М.С. Оглодков, Л.Б. Хохлатова, Н.И. Колобнев, А.А. Алексеев, Е.А. Лукина

ВЛИЯНИЕ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ НА СВОЙСТВА И СТРУКТУРУ СПЛАВА СИСТЕМЫ Al-Cu-Mg-Li-Zn

Высокопрочный свариваемый коррозионностойкий сплав B-1461 системы Al-Cu-Li-Zn-Mg (Zr, Sc) относится к новому поколению алюминийлитиевых сплавов и характеризуется пониженным содержанием лития, повышенными технологичностью и характеристиками трещиностойкости. В работе исследовано влияние термомеханической обработки, режимов многоступенчатого старения на структуру и свойства сплава B-1461.

Ключевые слова: сплав B-1461 системы Al–Cu–Li–Zn–Mg (Zr, Sc), катаные плиты, правка после закалки, HTMO, многоступенчатое старение, свойства при растяжении, вязкость разрушения.

Сплав В-1461 по химическому составу близок к сплавам 2099 и 2199 и предназначен для применения в виде листов, плит и прессованных профилей для обшивки и внутреннего силового набора фюзеляжа современных самолетов различного назначения. Российский сплав В-1461 отличается от американских сплавов 2099 и 2199 дополнительным микролегированием Sc и Ce, улучшающими литейные свойства и свариваемость сплава. Для полуфабрикатов из алюминийлитиевых сплавов наиболее важными являются характеристики удельной прочности и вязкости разрушения [1].

Структуру сплава исследовали с помощью световой и просвечивающей электронной микроскопии на промышленных плитах толщиной 12–55 мм, изготовленных с использованием низкотемпературной термомеханической обработки (HTMO), которая включала в себя правку растяжением после закалки и дополнительную нагартовку на прогладочном стане с последующим искусственным старением.

Исследуемые плиты подвергали закалке на горизонтальном закалочном агрегате с охлаждением водой распылением. Деформация после закалки была различной на плитах разной толщины. Исследования проводились после правки растяжением:

Степень остаточной деформации є, %	Дополнительная нагартовка
1 1	на прогладочном стане с є, %
2,8–3,2	Без нагартовки
0,1–1,1	Без нагартовки
0,1–1,1	4,8–6,3.

Структура плит толщиной 12; 20 и 40 мм — частично рекристаллизованная волокнистая, неоднородная по толщине (рис. 1). Неоднородность структуры по толщине более выражена в плитах толщиной 20 и 40 мм: чем толще плита, тем больше толщина волокон и меньше степень рекристаллизации.

В плитах большей толщины (45–55 мм) была получена нерекристаллизованная волокнистая, неоднородная по толщине структура. Толщина волокон больше, чем в плитах толщиной 12–40 мм и составляет в приповерхностных слоях 50–150 мкм, в центральных слоях: 50–250 мкм (рис. 2 и 3, a, δ).

Сравнительные испытания характеристик прочности и пластичности проводили на образцах, вырезанных из центральной зоны по толщине плит. Свойства при растяжении определяли после двухступенчатого старения по режиму Т6 (130°C, 20 ч + 160°C, 24 ч), который обеспечивает максимальную прочность при сохранении относительного удлинения на высоком уровне.

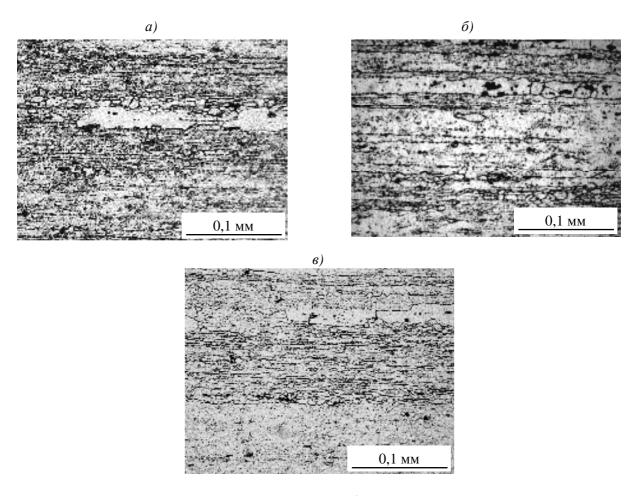


Рис. 1. Микроструктура (травление в растворе Келлера) центральных по толщине слоев плит (продольное направление) из сплава В-1461-Т6 толщиной 12 (a), 20 (δ) и 40 мм (ϵ)

