B.B. $Maxcudoe^{l}$, H.И. $Koлoбнее^{l}$, C.A. $Kapumoea^{l}$, C.B. $Coumheea^{l}$

ВЗАИМОСВЯЗЬ СТРУКТУРЫ И КОРРОЗИОННОЙ СТОЙКОСТИ В СПЛАВЕ 1370 СИСТЕМЫ Al-Mg-Si-Cu-Zn*

Проанализированы возможные пути снижения склонности к МКК и в результате проведенных исследований, выполненных на листах и плитах из сплава 1370, установлены некоторые закономерности: склонность к межкристаллитной коррозии снижается при увеличении соотношения Mg к Si, при уменьшении ширины приграничной зоны, свободной от выделений, и плотности выделений на границах зерен в результате применения ступенчатых режимов старения.

Ключевые слова: система Al–Mg–Si–Cu, сплав 1370, структура, межкристаллитная коррозия, зоны, свободные от выделений, многоступенчатое старение.

V.V. Makhsidov¹, N.I. Kolobnev¹, S.A. Karimova¹, S.B. Sbitneva¹

INTERRELATION BETWEEN THE STRUCTURE AND CORROSION RESISTANCE IN 1370 ALLOY OF Al-Mg-Si-Cu-Zn SYSTEM

The possible ways of decreasing the intercrystalline corrosion susceptibility (ICS) were analyzed and as a result of the performed studies with the use of 1370 sheets and plates some regularities were established: ICS is reduced with the increase of the relation between Mg and Si and the decrease of the near-frontier precipitation free zone width and the precipitation density at the grain boundaries as a result of using the step-by-step ageing conditions.

Key words: Al-Mg-Si-Cu system, 1370 alloys, structure, intercrystalline corrosion, precipitation-free zone, multistage ageing.

Высокотехнологичные сплавы средней прочности системы Al–Mg–Si обладают хорошим сопротивлением общей коррозии и практически не чувствительны к коррозионному растрескиванию. Однако эти сплавы проявляют склонность к межкристаллитной коррозии (МКК) в искусственно состаренном состоянии. Для увеличения прочностных характеристик некоторые сплавы дополнительно легируют Си в небольшом количестве. Сплавы системы Al–Mg–Si–Cu применяются для элементов обшивки фюзеляжа и внутреннего набора планера самолета. Для перспективных сплавов авиационного назначения 1370, 6013 и 6056 с содержанием меди до 1% (по массе) проблема снижения склонности к МКК стоит наиболее остро.

В сплавах системы Al–Mg–Si–Cu после искусственного старения в приграничной области, как правило, наблюдаются зоны, свободные от выделений (3СВ), выраженные в большей или меньшей степени. В работах [1, 2] приведен электрохимический механизм МКК для сплава системы Al–Mg–Si–Cu и показано, что катодом является тело зерна, а анодом – его приграничная зона. Из электрохимии также известно, что в зависимости от величины тока между микрогальваническими парами происходит растворение анода, т. е. растворение материала из области границы зерна. Данное обстоятельство приводит к развитию МКК. На ширину 3СВ можно влиять режимами термической и термомеханической обработки.

¹ Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации [Federal state unitary enterprise «All-Russian scientific research institute of aviation materials» State research center of the Russian Federation] E-mail: admin@viam.ru

^{*} Авторы выражают благодарность С.В. Самохвалову, В.И. Попову, В.Н. Головиной, М.Г. Курс (ФГУП «ВИАМ») за помощь при подготовке данного материала.

Для сплавов системы Al–Mg–Si–Cu для снижения склонности полуфабрикатов к МКК применяют: дополнительное легирование сплава, оптимизацию его состава в пределах стандарта на химический состав, режимы перестаривания и низкотемпературной термомеханической обработки (HTMO) [1–6].

В данной работе исследовалось влияние ширины зон, свободных от выделений, и соотношения Mg/Si на коррозионную стойкость (МКК и РСК) листов и плит из сплава 1370 системы Al–Mg–Si–Cu–Zn, а также режимов HTMO и старения на ширину 3СВ.

Методика проведения исследования

Исследования проводили на промышленных плитах толщиной 20 мм и листах толщиной 1,2 мм из сплава 1370 с химическими составами, отличающимися по содержанию Mg и Si и содержащих \sim 1% (по массе) Cu (табл. 1). Листы и плиты изготовляли в промышленных условиях OAO «КУМЗ». Исследование 3CB проводили на плитах состава I, влияние соотношения Mg/Si — на плитах и листах составов I—3.

