступени для обоих плавок 630°C)

Механические свойства в зависимости от температуры первой ступени отжига материала заготовок плавок I и 3 определены на шести образцах от каждой плавки (табл. 3).

По усредненным значениям результатов испытаний механических свойств построены зависимости, отражающие характер влияния режимов отжига на свойства сплава BT41. На рис. 2 показано влияние температуры первой ступени отжига на прочностные характеристики материала, на рис. 3 — температуры второй ступени отжига на механические свойства сплава BT41.

повышением температуры отжига $T_{\rm п.п}$ -40°С до $T_{\rm п.n}$ -20°С изменяется степень легирования твердых растворов α- и β-фаз. Одновременно с этим изменяются параметры глобулярнопластинчатой структуры (изменения микроструктуры описаны в работе [15]). Изменение структуры материала (увеличение объемной доли вторичной α-фазы с увеличением температуры термической обработки) приводит к некоторому повышению кратковременной прочности при повышенной температуре, не оказывая существенного влияния на кратковременную прочность при комнатной температуре. Наблюдаемое изменение характеристик пластичности в данном случае является нетипичным для большинства отечественных жаропрочных титановых сплавов, у которых со снижением температуры обработки наблюдается увеличение характеристик пластичности. Полученный характер влияния температуры отжига на характеристики пластичности может быть связан с перераспределением кремния по межфазным границам и началом выделения так называемых «высокотемпературных» силицидов. Ориентировочно температура сольвус силицидов титана в сплаве ВТ41 в зависимости от химического состава находится в интервале 970–990°С. Для того чтобы получить однозначные выводы по полученным результатам, требуется проведение более полного исследования с вовлечением значительного объема материала из разных промышленных плавок.

Режим отжига на второй ступени определяет степень упрочнения дисперсными интерметаллидными частицами – алюминидами и силицидами титана. С повышением температуры второй ступени отжига объемная доля выделений интерметаллидных фаз (т. е. степень дисперсионного упрочнения) увеличивается, при этом одновременно происходит разупрочнение кремнием твердых растворов α - и β -фаз. Поэтому значимость экспериментальных исследований для материала с определенными параметрами микроструктуры, свойственными конкретным исследуемым полуфабрикатам, сложно переоценить.

Как видно из данных рис. 3, наилучшее сочетание прочностных, пластических и жаропрочных характеристик достигается при температурах ~590°C, в то время как для прутков и лопаток с более мелкозернистой структурой наилучшее сочетание свойств получено при температурах

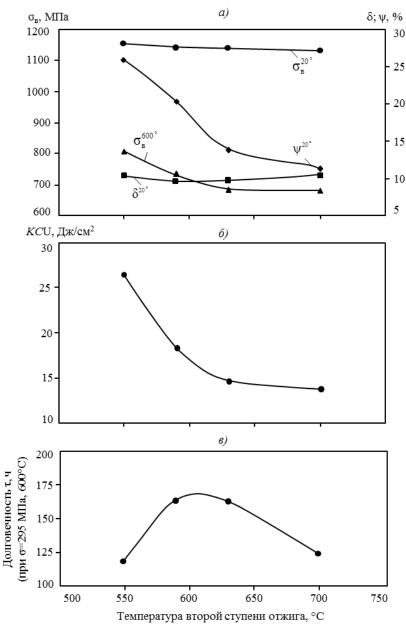


Рис. 3. Влияние температуры второй ступени отжига на прочностные характеристики материала

второй ступени отжига 615–630°С. Таким образом, для сплава BT41 с более крупным β-зерном для получения наилучшего комплекса механических свойств необходима меньшая степень дисперсионного упрочнения интерметаллидными фазами.

В данной работе авторы не касаются одного весьма важного фактора термической обработки, определяющего структурно-фазовое состояние крупных полуфабрикатов из титановых сплавов, — это фактические условия охлаждения, реализуемые в производственных условиях. Поэтому результаты работы следует отнести к лабораторным, однако они позволяют провести сравнительный анализ с ранее полученными результатами на

прутках и штамповках лопаток. Изучению влияния скоростей охлаждения на свойства, структуру и фазовый состав крупных поковок с мелкозернистой микроструктурой из сплава BT41 будут посвящены отдельные работы. Этот этап исследований позволит сформулировать окончательные рекомендации по режиму отжига поковок.