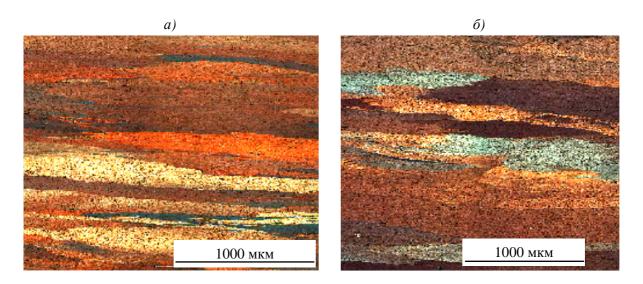


Рис. 2. Микроструктура (анодное окрашивание) центрального по толщине слоя плит из сплава B-1461-T6 толщиной 45 (a) и 55 мм (б)

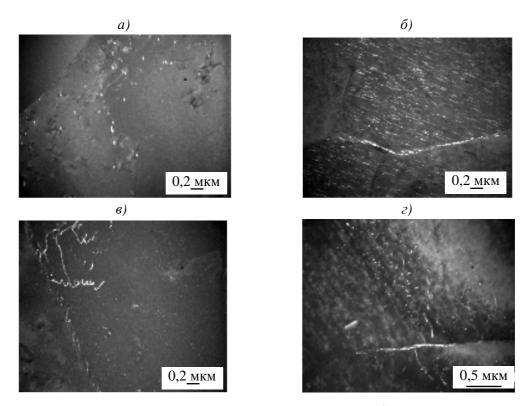


Рис. 3. Распределение частиц (темнопольное изображение) T_1' - (a, δ) и S'-фаз $(\mathfrak{s}, \varepsilon)$ в плите из сплава B-1461-T6 в зависимости от деформации растяжением \mathfrak{s} : 0,1 (a, \mathfrak{s}) и 2,8% (δ, ε)

Результаты испытаний показали, что увеличение степени остаточной деформации при правке растяжением в интервале от 0,1 до 1,1% приводит к росту пределов прочности и текучести плит на 35–55 МПа. Введение дополнительной нагартовки прокаткой с остаточной степенью деформации ε =4,8–6,3% приводит к росту пределов прочности и текучести на 60–140 МПа в зависимости от толщины плиты (табл. 1).

Деформация растяжением после закалки с остаточной степенью деформации 2,8–3,2%, в сочетании с двухступенчатым старением на плитах толщиной 45 и 55 мм обеспечила получение высоких значений прочностных характеристик (σ_B =550 МПа, $\sigma_{0,2}$ =525 МПа, δ_{10} =7,0%), при сохранении показателя вязкости разрушения на среднем уровне (K_{1c} (ДП)=37 МПа $\sqrt{\rm M}$).

Таблица 1
Влияние деформации между закалкой и старением на механические свойства
при растяжении плит толшиной 12–40 мм из сплава В-1461

iph pacinkeinn inni ioniminon 12 40 km no chilaba b 1401									
Толщина	Направле-	Значения свойств							
плиты,	ние вырезки	после правки растяжением			с дополнительной				
MM	образца				нагартовкой прокаткой				
		степень	$\sigma_{_{\rm B}}$	$\sigma_{0.2}$	δ, %	суммар-	$\sigma_{_{\rm B}}$	$\sigma_{0,2}$	δ, %
		остаточной	МПа			ная	МПа		
		деформации				ε, %			
		ε, %							
12	Д	1 1	535	475	11,0	1,1+6,3	580	545	10
	П	1,1	525	465	11,0		570	540	9,5
20	Д	0,6	515	440	9,0	0,6+5,3	570	535	9,0
	П	0,0	505	420	11,5		563	525	9,0
40	Д	0.1	480	400	9,5	0,1+4,8	565	535	9,5
	П	0,1	470	390	9,5		563	525	9,0

На основании ранее проведенных исследований структуры сплава B-1461 в широкой температурно-временной области старения (130–225°С, 1–64 ч) была построена диаграмма фазовых превращений при старении (ДФПС) [2].

Установлено, что при двухступенчатом старении область образования θ' -фазы, которая обеспечивает высокие значения характеристик вязкости разрушения, смещается в сторону меньшей длительности старения. Чем интенсивнее образование δ' -фазы с увеличением выдержки на низкотемпературной первой ступени (до 96 ч), тем сильнее это смещение на второй ступени старения. Для сокращения продолжительности выдержки на первой ступени вводится дополнительная ступень старения с промежуточной температурой и выдержкой, не превышающей 24 ч.

Интенсивное выделение θ' -фазы на ранних стадиях старения приводит к снижению количества выделяющихся частиц T_1' -фазы . Тем самым для обеспечения более полного выделения θ' -фазы и очищения границ зерен от T_1' -фазы , был предложен трехступенчатый режим старения T6X с низкотемпературной первой ступенью (120°C) и дополнительной промежуточной ступенью (140°C). Этот режим старения позволил сохранить на плитах толщиной до 55 мм высокие значения прочностных свойств и повысить характеристики вязкости разрушения в 1,5 раза (табл. 2).