Соотношение Mg/Si в сплавах 1370 и 6056

Таблица 1

Условный номер состава	Соотношение Mg/Si
1	0,89
2	1,22
3	1,59
Сплав 6056 [7]	0,93

НТМО плит осуществлялась по следующей технологической схеме. Горячекатаные плиты закаливали (после нагрева в воздушной электрической печи) при температурах 530 и 547°С с последующим охлаждением в холодной воде. После закалки проводили правку плит растяжением с остаточной степенью деформации ε =2%, а затем холодную деформацию по двум схемам с различным видом деформации: растяжением с ε =15% и прокаткой с ε =20%. Искусственное старение проводили по одно- и многоступенчатым режимам: 180°С, 10 ч (Т1); А и Б (табл. 2).

Холоднокатаные листы закаливали (после нагрева в ванне с селитрой) при температуре 530°C с последующим охлаждением в воде. После закалки проводили правку и старение по режиму 180°C, 8 ч (Т1).

Таблица 2

Режимы старения плит

1 CARINIDI CI APCILINI						
Режим старения	Температура старения, °С, ступеней					
	1	2	3			
Т1: 180°С, 10 ч	180	_	_			
A: 180°C+ <i>T</i> ₂ * (<i>T</i> ₂ <180°C)	180	T_2	_			
E: T_1*+180 °C+ T_3* ($T_1<180$ °C, $T_3<180$ °C)	T_1	180	T_3			

 $[*]T_1, T_2, T_3$ – температуры старения на первой, второй и третьей ступенях соответственно.

Механические свойства плит определяли на круглых образцах, вырезанных поперек направления прокатки (по ГОСТ 1497). Испытания на МКК проводились (по ГОСТ 9.021) в растворе 2, на расслаивающую коррозию (РСК; ГОСТ 9.904–82) – также в растворе 2. Микроструктуру плит исследовали на шлифах, вырезанных вдоль направления прокатки по толщине, после анодного оксидирования. Размер зерна определяли вдоль направления прокатки по длине (Д) и высоте (В). Электронномикроскопические исследования проводили на образцах, вырезанных из плиты на расстоянии 1–3 мм от катаной поверхности.

Результаты влияния различных режимов HTMO плит на ширину 3CB и свойства приведены в табл. 3. Микроструктура приповерхностного слоя плит приведена на рис. 1. В закаленном с температуры 530°C и правленом состоянии, т. е. без HTMO, размер зер-

на (Д×В) составляет (105–125)×(30–40) мкм. В случае применения НТМО с деформацией растяжением с ϵ =15% размер зерна – (170–190)×(30–40) мкм, в случае деформации прокаткой с ϵ =20% – (120–140)×(15–25) мкм. При закалке плиты с температуры 547°С и с последующим растяжением с ϵ =15% размер зерна составляет (150–170)×(30–40) мкм, в случае деформации прокаткой с ϵ =20% – (140–160)×(20–30) мкм. Повышенные прочностные свойства плит с НТМО связаны с увеличением плотности и уменьшением размера упрочняющих выделений β ′- и Q_1 ′-фаз в теле и по границам зерна [8]. С повышением температуры нагрева под закалку с 530 до 547°С прочностные свойства также увеличиваются, что связано с увеличением степени пересыщения твердого раствора.

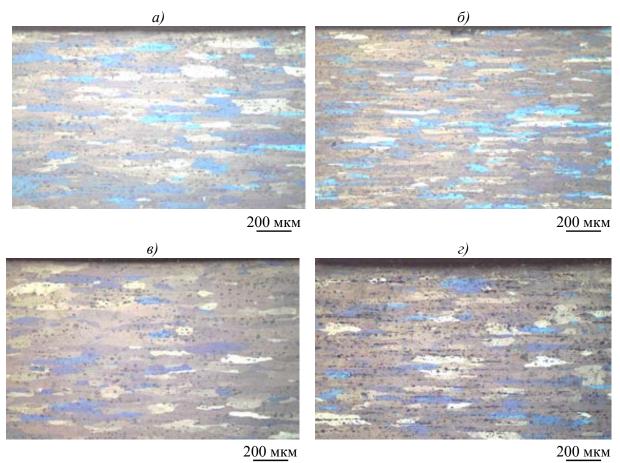


Рис. 1. Микроструктура плит из сплава 1370 с HTMO: a — закалка с 530°C+растяжение с ε =15%; δ — закалка с 530°C+прокатка с ε =20%; δ — закалка с 547°C+растяжение с ε =15%; ε — закалка с 547°C+прокатка с ε =20%