Заключения

Исследования показали, что величина дисперсионного упрочнения материала крупногабаритных поковок из сплава BT41 с глобулярнопластинчатой структурой, достигаемая при охлаждении на воздухе в лабораторных условиях термической обработки, составляет ~(4–8)% для

кратковременной прочности при 20°С и \sim (8–12)% – при температуре испытаний 600°С. Долговечность образцов, испытанных на длительную прочность при 600°С, увеличивается более значительно – в пределах \sim (65–90)%. Величина относительного удлинения δ^{20° при этом может снижаться – до \sim (1,3–2,6) раз в зависимости от температуры второй ступени отжига. Образование «низкотемпературных» силицидов титана при температуре отжига 550°С оказывает заметно более значимое влияние на упрочнение материала

по сравнению с α_2 -фазой. Достижение максимальных значений долговечности при испытаниях на длительную прочность возможно только при повышении температуры отжига, когда значительные области с частицами α_2 -фазы образуются не только в более легированной алюминием первичной α -фазе, но и во вторичной. Для материала в таком состоянии характерно одновременное снижение ударной вязкости и пластичности до 1,5–2 раз по сравнению с состоянием после обработки на твердый раствор.

ЛИТЕРАТУРА

- Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
- Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года // Авиационные материалы и технологии. 2012. №S. С. 7–17.
- Каблов Е.Н. Разработки ВИАМ для газотурбинных двигателей и установок // Крылья Родины. 2010. №4. С. 31–33.
- Каблов Е.Н. Материалы для изделия «Буран» инновационные решения формирования шестого технологического уклада // Авиационные материалы и технологии. 2013. №S1. С. 3–9.
- Орлов М.Р. Стратегические направления развития Испытательного центра ФГУП «ВИАМ» // Авиационные материалы и технологии. 2012. №S. С. 387–393.
- Хорев А.И., Белов С.П., Глазунов С.Г. Металловедение титана и его сплавов. М.: Металлургия, 1992. 352 с.
- 7. Павлова Т.В., Кашапов О.С., Кондратьева А.Р., Калашников В.С. Возможности по расширению области применения сплава ВТ8-1 для дисков и рабочих колес компрессора // Труды ВИАМ: электрон. науч.-технич. журн. 2016. №3 (39). Ст. 05. URL: http://www.viam-works.ru (дата обращения: 10.01.2017). DOI: 10.18577/2307-6046-2016-0-3-5-5.
- Савушкин А.Н., Кашапов О.С., Голынец С.А. Влияние скорости нагружения на механические свойства жаропрочных титановых сплавов // Труды ВИАМ: электрон. науч.-технич. журн. 2015. №3. Ст. 04. URL: http://www.viam-works.ru (дата обращения: 10.01.2017). DOI: 10.18577/2307-6046-2015-0-3-4-4.

- Калашников В.С., Кашапов О.С., Павлова Т.В., Истракова А.Р. Исследование сварных соединений сплава ВТ41, полученных методом ЭЛС // Авиационные материалы и технологии. 2014. №55. С. 81–88. DOI: 10.18577/2071-9140-2014-0-s5-81-88.
- Павлова Т.В., Кашапов О.С., Ночовная Н.А. Титановые сплавы для газотурбинных двигателей // Все материалы. Энциклопедический справочник. 2012. №5. С. 8–14.
- Кашапов О.С., Павлова Т.В., Ночовная Н.А. Влияние режимов термической обработки на структуру и свойства жаропрочного титанового сплава для лопаток КВД // Авиационные материалы и технологии. 2010. №2 (15). С. 8–14.
- 12. Кашапов О.С. Кинетика изменения микроструктуры прутковой лопаточной заготовки из сплава BT41 в зависимости от температурно-временных параметров термической обработки // Перспективные материалы. 2008. №5. С. 137.
- 13. Кашапов О.С., Павлова Т.В., Ночовная Н.А. Исследование термической стабильности сплава BT41 после различной термической обработки // Металловедение и термическая обработка металлов. 2010. №8. С. 30–34.
- 14. Кашапов О.С., Павлова Т.В. Исследование влияния параметров структуры полуфабрикатов из сплава ВТ41 на механические свойства // Вестник МГТУ им. Н.Э. Баумана. Сер.: Машиностроение. 2015. №2 (101). С. 138–145.
- Каблов Е.Н., Кашапов О.С., Павлова Т.В., Ночовная Н.А. Разработка опытно-промышленной технологии изготовления полуфабрикатов из псевдо-α-титанового сплава ВТ41 // Титан. 2016. №2 (52). С. 33–42.
- 16. Беляев М.С., Горбовец М.А., Кашапов О.С., Ходинев И.А. Механические свойства и структура титанового сплава ВТ41 // Цветные металлы. 2014. №8 (860). С. 66–71.