При испытаниях на воздухе с понижением частоты нагружения до 0,03 Гц скорость роста трещины усталости возрастает как для сплава 1424-БТГ1, так и для сплава 2024-АТ, при этом сохраняется преимущество сплава 1424-БТГ1. Испытания в коррозионной среде продемонстрировали преимущество сплава 2024-АТ.

Испытания на воздухе для коррозионностойких сплавов 1424-БТГ1, 1370-Т1 и 1913-БТЗ выявили тенденцию к некоторому росту СРТУ при снижении частоты нагружения, особенно при высоких значениях ΔK .

Сплавы 1370, 1913 и 1441 мало чувствительны к коррозионной среде как при высоких, так и при низких частотах нагружения в интервале значений коэффициента интенсивности напряжений 21,4–30,9 МПа \sqrt{M} .

При испытании с частотой нагружения 0,1 Гц в коррозионной среде наилучшие результаты получены для листа толщиной 1,5 мм из сплава 1441-БТ1.

При анализе степени опасности увеличения СРТУ в 3,5%-ном растворе NaCl в интервале частот нагружения, по-видимому, необходимо учитывать результаты всесторонних исследований.

ЛИТЕРАТУРА

- 1. Кудряшов В.Г. Вязкость разрушения алюминиевых сплавов. М.: Металлургия. 1976. С. 65–94.
- 2. Золоторевский В.С. Механические свойства металлов. М.: Металлургия. 1983. С. 298–313.
- Dong Z., Rong C. An Investigation of Alternate Behavior of Corrosion and Fatigue of LY12CZ Aluminum Alloy, ICAA-9. Institute of Materials Engineering Australasia Ltd. 2004. P. 235–239.

УДК 669.018.44:669.245

В.Н. Толорайя, Е.В. Филонова, Е.Н.Чубарова, Т.И. Комарова, Г.А. Остроухова

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ГИП НА МИКРОПОРИСТОСТЬ В МОНОКРИСТАЛЛИЧЕСКИХ ОТЛИВКАХ БЕЗУГЛЕРОДИСТЫХ ЖАРОПРОЧНЫХ СПЛАВОВ

Исследованы морфология и объемная доля микропор в монокристаллах ренийсодержащих безуглеродистых жаропрочных сплавов ЖСЗ6-ВИ и ВЖМ5-ВИ, а также их изменение в процессе термообработки и ГИП. Проанализировано влияние микропористости на основные прочностные характеристики этих сплавов, длительную и кратковременную прочность и МнЦУ.

Ключевые слова: жаропрочные сплавы, монокристаллическая структура, термовакуумная обработка (ТВО), горячее изостатическое прессование (ГИП).

Монокристаллические заготовки из сплавов ЖСЗ6-ВИ и ВЖМ5-ВИ с кристаллографической ориентацией [001] отливались на установке УВНК-9А по режимам технологии монокристаллического литья с применением затравок из сплавов системы Ni–W или Ni–W–C. Термообработка образцов проводилась в вакуумных печах по режимам ТУ на сплавы ЖСЗ6 и ВЖМ5. Горячее изостатическое прессование (ГИП) заготовок проводилось в газостате «Квинтус-40» фирмы АСЕА (Швеция).

Определение диаметра и объемного содержания микропор проведено на образцах из сплава ВЖМ5 после термической обработки по различным режимам, а также после ГИП, совмещенного со стандартной термовакуумной обработкой (ТВО), на образцах из сплава ЖСЗ6 (литое состояние и после ГИП). Проведены эксперименты по ГИП монокристаллов сплава ВЖМ5 при 1350+10°С, т. е. в области начала оплавления отливок.

Съемка изображений микропор, их компьютерная обработка и определение количественных характеристик пор выполнены на оптическом комплексе фирмы «Leica» с помощью программы «Image Expert Pro 3x» фирмы «NEXSYS». Определение диаметра и объемного содержания микропор проведено при увеличении ×200 (после термической обработки) и при увеличении ×500 (после ГИП). Увеличение подобрано таким образом, чтобы микропоры были хорошо различимы на фотографии.

Суммарная исследованная площадь, сформированная путем набора отдельных полей зрения, включая участок с наибольшей пористостью, составляет: ~8 мм² – при увеличении ×200, ~1 мм² – при увеличении ×500.

В монокристаллических отливках никелевых жаропрочных сплавов с дендритно-ячеистой структурой, имеющих широкий интервал кристаллизации, всегда присутствует определенное количество микропор. Эти микропоры локализуются на границе раздела « γ -твердый раствор–эвтектика (γ - γ')» (рис. 1, *a*). Объемная доля микропор и их размер определяются составом сплава и режимами роста монокристалла: скоростью кристаллизации *R* и аксиальным термическим градиентом на фронте кристаллизации *G*_z.