Таблица 3
Влияние вида деформации между закалкой и старением
на механические и коррозионные свойства плит из сплава 1370

на механические и коррозионные своиства плит из сплава 1570					
Свойства	Значения свойств при температуре закалки, °С				
	без НТМО	53	30	547	
	(исходное состояние)	растяжение	прокатка	растяжение	прокатка
		(ε=15%)	(ε=20%)	(ε=15%)	(ε=20%)
σ _в , МПа	410	430	445	445	450
σ _{0,2} , ΜΠα	385	400	425	420	430
δ, %	12,5	11	12	10,5	8
Глубина МКК*, мм	0,20/0,14	0,13/0,07	0,08/0,04	0,08/0,04	0,05/0,04
РСК*, балл	3/3	3/4	3/3	3/4	3/4
Ширина ЗСВ, нм	_	100	60	45	30

^{*} Катаная/фрезерованная на $\frac{1}{2}$ толщины поверхность плиты.

При исследовании влияния НТМО на склонность плит к МКК было выявлено, что глубина поражений МКК уменьшается вместе с шириной ЗСВ. На катаной поверхности наибольшей глубиной поражений МКК (0,13 мм) обладают плиты с шириной ЗСВ 100 нм, наименьшей (0,05 мм) — с шириной ЗСВ 30 нм (рис. 2 и 3). Влияние ширины ЗСВ на расслаивающую коррозию плит при исследованных режимах НТМО не выявлено.

Для оценки влияния режима старения на глубину поражений МКК, расслаивающую коррозию и ширину 3СВ использовали образцы, изготовленные из плиты, закаленной с температуры 547° С и деформированной растяжением с $\epsilon=15\%$. В случае приме-

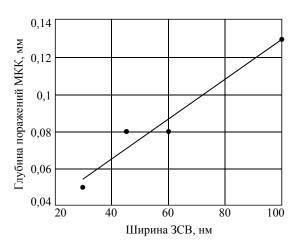


Рис. 2. Влияние ширины 3CB на глубину поражений МКК катаной поверхности плиты с HTMO из сплава 1370

нения многоступенчатого режима старения глубина поражений МКК уменьшается по сравнению с одноступенчатым (табл. 4). Ширина ЗСВ при применении многоступенчатого режима старения также уменьшается по сравнению с одноступенчатым.

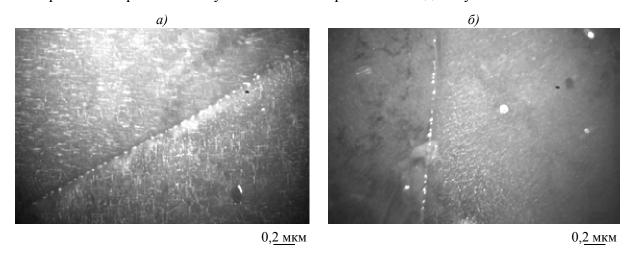


Рис. 3. Темнопольное изображение границы зерна в плите из сплава 1370 с выделениями $\beta'+Q_1'$ -фаз в образце с шириной 3CB: 30 (*a*) и 100 нм (δ)

Tаблица 4 Механические и коррозионные свойства, ширина 3CB в плите из сплава 1370 с HTMO (деформация растяжением с ϵ =15%), состаренной по различным режимам

Режим старения	$\sigma_{\scriptscriptstyle B}$	$\sigma_{0,2}$	δ,	Глубина	PCK*,	Ширина
(см. табл. 2)	МПа		%	МКК*, мм	балл	ЗСВ, нм
Одноступенчатый Т1	445	420	10,5	0,08/0,04	3/4	45
(180°С, 10 ч)						
Двухступенчатый А	440	420	11,0	0,07/0,04	3/4	40
Трехступенчатый Б	440	420	8,0	0,05/Нет	3/4	35

^{*} Катаная/фрезерованная на ½ толщины поверхность плиты.

