ИСПЫТАНИЯ И ИССЛЕДОВАНИЯ МАТЕРИАЛОВ. ВОПРОСЫ СЕРТИФИКАЦИИ И КАЧЕСТВА МАТЕРИАЛОВ

А.И. Самойлов, С.П. Конокотин, И.Н. Рощина, О.Б. Тимофеева, Р.М. Назаркин

ПОВЫШЕНИЕ ПЛАСТИЧНОСТИ МАТЕРИАЛОВ КРИСТАЛЛИЗАЦИЕЙ В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ

Установлено, что электромагнитная (ЭМ) обработка хрома при кристаллизации повышает на порядок и более его ударную вязкость. Отсутствие легирования и, следовательно, фазовых превращений с образованием пластифицирующих фаз приводит в данном случае к предположению, что природа явления кроется в специфике структурообразования этого традиционно хрупкого металла, в частности – в возникновении под действием ЭМ поля текстуры роста пальчиковых отливок, используемых в дальнейшем для определения ударной вязкости и изготовления рентгеновских образцов (шайба \emptyset 10 мм, h=10 мм) для определения текстуры.

Из 6 образцов, исследованных после обработки в ЭМ поле, 5 показали наличие текстуры роста [011] параллельно оси отливки, 1 – текстуры [112].

Степень текстурированности образцов оценивалась: качественно – по интенсивности рефлексов рентгеновского спектра, количественно – по отношению аномальной интегральной интенсивности текстурированных рефлексов (011) или (112) к совокупной интенсивности всего спектра текстурированного и бестекстурного (порошкового) образцов.

Так, для порошковых бестекстурных образцов (табл. 1) $I_{(011)}/I_{\Sigma} = 0,39$ (среднее из двух: (0,37+0,42)/2); для образцов, обработанных в ЭМ поле, этот показатель возрастает до 0,66, т. е. в 1,7 раза (среднее по 5 образцам 1-5), что указывает на появление в них текстуры [011]). Аналогичный показатель для образца 6 по сравнению с порошком возрастает уже более чем в два раза ($I_{(112)}/I_{\Sigma} = 0,20$ и 0,42 соответственно), что также свидетельствует о возникновении в этом образце текстуры [112].

Таблица 1

Рефлекс	Интенсивность I, имп·град/с, порошка и образцов с условным номером							
(hkl)	П1	П2	1	2	3	4	5	6
011	365	426	2284	3482	2076	2788	1057	906
002	88	89	148	96	230	207	129	253
112	193	204	120	171	417	55	170	1041
022	78	74	201	302	205	98	31	20
013	170	157	428	1223	302	249	238	165
222	82	73	703	109	124	131	18	65
Σ	976	1023	3884	5383	3354	3528	1643	2450
$I_{(011)}/\Sigma$	0,37	0,42	0,59	0,65	0,62	0,79	0,64	0,37
$I_{(112)}/\Sigma$	0,20	0,20	0,031	0,032	0,12	0,016	0,10	0,42

Интегральная интенсивность рефлексов дифракционного спектра Cu K_α Cr

Спектры всех образцов записаны в одинаковых условиях на дифрактометре ДРОН-4 со сканированием по программе «Express» в режиме: шаг 0,1 град, время набора импульсов 5 с при вращении образца в собственной плоскости со скоростью 60 об/мин в приставке ГП-13. Рентгеносъемка проводилась с торцевой поверхности цилиндрического протравленного образца. Аналитическая обработка результатов определения интенсивностей рефлексов и ориентировок – по программе «Outset». Типичные дифрактограммы бестекстурного хромового порошка, а также текстурированных хромовых образцов представлены соответвенно на рис. 1–5.

Рис. 1. Дифрактограмма хромового порошка (без текстуры), Fe K_{α} -излучение (обработка по программе «Outset»)

Рис. 3. Дифрактограмма хромового образца, кристаллизация в магнитном поле. Текстура [112] || оси роста образца, Fe K_{α}-излучение (обработка по программе «Outset»)

Рис. 5. Отсутствие [112] текстуры Сг. Разброс [112] ориентировок по всему полю стереографического треугольника (обработ-ка по программе «Outset»)

Рис. 2. Дифрактограмма хромового образца, кристаллизация в магнитном поле. Текстура [011] || оси роста образца; Fe K_{α}-излучение (обработка по программе «Outset»)

Рис. 4. Текстура Сг образца, закристаллизованного в ЭМ поле. Максимальная интенсивность отражения текстурообразующих элементов совпадает с направлением [112] (обработка по программе «Outset»)

Рассмотрим подробнее причины аномально высокого показателя ударной вязкости хромового образца, текстурированного по [112] вдоль оси роста по сравнению с текстурированными по [011].

Плоскости (011) легкого скольжения в кубическом ОЦК кристалле содержат три системы, расположенные под углами 0; $\pi/3$; $\pi/2$ [1], однако две из них, вследствие известного закона механики [2], не работают, поскольку для них касательные напряжения τ при $\alpha=0$ и $\alpha=\pi/2$ равны нулю, т. е.

