УДК 669.715'24

DOI: 10.18577/2071-9140-2014-0-2-21-26

O.A. Базылева l , Э.Г. Аргинбаева l

ВЛИЯНИЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА СТРУКТУРУ И ЖАРОПРОЧНОСТЬ РЕНИЙСОДЕРЖАЩЕГО ИНТЕРМЕТАЛЛИДНОГО СПЛАВА НА ОСНОВЕ НИКЕЛЯ*

Проведено исследование влияния режимов термической обработки на структуру и жаропрочность ренийсодержащего интерметаллидного сплава на основе никеля серии ВИН (ВИАМ, интерметаллидный никелевый).

Ключевые слова: интерметаллид Ni_3Al , микроструктура, монокристаллические образцы, кристаллографическая ориентация, термическая обработка, время до разрушения.

The effect of heat treatment on microstructure and high-temperature strength of rhenium containing intermetal-lic nickel-based alloy series VIN (VIAM, intermetallic, nickel) was study.

Keywords: intermetallic Ni₃Al, microstructure, single-crystal samples, crystallographic orientation, heat treatment, rupture life.

В настоящее время в развитии науки и технологий в области авиационного двигателестроения наиболее актуальными направлениями термодинамики авиационных газотурбинных двигателей (ГТД) являются:

- габаритно-массовые характеристики (снижение удельной массы, объема и габаритов авиационных двигателей);
- экологичность (снижение вредных выбросов в атмосферу путем повышения топливной экономичности);
- обеспечение полетов гиперзвуковых пилотируемых магистральных самолетов и многоразовых космических транспортных систем при соблюдении экологических требований.

Одним из приоритетов развития в области повышения прочности деталей ГТД как научного направления является создание высокотемпературных высокоресурсных лопаток.

Новое поколение ГТД невозможно без применения новых жаропрочных конструкционных материалов с рабочими температурами 1250°С и выше, пониженной плотностью и, желательно, пониженной стоимостью. Такими материалами являются сплавы на основе алюминида никеля Ni₃Al, которые при высокотемпературной эксплуатации имеют ряд преимуществ по сравнению с жаропрочными никелевыми сплавами (ЖНС), применяемыми серийно.

Интерметаллидные сплавы на основе Ni_3Al , содержащие до 90% (по массе) соединения Ni_3Al (γ' -фаза), отличаются от никелевых сплавов экономичным составом, пониженными значениями плотности (\sim 8000 кг/м 3) и высоким сопротивлени-

ем окислению [1–4]. Сплавы на основе интерметаллида имеют упорядоченную термостабильную структуру, которая сохраняется вплоть до температуры плавления, что и позволяет эксплуатировать эти сплавы при температурах на 100–150°С выше, чем ЖНС [5–11].

В ВИАМ разработаны новые интерметаллидные сплавы на основе никеля, в частности жаропрочный сплав ВИН2 [12–14]. Новый сплав имеет плотность на уровне плотности сплава ВИН1 (ВКНА-25) и повышенную (по сравнению с ВИН1) долговечность при температуре 1100°С и нагрузке 100 МПа.

Эффективность применения новых конструкционных материалов зависит от возможности их упрочнения при изготовлении деталей (например, выбора технологии литья, термической обработки), а также от разупрочнения сплавов в процессе наработки.

Таким образом, исследование влияния термической обработки на структуру и жаропрочность разработанного и паспортизованного интерметаллидного сплава ВИН2 является весьма актуальным.

Методика проведения исследований

Материалом для исследований являлись монокристаллические заготовки с КГО [111] из интерметаллидных сплавов ВИН1 и ВИН2 на основе системы Ni–Al–Ti–Cr–W–Мо–Со–Re (сплав ВИН2 дополнительно легирован танталом) [13, 14].