Таблица 2

Средние значения механических свойств плит из сплава В-1461-Т6Х

Толщина плиты, мм	Направление вырезки	$\sigma_{\scriptscriptstyle B}$	$\sigma_{0,2}$	δ, %	K_{1c} , МПа $\sqrt{\mathrm{M}}$
	образца	МПа			10,
40	Д	569	527	11,0	45
(ε=3,2%)	П	548	490	10,5	31
55	Д	552	509	11,5	47
(ε=2,8%)	П	534	473	10,0	34

Определение фазового состава и морфологии распределения основных упрочняющих фаз проводили на электронном микроскопе JEM на состаренных по режиму T6 образцах из плит в зависимости от величины и вида деформации после закалки: деформация растяжением 0,1 и 2,8%; деформация растяжением 0,1% + нагартовка прокаткой 4,8%.

Фазовый состав сплава B-1461 в состоянии T6 следующий: $\delta'(Al_3Li)$, $T'(Al_2LiCu)$, $S'(Al_2CuMg)$, $\theta'(CuAl_2)$. С увеличением деформации в образцах как растяжением до 2,8%, так и с дополнительной нагартовкой до 4,8%, объемная доля T'_1 -фазы резко возрастает, размеры пластин T'_1 -фазы не изменяются (см. рис. 3, a, δ). Это происходит вследствие резкого роста плотности дислокаций, дислокационных стенок и ма-

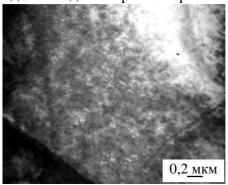


Рис. 4. Темнопольное изображение θ'-фазы в плите из сплава B-1461-T6X

лоугловых субграниц. Дислокации декорированы частицами S'-фазы, также видны отдельные торцевые частицы S''-фазы (рис. 3, ϵ , ϵ). Для образца с дополнительной нагартовкой характерно более интенсивное выделение как пластин T'_1 -фазы, так и частиц S'-фазы по границам субзерен.

Дополнительно было проведено электронно-микроскопическое исследование структуры и фазового состава плиты толщиной 55 мм сплава B-1461-T6X. Здесь наблюдается существенно большее количество выделений 0'-фазы (рис. 4) по сравнению со старением по двухступенчатому режиму Т6. Выделения θ' -фазы имеют форму пластин диаметром 30–60 нм. Выделения частиц T'_1 -фазы равномерно распределены внутри зерна и наблюдаются как на субграницах, так и редко – на границах зерен (рис. 5).

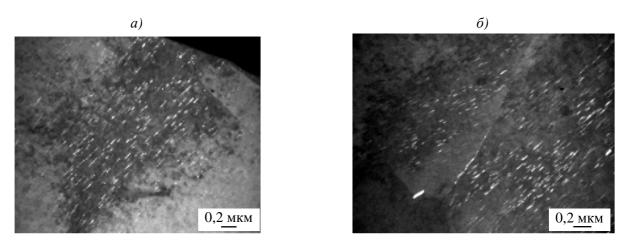


Рис. 5. Распределение T_1' -фазы внутри зерна (a) и на субграницах (δ) в плите из сплава B-1461-T6X (темнопольное изображение)

Применение HTMO на плитах из сплава B-1461 различной толщины позволяет значительно повысить прочностные свойства при растяжении.

Деформация после закалки перед искусственным старением существенно увеличивает объемную долю выделений основных метастабильных фаз T_1' и S' вследствие увеличения плотности отдельных дислокаций, дислокационных стенок и малоугловых субграниц. Это приводит к дополнительному упрочнению сплава без потери пластичности.

Показано, что трехступенчатый режим T6X обеспечивает выделение существенно большего количества частиц θ' -фазы и сокращение выделений T'_1 -фазы (по сравнению со старением по двухступенчатому режиму T6).

Предложенный трехступенчатый режим старения позволяет значительно повысить вязкость разрешения (до 45–47 МПа $\sqrt{\rm M}$) плит из сплава B-1461-T6X при сохранении прочности на достаточно высоком уровне.

ЛИТЕРАТУРА

- 1. Giummarra C., Rioja R.J., Bray G.H., Magnusen P.E., Moran J.P. //Aluminum Alloys (ICAA 11) Germany. 2008. V. 1. P. 176–188.
- 2. Alekseev A.A., Khokhlatova L.B., Kolobnev N.I., Lukina E.A., Samokhvalov S.V. //Aluminum Alloys (ICAA 11) Germany. 2008. V. 1. P. 234–240.