Термовакуумная обработка (ТВО) монокристаллов сплава ВЖМ5 состоит из стадии гомогенизирующего отжига (ступенчатый нагрев, изотермический отжиг), закалки и двухступенчатого старения.

Гомогенизирующий отжиг проводят за шесть этапов (ступеней) в температурном интервале 1280–1335°С, с плавным подъемом температуры в течение 30 мин на каждую температурную ступень и выдержкой при температуре в течение 1 ч. Изотермический отжиг – при температуре 1335°С с выдержкой 10 ч.

Для монокристаллов сплава ЖСЗ6 изотермический отжиг проводится при температуре 1315°С, соответственно количество этапов (ступеней) меньше.

На рис. 1, б представлена фотография микропор отливки заготовки с кристаллографической ориентацией [001] после полной термообработки. На месте растворившейся эвтектики (γ - γ) видна округлая микропора размером ~8–10 мкм, а также небольшое остаточное выделение указанной эвтектики, не растворившейся в процессе ТВО.

Для исследования влияния ГИП на микропористость и механические свойства необходимо было выбрать его режим. При выборе было учтено то, что применение ГИП для отливки, полностью прошедшей ТВО, может привести к деформации округлых микропор и, соответственно, к рекристаллизации в данной области, т. е. к возникновению посторонних кристаллов, которые в безуглеродистых сплавах могут прорастать на значительную глубину [1].

Исходя из этого для монокристаллических отливок из сплавов ВЖМ5 и ЖС36 был выбран режим ГИП, совмещенный с ТВО, в области ступенчатых нагревов, при которых происходит частичное растворение неравновесной эвтектики (γ - γ') и закрытие микропор на границе раздела с твердым раствором. Дальнейшее растворение эвтектики и гомогенизация происходят при обычной ТВО, которую начинают с той температурной ступени, на которой закончился ГИП.

На рис. 2 и в табл. 1 показано изменение объемной доли и размера микропор (среднего, минимального и максимального диаметра) в процессе ТВО. В начале наблюдается некоторое возрастание диаметра микропор от литого состояния до 1290°С, после чего их размер стабилизируется. Полное растворение неравновесной эвтектики наблюдается после 1300°С, т. е. выше температуры полного растворения $T_{n,p} \gamma'$ -фазы. Затем микропористость резко возрастает при 1350–1360°С из-за начала локального оплавления материала (температурный режим ступенчатого отжига специально был продлен до 1360°С для определения начала оплавления). Структура оплавления монокристалла сплава ВЖМ5 при температуре 1350°С показана на рис. 3. В результате плавления и последующей кристаллизации междендритных областей в структуре вновь появляется эвтектическая γ' -фаза и укрупняются поры.

Рис. 2. Изменение в процессе ТВО и ТВО/ГИП диаметра микропор d(a) и их объемной доли $V(\delta)$: d_n , V_n – диаметр и объем пор в литом состоянии; на $\delta - \blacklozenge$, \blacksquare – объемная доля пор при изотермическом отжиге

Рис. 3. Структуры оплавления в сплаве ВЖМ5

Таблица 1

пермической обработки							
Условный	Режим ТВО*	Объемная доля пор, %		Диаметр пор, мкм			
номер		средняя	max	средний	max	min	
образца							
1	Без термообработки (литое состоя-	0,025	0,125	5,5	6,6	4,2	
	ние)						
2	1280°C	0,075	0,2	5,9	6,7	5,0	
3	1280→1290°C	0,06	0,26	6,6	7,9	5,0	
4	1280→1290→1300°C	0,06	0,26	6,7	8,0	5,4	
5	$1280 \rightarrow 1290 \rightarrow 1300 \rightarrow 1310^{\circ}C$	0,06	0,24	7,7	8,9	6,4	
6	$1280 \rightarrow 1290 \rightarrow 1300 \rightarrow 1310 \rightarrow 1320^{\circ}C$	0,06	0,23	7,0	8,6	5,2	
7	$1280 \rightarrow 1290 \rightarrow 1300 \rightarrow 1310 \rightarrow 1320 \rightarrow$ $\rightarrow 1330^{\circ}C$	0,06	0,20	6,9	8,7	5,6	
7-1	Для образца 7+1330°С, 5 ч +1335°С, 5 ч	0,06	0,20	7,0	8,1	5,8	
8	$1280 \rightarrow 1290 \rightarrow 1300 \rightarrow 1310 \rightarrow 1320 \rightarrow$ $\rightarrow 1330 \rightarrow 1340^{\circ}C$	0,08	0,27	7,2	8,7	5,6	
8-1	Для образца 8+1340°С, 5 ч +1345°С, 5 ч	0,07	0,20	7,4	8,2	6,5	
9	$1280 \rightarrow 1290 \rightarrow 1300 \rightarrow 1310 \rightarrow 1320 \rightarrow$ $\rightarrow 1330 \rightarrow 1340 \rightarrow 1350^{\circ}C$	0,11	0,33	8,95	9,95	7,95	
10	$1280 \rightarrow 1290 \rightarrow 1300 \rightarrow 1310 \rightarrow 1320 \rightarrow$ $\rightarrow 1330 \rightarrow 1340 \rightarrow 1350 \rightarrow 1360^{\circ}C$	0,48	1,9	17,0	20,4	13,6	