С помощью метода расчета химического состава интерметаллидных сплавов по правилу баланса легирования, разработанному Г.И. Морозовой [15], по электронной концентрации и атомной

¹ Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации [Federal state unitary enterprise «All-Russian scientific research institute of aviation materials» State research center of the Russian Federation] E-mail: admin@viam.ru

^{*} В работе принимали участие Ю.А. Бондаренко, Е.Ю. Туренко, А.В. Шестаков и Д.Г. Нефедов.

массе легирующих элементов, с учетом теоретической плотности выбраны химические составы интерметаллидных сплавов.

Изготовление шихтовых заготовок исследуемых сплавов проводилось методом вакуумной индукционной выплавки (ВИП) на установках типа VIM-50 [16], затем их переплавляли методом высокоградиентной направленной кристаллизации (ВГНК) на установках типа УВНС. Высокоградиентная направленная кристаллизация обеспечивает более высокий уровень механических свойств жаропрочных сплавов благодаря формированию однородной тонкодендритной структуры с меньшими дендритной ликвацией и пористостью [17-19]. Для получения монокристаллической структуры заданной кристаллографической использовали ориентации (КГО) вольфрамовые (Ni-W) затравки, имеющие, как и Ni₃Al, гранецентрированную кубическую решетку (ГЦК) и более высокую температуру плавления, чем у сплавов серии ВКНА и ВИН. Для дальнейших исследований использовали цилиндрические заготовки образцов интерметаллидных сплавов с монокристаллической структурой с КГО [111] и отклонением от КГО не более 10 град.

Монокристаллические заготовки сплавов ВИН1 и ВИН2 исследованы в литом состоянии и после термической обработки, а сплава ВИН2 – и после испытаний на длительную прочность на базе до 1000 ч.

Испытания на длительную прочность проводили на испытательных машинах типа ZST2/3-ВИЭТ в соответствии с требованиями ГОСТ 10145.

Микроструктуру образцов из интерметаллидных сплавов исследовали на оптическом микроскопе Olympus GX-51. Локальный химический анализ проводили в соответствии с методическими материалами на микроскопе Superprobe-733.

Результаты эксперимента и их обсуждение

При получении монокристаллов из жаропрочных никелевых и интерметаллидных на основе никеля сплавов методом направленной кристаллизации в отливке возникает химическая и структурная неоднородность, обусловленная микроликвацией легирующих элементов в пределах дендритной ячейки (рис. 1) [20].

Микроструктура интерметаллидных сплавов в литом состоянии — дендритно-ячеистая и гетерофазная: $(\gamma'+\gamma)$ -фаза в осях дендритов и γ' -фаза+фаза с повышенным содержанием Al на подложке γ' -фазы, окруженной тонкими пластинами γ -фазы, — в межосном пространстве.

Количественное соотношение фаз в рассматриваемых интерметаллидных сплавах в литом состоянии представлено в табл. 1. Так, сплав ВИН1 содержит \sim 88–90% (объемн.) γ '-фазы, 5–8% (объемн.) γ -фазы и \sim 3–5% (объемн.) фазы с повышенным содержанием A1; сплав ВИН2: \sim 88–90% (объемн.) γ '-фазы, 5–6% (объемн.) γ -фазы и \sim 6–

8% (объемн.) фазы с повышенным содержанием алюминия. Такое фазовое соотношение является следствием ликвационной неоднородности легирующих элементов, свойственной природе кристаллизации интерметаллидных сплавов [21, 22].

Закономерности процесса возникновения микроликвации легирующих элементов в пределах дендритной ячейки определяются влиянием легирующих элементов на температуры солидус и ликвидус на диаграммах состояния. Легирующий элемент, повышающий температуру солидус, обогащает оси дендритов, в противном случае он концентрируется в междендритных областях, т. е. характер дендритной ликвации остается таким же, как и в бинарных сплавах на основе никеля.