В результате многоступенчатого искусственного старения по сравнению с одноступенчатым увеличивается плотность и дисперсность упрочняющих выделений β' - и Q_1' -фаз в теле зерна (рис. 4). НТМО плит из сплава 1370, включающая многоступенча-

тый режим старения (Б), обеспечивает глубину МКК не более 0,10 мм при сохранении высоких прочностных характеристик ($\sigma_{\rm B}$ =440 МПа, $\sigma_{0,2}$ =420 МПа, δ =8,0% при глубине МКК: 0,05 мм) [9]. При исследованных режимах старения ширина 3СВ практически не влияет на склонность к расслаивающей коррозии плит.

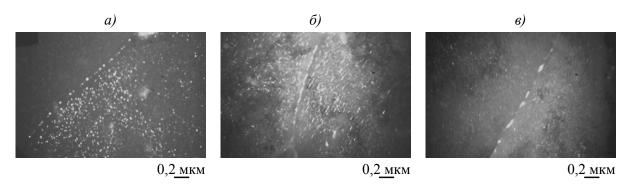


Рис. 4. Участки границ зерен в плитах из сплава 1370 с HTMO, состаренных по режимам (см. табл. 2) T1 (a), A (δ) и Б (ϵ)

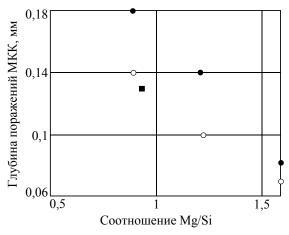


Рис. 5. Влияние соотношения Mg/Si в сплаве 1370 на глубину поражений МКК листов (\bullet) и плит (\circ) в состоянии T1 (\blacksquare – листы из сплава 6056-T6)

С целью проверки влияния соотношения Mg/Si на глубину поражений МКК были исследованы листы и плиты из сплава 1370 с химическим составом *I—3* (см. табл. 1), термообработанные по режиму Т1. Наблюдается закономерность уменьшения глубины поражений МКК как в листах, так и в плитах до уровня 0,07 мм с увеличением соотношения Mg/Si в интервале 0,89—1,59 (рис. 5). Для сравнения на графике указана глубина МКК для листов зарубежного сплава 6056 в состоянии Т6 [4].

Показано, что глубина поражений МКК в катаных полуфабрикатах из сплава 1370 уменьшается вместе с шириной ЗСВ. На ширину ЗСВ оказывает влияние как НТМО, так и многоступенчатые режимы старения.

С увеличением соотношения Mg/Si в интервале 0,89–1,59 в катаных полуфабрикатах из сплава 1370 выявлено уменьшение глубины поражений МКК в два раза.

Многоступенчатое старение уменьшает склонность к МКК и обеспечивает высокие прочностные свойства.

ЛИТЕРАТУРА

- 1. Yamaguchi K., Tohma K. Effect of Zn addition on intergranular corrosion resistance of Al–Mg–Si–Cu alloys» /Proceedings of 6-th International Conference on Aluminium Alloys (Japan). The Japan Institute of Light Metals. 1998. V. 3. P. 1657–1662.
- 2. Dif R., Bechet D., Warner T., Ribes H. 6056T78: a corrosion resistant copper-rich 6XXX alloy for aerospace applications /Proceedings of 6-th International Conference on Aluminium Alloys (Japan). The Japan Institute of Light Metals. 1998. V. 3. P. 1991–1996.
- 3. Махсидов В.В., Самохвалов С.В., Колобнев Н.И., Попов В.И., Савенок М.Г. Влияние деформации после закалки и режимов старения на склонность к межкристаллитной коррозии сплавов системы Al–Mg–Si–Cu /Сб. науч. трудов Международной науч.-технич.