Диаметр и объемное содержание микропор в сплаве ВЖМ5 после различных режимов термической обработки

*Ступенчатый нагрев, выдержка при температуре 1 ч.

Из приведенных данных видно, что для изотермического отжига можно использовать температуры до 1340°С без локального оплавления материала. Дополнительных пор и увеличения их объемной доли при этом отжиге не возникает (рис. 2, б).

Следует отметить, что увеличение диаметра и объемной доли микропор в интер-

вале 1280–1290°С связано скорее с методикой количественной оценки этих величин. Поры в литом состоянии имеют вид как бы трещин на границе γ -твердого раствора и эвтектической глобулы (γ - γ'). Затем – в процессе отжига при более высоких температурах – микропоры приобретают округлую форму, которая легче определяется количественно, т. е. поры более четко выявляются.

На рис. 2, *а* и в табл. 2 представлены значения размера микропор при ГИП и ГИП/ТВО. Размер микропор уменьшается до ~1 мкм (рис. 4) и не возрастает в процессе дальнейшей термообработки (ТВО). Аналогичные значения получены также для сплава ЖСЗ6.

Рис. 4. Остаточные микропоры в сплаве ВЖМ5 после ГИП (показаны стрелкой)

Таблица 2

Диаметр и объемное содержание микропор в сплаве ВЖМ5 после ГИП и после ГИП, совмешенного со станлартной термовакуумной обработкой

Режим ГИП (при давлении 180–200 МПа) Объемная доля пор.		цоля пор. %	Диаметр пор, мкм		
и ГИП/ТВО	средняя	max	средний	max	min
Без термообработки (литое состояние)	0,025	0,14	3,8	4,5	3,2
ГИП: 1280→1290→1300°С	0,002	_	1,1	-	-
То же+ТВО: 1310→1320→1330/1335°С в течение 10 ч	0,001	0,005	1,0	1,15	0,9

На рис. 2, б и в табл. 2 также представлены значения объемной доли микропор. Видно, что за счет ГИП она снижается до уровня 0,005% и ниже. При последующем после ГИП ступенчатом и изотермическом отжигах размер и объемная доля микропор не возрастают. Другими словами, достаточно закрыть микропоры при относительно низкой температуре, при нерастворенной до конца эвтектике, и при последующем отжиге вне газостата при ТВО микропоры уже не появятся.

Таким образом, для монокристаллических отливок из сплава ВЖМ5 был применен следующий режим:

- атмосфера - высокочистый аргон для отливок турбинных лопаток;

– давление: 180–200 МПа;

– температура соответствует режимам ступенчатого нагрева при ТВО – от 1280 до 1330°С;

– продолжительность ГИП: 3–4 ч.

Для исследования влияния ГИП на структуру монокристаллов в области оплавления было проведено ГИП (по режиму: 1350+10°С в течение 2 ч при давлении 180 МПа) двух образцов из сплава ВЖМ5: после полной ТВО и литого. Определение объемной доли и размеров микропор показало, что они остались на уровне, характерном для ГИП, т. е. средний размер микропор ~1 мкм и менее, объемная доля <0,005%. Микроструктура этих образцов показана на рис. 5. Видно, что в обоих случаях произошло оплавление материала. В образце после ТВО исчезли округлые микропоры, появились крупные выделения γ' -фазы с дисперсной морфологией. В литом образце также отсутствуют микропоры, выделения эвтектики (γ - γ') приобрели такой же вид, как в образце с ТВО. Такая морфология характерна для кристаллизации оплавленной междендритной области материала под давлением.