Наиболее сильно ликвирующими элементами являются рений, вольфрам, алюминий, тантал и титан: рений и вольфрам — сегрегируют в осях дендритов, а тантал, алюминий и титан — обогащают междендритные области. Высокая склонность к ликвации рения и вольфрама, которая не устраняется полностью даже при длительной высокотемпературной гомогенизации из-за низкой диффузионной подвижности этих металлов, является одной из причин образования в монокристаллах жаропрочных никелевых сплавов топологически плотноупакованных (ТПУ) фаз.

Анализ микроструктур рассматриваемых интерметаллидных сплавов и их химических составов позволяет заметить, что ликвационная неоднородность в сплаве ВИН2, имеющем повышенное по сравнению со сплавом ВИН1 содержание рения, выражена ярче, чем в сплаве ВИН1. Это подтверждают и результаты локального химического анализа (табл. 2). Полученные результаты подтолкнули к поиску режима термической обработки, уменьшающего ликвацию химических элементов и дендритную ликвацию и позволяющего стабилизировать значения жаропрочности сплава при высоких температурах [23, 24].

Отработанный ранее на интерметаллидном сплаве ВИН1 режим термической обработки для снятия остаточных напряжений после механической обработки не приводит к изменениям микроструктуры и значений долговечности в высоколегированном сплаве ВИН2.

Знание температур фазовых превращений позволяет провести термическую обработку с полной гомогенизацией у-твердого раствора без риска оплавления междендритных областей.

Исследовали режимы гомогенизирующего отжига сплава ВИН2 в интервале температур термической обработки (ТО) на твердый раствор: $\Delta T_{\text{TO}} = (T_S \div T_{\gamma})^{\circ} \text{C}$, где T_S — температура солидус; $T_{\gamma'}$ — температура полного растворения вторичной γ' -фазы в γ' -твердом растворе. Продолжительность отжига: 2; 5 и 10 ч.

Микроструктурный анализ показал, что гомогенизирующий отжиг приводит к следующим изменениям фазового состава сплава ВИН2: в

Таблица 1

Фазовый состав интерметаллидных сплавов

Сплав	Содержание, % (объемн.)					
	ү'-фазы	ү-фазы	фазы с повышенным содержанием Al			
ВИН1	88–90	5–8	3–5			
ВИН2	88-90	5–6	6–8			

Таблица 2 Количественный анализ интерметаллидных сплавов ВИН1 и ВИН2

Состояние	Коэффициент ликвации $K_{ni}^{oldsymbol{*}}$							
	Al	Ti	Cr	Co	Mo	Та	W	Re
	C	плав ВИІ	H1					
Литое+ТО для снятия напряжений после	0,9	0,5	0,9	1,1	0,8	_	1,7	2,2
механической обработки								
	C	плав ВИІ	H2					
Литое+ТО для снятия напряжений после	0,7	0,4	1,2	1,3	1,1	0,8	2,1	3,1
механической обработки								
Литое+гомогенизирующий								
отжиг при $(T_S \div T_{\gamma'})^{\circ}$ С в течение, ч:								
2	0,9	0,7	0,9	1,0	0,9	0,8	1,4	2,7
5	0,9	1,0	1,0	1,0	1,0	0,9	1,2	1,4
10	1,0	1,0	1,0	1,0	1,0	0,9	1,0	1,3

 $[*]K_{ni}=C_{ni}/C_{M/ni}$, где C_{ni} и $C_{M/ni}$ – содержание i-го элемента в осях дендритов и межосном пространстве соответственно.