- конф. «Современные проблемы металловедения сплавов цветных металлов». М.: МИСиС. 2009. 462 с.
- 4. Dif R., Bès B., Ehrström J.C., Sigli C., Warner T.J., Lassince Ph., Ribes H. Understanding and modelling the mechanical and corrosion properties of 6056 for aerospace applications /Proceedings of 7-th International Conference on Aluminium Alloys (Virginia USA). Trans Tech Publications Ltd. 2000. V. 1. P. 1613–1618.
- 5. Структура и механические свойства металлов и сплавов. Свердловск: Наука. 1975. С. 77–89.
- 6. Бернштейн М.Л. Термомеханическая обработка металлов и сплавов. Т. 1. М.: Металлургия. 1968. С. 329–343.
- 7. Guillaumin V., Mankowski G. Corrosion bahaviour of 2024 T351 and 6056 T6 aluminium alloys in chloride solution /Proceedings of 6-th International Conference on Aluminium Alloys (Japan). The Japan Institute of Light Metals. 1998. V. 3. P. 1663–1668.
- 8. Alekseev A., Ermolova M., Kolobnev N. Diffusive paths in 6013 (AD37) alloys under a single and double ageing /Proceedings of 8-th International Conference on Aluminium Alloys (UK). Trans Tech Publications Ltd. 2002. V. 2. P. 1181–1186.
- 9. Kolobnev N.I., Makhsidov V.V., Samokhvalov S.V., Sbitneva S.V., Popov V.I., Kurs M.G. An Effect of Deformation After Quenching and Heat Treatment on Mechanical and Corrosion Properties of Al–Mg–Si–Cu–Zn Alloy /Proceedings of 12-th International Conference on Aluminium Alloys (Japan). The Japan Institute of Light Metals. 2010. P. 1113–1116.

REFERENCES LIST

- 1. Yamaguchi K., Tohma K. Effect of Zn addition on intergranular corrosion resistance of Al–Mg–Si–Cu alloys» /Proceedings of 6-th International Conference on Aluminium Alloys (Japan). The Japan Institute of Light Metals. 1998. V. 3. P. 1657–1662.
- 2. Dif R., Bechet D., Warner T., Ribes H. 6056T78: a corrosion resistant copper-rich 6XXX alloy for aerospace applications /Proceedings of 6-th International Conference on Aluminium Alloys (Japan). The Japan Institute of Light Metals. 1998. V. 3. P. 1991–1996.
- 3. Mahsidov V.V., Samohvalov S.V., Kolobnev N.I., Popov V.I., Savenok M.G. Vlijanie deformacii posle zakalki i rezhimov starenija na sklonnost' k mezhkristallitnoj korrozii splavov sistemy Al-Mg-Si-Cu [Effect of deformation after quenching and aging regimes susceptibility to intergranular corrosion of alloys of the Al-Mg-Si-Cu] /Sb. nauch. trudov mezhdunarodnoj nauch.-tehnich. konf. «Sovremennye problemy metallovedenija splavov cvetnyh metallov». M.: MISiS. 2009. 462 s.
- 4. Dif R., Bès B., Ehrström J.C., Sigli C., Warner T.J., Lassince Ph., Ribes H. Understanding and modelling the mechanical and corrosion properties of 6056 for aerospace applications /Proceedings of 7-th International Conference on Aluminium Alloys (Virginia USA). Trans Tech Publications Ltd. 2000. V. 1. P. 1613–1618.
- 5. Struktura i mehanicheskie svojstva metallov i splavov [Structure and mechanical properties of metals and alloys]. Sverdlovsk: Nauka. 1975. S. 77–89.
- 6. Bernshtejn M.L. Termomehanicheskaja obrabotka metallov i splavov [Thermomechanical processing of metals and alloys]. T. 1. M.: Me-tallurgija. 1968. S. 329–343.
- 7. Guillaumin V., Mankowski G. Corrosion bahaviour of 2024 T351 and 6056 T6 aluminium alloys in chloride solution /Proceedings of 6-th International Conference on Aluminium Alloys (Japan). The Japan Institute of Light Metals. 1998. V. 3. P. 1663–1668.
- 8. Alekseev A., Ermolova M., Kolobnev N. Diffusive paths in 6013 (AD37) alloys under a single and double ageing /Proceedings of 8-th International Conference on Aluminium Alloys (UK). Trans Tech Publications Ltd. 2002. V. 2. P. 1181–1186.
- 9. Kolobnev N.I., Makhsidov V.V., Samokhvalov S.V., Sbitneva S.V., Popov V.I., Kurs M.G. An Effect of Deformation After Quenching and Heat Treatment on Mechanical and Corrosion Properties of Al–Mg–Si–Cu–Zn Alloy /Proceedings of 12-th International Conference on Aluminium Alloys (Japan). The Japan Institute of Light Metals. 2010. P. 1113–1116.