Рис. 5. Микроструктура (×500) образцов после ГИП (при 1350+10°С в течение 10 ч): a, b – литой образец и образец после ТВО

Процесс ТВО/ГИП позволяет несколько повысить (на ~10–15%) долговечность образцов при испытаниях на длительную прочность как для монокристаллов сплава ЖСЗ6 (табл. 3), так и для сплава ВЖМ5. Хорошо известно, что разрушение в монокристаллических образцах при испытаниях на длительную прочность начинается с микропор. Поскольку устранение последних не дает большего эффекта, то отсюда следует вывод, что разрушение монокристаллических образцов в процессе крипа связано прежде всего с «выработкой» упрочнения γ' -фазой, трещины на порах зарождаются только при образовании шейки на образце. Следует отметить, что разрушение в образцах по-

сле ГИП также начинается в междендритной области, что отчетливо видно на изломах образцов после испытаний на длительную прочность (рис. 6). В первом случае в центре фасетки разрушения, имеющей для монокристаллов [001] квадратную или прямоугольную форму, видна микропора диаметром 5–10 мкм (для образцов [111] форма фасетки треугольная или шестигранная). Во втором – фасетки имеют вид четырехконечной звезды, в центре которой нет пор. Разрушение в образцах ГИП/ТВО начинается с мелких остаточных выделений карбидных или ТПУ фаз [2].

Таблица З

Режим ТВО	Температура, °С	Напряжение σ, МПа	Долговечность τ, ч	
TBO	975	320	57,5	
		320	61,5	
		320	76	
		320	65	
	900	480	116	
		480	65	
	1000	250	74	
		250	65	
		250	95,5	
		250	89	
ТВО/ГИП	975	320	65,5	
		320	54,5	
		320	85	
		320	69	
		320	73	
	900	480	121	
		480	193	
		480	170	
	1000	250	119,5	
		250	109,5	
		250	112,5	
		250	109	
		250	126	
		250	109,5	

Результаты испытаний на длительную прочность образцов сплава ЖСЗ6 [001]

Рис. 6. Поверхность разрушения (×1000) образцов из сплава ЖСЗ6 [001] ВНК после испытаний на длительную прочность при 1000°С и напряжении 250 МПа: *а*, *б* – образец после ТВО и ТВО/ГИП

Основное повышение свойств наблюдается при испытаниях на МнЦУ (гладкие образцы, испытания на изгиб с вращением). Так, при 20°С значение σ_{-1} возрастает с 330 (после ТВО) до 420 МПа (после ТВО/ГИП), при 900°С значение σ_{-1} возрастает с 370 (после ТВО) до 420 МПа (после ТВО/ГИП).

Аналогичная зависимость от применения ГИП наблюдается и для монокристаллов сплава ЖСЗ6 – при 20°С значение σ_{-1} возрастает с 300 (после ТВО) до 380 МПа (после ТВО/ГИП) [3].

При проведении процесса ГИП ниже температуры $T_{n.p} \gamma'$ -фазы наблюдается явление, механизм которого недостаточно ясен, а именно, при ГИП в двухфазной области закрытие микропор и микрорыхлоты происходит не за счет деформации материала, а путем заполнения этих свободных объемов γ' -фазой. Этот процесс на разных стадиях показан на рис. 7. Для сплава ЖСЗ6 (после полной ТВО) заполнение микропор γ' -фазой в процессе ГИП происходит при температуре 1250°С. По-видимому, низкотемпературное горячее изостатическое прессование можно проводить и на полностью термообработанном материале.

Рис. 7. Устранение микропористости в процессе ТВО/ГИП в динамике

Рис. 8. Устранение микрорыхлоты в процессе ТВО/ГИП в динамике

Эффект заполнения свободных объемов γ' -фазой наблюдается и для достаточно крупной рыхлоты усадочного характера (рис. 8). Естественно, эти процессы происходят только с порами, не имеющими выхода на поверхность отливки. В γ' -фазе, заполняющей микропоры и рыхлоты, часто наблюдается выделение обогащенных рением фаз (см. рис. 8, *в*). Наличие этих фаз является отличительной особенностью γ' -фазы после ГИП, в отличие от обычной эвтектики (γ - γ').

Работа проводилась при финансовой поддержке Департамента государственной научно-технической и инновационной политики Министерства образования и науки Российской Федерации.

ЛИТЕРАТУРА

- 1. Литейные жаропрочные сплавы. Эффект С.Т. Кишкина: Науч.-техн. сб /Под. ред. Е.Н. Каблова. М.: Наука. 2006. 272 с.
- 2. Шалин Р.Е., Светлов И.Л., Толорайя В.Н. Монокристаллы никелевых жаропрочных сплавов. М.: Машиностроение. 1997. 336 с.
- 3. Каблов Е.Н., Толорайя В.Н., Светлов И.Л. и др. Анизотропия прочностных характеристик в монокристаллах никелевых жаростойких сплавов //Горный информационно-аналитический бюллетень. 2005. С. 233–235.