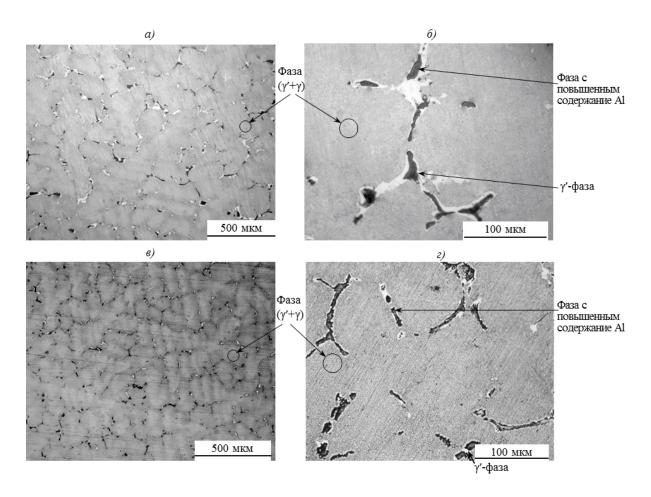


Рис. 1. Микроструктура $(a, \varepsilon - \times 100; \delta, \varepsilon - \times 500)$ монокристаллической заготовки с КГО [111] сплавов ВИН1 (a, δ) и ВИН2 $(\varepsilon, \varepsilon)$

 Таблица 3

 Результаты испытаний интерметаллидных сплавов ВИН1 и ВИН2

Сплав	Состояние	τ ^{1100°} _{σ=100 МПа, ч}
ВИН1	Литое+TO для снятия напряжений после механической обработки	450–500
ВИН2	Литое+TO для снятия напряжений после механической обработки	600–740
	Литое+гомогенизирующий отжиг при $(T_S \div T_\gamma)^{\circ}$ С в течение, ч:	
	2	650-800
	5	850-1100
	10	815–900

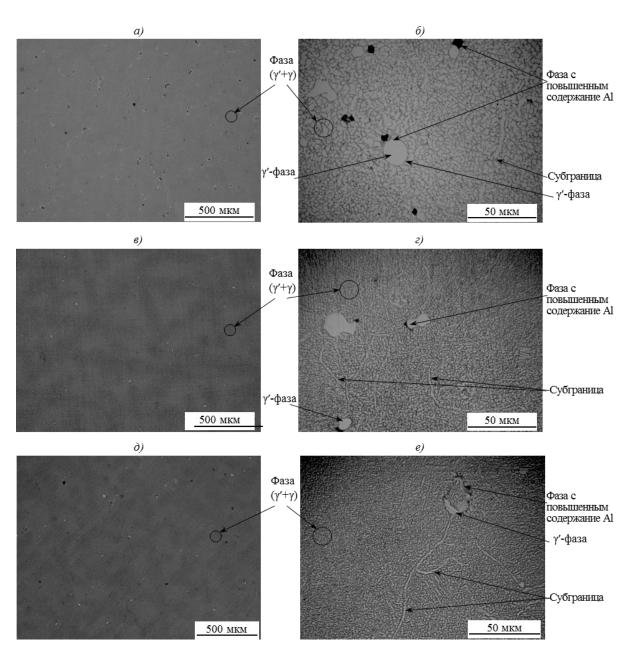


Рис. 2. Микроструктура (a, a, a – ×100; a, a, a – ×1000) сплава ВИН2 после термической обработки в течение 2 (a, a), 5 (a, a) и 10 ч (a, a)

межосных областях произошло частичное растворение фазы с повышенным содержанием алюминия, первичные выделения γ' -фазы стали округлыми благодаря снижению поверхностной энергии; в осях дендритов в прослойках γ -фазы дополнительно выделяется вторичная γ' -фаза и наблюдаются субграницы зерен (рис. 2).

По результатам анализа микроструктуры сделан предварительный вывод о том, что отжиг в течение 5 и 10 ч в интервале температур $(T_S \div T_\gamma)^\circ \mathrm{C}$ значительно снижает дендритную ликвацию и обеспечивает выравнивание химического состава в осях дендритов и междендритных областях (см. табл. 2).

Термически обработанные образцы сплавов ВИН1 и ВИН2 испытаны при растяжении при температуре 1100°С и нагрузке 100 МПа. Результаты испытаний приведены в табл. 3.

Исследование показало, что повышение содержания рения в интерметаллидном сплаве — при переходе от сплава ВИН1 к сплаву ВИН2 — позволило увеличить время до разрушения на \sim 20%. Отжиг в интервале температур $(T_S \div T_{\gamma'})^{\circ}$ С в течение 2 ч является недостаточным для протекания диффузионных процессов, обеспечивающих уменьшение ликвационной неоднородности, и приводит лишь к незначительному увеличению времени до разрушения. Отжиг в течение 5 и 10 ч позволил добиться увеличения долговечности при 1100° С — до 1000 ч.

При выборе режима ТО решено остановиться

на втором варианте (отжиг в течение 5 ч), поскольку он требует меньших энергетических и трудовых затрат и при этом достигаются оптимальные значения долговечности.

После испытания образцов интерметаллидных сплавов ВИН1 и ВИН2 на длительную прочность коэффициенты ликвации вольфрама, рения, алюминия и титана (в сравнении с аналогичными значениями для сплавов после термической обработки) практически не изменились и составили: K_{Re} =1,4; K_{W} =1,0; K_{Al} =0,9; K_{Ti} =0,9. Это показывает, что выбранный режим термической обработки сплава ВИН2 обеспечивает полноту протекания диффузионных процессов, связанных с устранением ликвационной неоднородности.

Таким образом, в результате исследования влияния термической обработки на структуру монокристаллических отливок сплавов на основе γ '-Ni₃Al типа BKHA-25 (ВИН1 и ВИН2) установлено, что термическая обработка при температурах в интервале ($T_S \div T_{\gamma'}$)°С в течение 5–10 ч является достаточной для протекания диффузионных процессов, обеспечивающих уменьшение дендритной ликвации, характерной для литых сплавов.

Структурно-фазовые превращения, происходящие при снижении дендритной ликвации в процессе указанной термической обработки, обеспечили повышение долговечности сплавов в ~1,5 раза (до 850–1100 ч) при испытаниях на длительную прочность при температуре 1100°С и напряжении 100 МПа.

ЛИТЕРАТУРА

- 1. Оспенникова О.Г. Стратегия развития жаропрочных сплавов и сталей специального назначения, защитных и теплозащитных покрытий //Авиационные материалы и технологии. 2012. №S. С. 19–36.
- 2. Структура и свойства интерметаллидных материалов с нанофазным упрочнением /Под ред. Е.Н. Каблова, Ю.Р. Колобова. М.: МИСиС. 2008. 328 с.
- 3. Гринберг Б.А., Иванов М.А. Интерметаллиды Ni₃Al и TiAl: микроструктура, деформационное поведение. Екатеринбург: УрО РАН. 2002. 359 с.
- Поварова К.Б., Бунтушкин В.П., Казанская Н.К., Дроздов А.А., Базылева О.А. Особолегкие жаропрочные наноструктурированные сплавы на основе Ni₃Al для авиационного двигателестроения и энергетического машиностроения //Вопросы материаловедения. 2008. №2(54). С. 85–93.
- Каблов Е.Н.. Петрушин Н.В., Светлов И.Л., Демонис И.М. Никелевые литейные жаропрочные сплавы нового поколения //Авиационные материалы и технологии. 2012. №S. С. 36–51.
- 6. Каблов Е.Н., Петрушин Н.В., Бронфин М.Б., Алексеев А.А. Особенности монокристаллических жаропрочных никелевых сплавов, легированных рением //Металлы. 2006. №5. С. 47–57.

- 7. Базылева О.А., Поварова К.Б., Казанская Н.К., Дроздов А.А. Литейные сплавы на основе Ni₃Al и способ их выплавки //Заготовительные производства в машиностроении. 2010. №1. С. 29–35.
- Поварова К.Б., Базылева О.А., Казанская Н.К., Дроздов А.А. и др. Конструкционные жаропрочные сплавы на основе Ni₃Al: получение, структура и свойства //Материаловедение. 2011. №4. С. 39–48.
- 9. Каблов Е.Н., Оспенникова О.Г., Базылева О.А. Материалы для высокотеплонагруженных деталей газотурбинных двигателей //Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2011. №SP2. С. 13–19.
- Базылева О.А., Аргинбаева Э.Г., Туренко Е.Ю. Жаропрочные литейные интерметаллидные сплавы //Авиационные материалы и технологии. 2012. №S. С. 57–60.
- Базылева О.А., Аргинбаева Э.Г., Туренко Е.Ю. Высокотемпературные интерметаллидные сплавы для деталей ГТД //Авиационные материалы и технологии. 2013. №3. С. 26–31.
- 12. Петрушин Н.В., Чабина Е.Б., Назаркин Р.М. Конструирование жаропрочных интерметаллидных сплавов на основе γ'-фазы с высокой температурой плавления. Часть 1 //МиТОМ. 2012. №3. С. 20–23.

- Сплав на основе интерметаллида Ni₃Al и изделие, выполненное из него: пат. 2256716 Рос. Федерация; опубл. 20.07.2005.
- Сплав на основе интерметаллида Ni₃Al: пат. 2434067 Рос. Федерация; опубл. 20.11.2011.
- Морозова Г.И. Компенсация дисбаланса легирования жаропрочных никелевых сплавов //МиТОМ. 2012. №12. С. 52–58.
- 16. Каблов Е.Н., Сидоров В.В., Каблов Д.Е., Ригин В.Е., Горюнов А.В. Современные технологии получения прутковых заготовок из литейных жаропрочных сплавов нового поколения //Авиационные материалы и технологии. 2012. № S. C. 97–105.
- 17. Каблов Е.Н., Бондаренко Ю.А., Каблов Д.Е. Особенности структуры и жаропрочных свойств монокристаллов <001> высокорениевого никелевого жаропрочного сплава, полученного в условиях высокоградиентной направленной кристаллизации //Авиационные материалы и технологии. 2011. №4. С. 25–31.
- 18. Каблов Е.Н., Бондаренко Ю.А., Ечин А.Б., Сурова В.А. Развитие процесса направленной кристаллизации лопаток ГТД из жаропрочных сплавов с монокристаллической и композиционной структурой //Авиационные материалы и технологии. 2012. №1. С. 3–8.
- 19. Базылева О.А., Аргинбаева Э.Г., Колодочкина В.Г., Хвацкий К.К. Влияние кристаллографической ори-

- ентации на структуру и физико-механические свойства интерметаллидного сплава на основе Ni_3Al //Авиационные материалы и технологии. 2013. №2. С. 3–7.
- Базылева О.А., Горюнов А.В., Загвоздкина Т.Н., Нефедов Д.Г. Исследование ликвационной неоднородности сплава ВКНА-4У МОНО и ее влияния на свойства //Литейное производство. 2012. №6. С. 18–21.
- Аргинбаева Э.Г., Базылева О.А. Особенности фазового состава жаропрочных сплавов на основе интерметаллида Ni₃Al /B сб. материалов IX Российской ежегодной конф. молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов». М. 2012. С. 24–25.
- 22. Аргинбаева Э.Г., Базылева О.А. Исследование структуры и физико-механических свойств интерметаллидных никелевых сплавов //Авиационные материалы и технологии. 2013. № 4. С. 14–19.
- 23. Оспенникова О.Г., Калицев В.А., Евгенов А.Г., Базылева О.А. Совмещение процессов ГИП и термической обработки поликристаллических отливок из сплава на основе Ni₃Al //Вестник МГТУ им. Н.Э. Баумана. Сер. «Машиностроение.» 2011. №SP2. С. 88–97.
- 24. Ping Li, Shu-suo Li, Ya-fang Han. Influence of solution heat treatment on microstructure and stress rupture properties of a Ni₃Al base single crystal superalloy IC6SX //Intermetallics. 2011. №19. P. 182–186.