 $\tau = (\sigma/2)\sin 2\alpha = 0$,

где σ – нормальные напряжения, α – угол между нормальными и касательными напряжениями.

Таким образом, для осуществления деформации скольжения остается единственная «активная» плоскость из семейства <011> с углом $\alpha = \pi/3$. Вероятно, именно она в текстурированном вдоль [011] образце увеличивает, как это следует из эксперимента, ударную вязкость от 3–4 (без обработки в ЭМ поле) до 19 Дж/см² – после кристаллизации по одному из режимов в ЭМ поле.

В случае если в ЭМ поле формируется текстура роста [112], система элементов скольжения в ней увеличивается до пяти вариантов «активных» углов между плоскостями <112>, расположенными внутри лепестка лемнискаты, окаймляющего область $\tau \neq 0$. Эти углы α суть: 33,56; 48,19; 60,00; 70,53 и 80,40. Все эти плоскости с разной активностью, зависящей от угла α , опделяющего величину сдвиговых напряжений, участвуют в актах пластического течения (сдвига). Вероятно именно эта множественность элементов скольжения, облегчая сдвиговые процессы, дополнительно увеличивает ударную вязкость материала от 19 Дж/см² (текстура [011]) до 55 Дж/см² (текстура [112]).

Аналогичные результаты (рис. 6 и 7) получены для образцов сплава системы NiAl + Ni_3Al (Ni + 16% (по массе) Al и Ni + 13,75% (по массе) Al). В дифракционном спектре основной фазы этих сплавов – Ni_3Al – в результате кристаллизации в ЭМ поле наблюдалась текстура [133] и [113] || оси образца. Эти образцы показали в несколько раз более высокую ударную вязкость по сравнению с образцом, закристаллизованным без воздействия ЭМ поля.

Рис. 6. Дифрактограмма порошка Ni₃Al (без текстуры);

Cu K_{α} -излучение (обработка по программе «Outset»)

Рис. 7. Дифрактограмма образца Ni₃Al, кристаллизация в магнитном поле. Вероятная текстура [311]+[331] || оси образца (аномально высокая интенсивность соответствующих рефлексов); Си K_{α} -излучение (обработка по программе «Outset»)

Характерно, что, как и в случае текстуры [112] в ОЦК решетке хрома, текстура в ГЦК фазе Ni₃Al базируется на системах <133> и <113>, также обладающих множественностью элементов скольжения (5 и 4 соответственно). Что касается второй фазы указанных сплавов – объемноцентрированной NiAl, составляющей ~(5–10)% объема, то, как и в большинстве случаев для чистого хрома, она при кристаллизации в ЭМ поле образует текстуру [011] || оси слитка.

К сожалению, оба исследованных интерметаллидных Ni₃Al образца оказались крупнозернистыми, поэтому об их текстуре с достоверностью можно судить после привлечения к проблеме статистического метода. Тем не менее аномально высокая интенсивность рефлексов (133) и (113) у образцов, закристаллизованных в ЭМ поле, по сравнению с аналогичными, закристаллизованными без воздействия ЭМ поля, указывает на существование тенденции к преимущественным [133] или [113] ориентировкам, параллельным оси слитка.

Таким образом, *необходимым условием* для беспрепятственного перетекания элементарных микромасштабных сдвиговых актов, зарождающихся в пределах субструктуры, и для распространения их на весь объем металла образца является наличие в нем максимально острой текстуры.

Достаточным условием устойчивого пластического течения при любых видах текстуры является максимальное количество элементов сдвигового механизма (однотипных кристаллографических плоскостей), расположенных внутри зоны лемнискаты, ограничивающей значения углов $0 < \alpha < \pi/2$, для которых $\tau \neq 0$.

В исследованной паре традиционно хрупких хрома и Ni₃Al таким условиям удовлетворяла кристаллизация этих объектов в ЭМ поле, обеспечивающая в первом из них текстуру [112] || оси роста, во втором – [133] и, возможно, [113] || оси роста соответствующих слитков. Указанные виды текстуры роста имеют для [112] и [133] – пять, для [113] – четыре элемента скольжения указанного типа.

Одновременно для микроструктурных исследований были выбраны образцы хрома и интерметаллидные образцы, закристаллизованные без воздействия и с воздействием ЭМ поля (табл. 2).

Таблица 2

Тип образца	Внешнее воздействие	Ударная вязкость,	Параметр решетки а,					
		Дж/см 2	НМ					
Образцы хрома	Без ЭМ поля	3–4	0,28840					
	ЭМ поле	60	0,28866					
		19	0,28847					
Интерметаллид Ni ₃ Al	Без ЭМ поля	8	_					
_	ЭМ поле	45	_					

Характеристики исследованных образцов

С помощью оптического микроскопа «Leica» и растрового электронного микроскопа JSM-840 (в режиме вторичных электронов) провели сравнительное исследование микроструктуры образцов.

Металлографический анализ исследованных образцов показал:

 микроструктура образца хрома, не подвергавшегося воздействию электромагнитного поля, как в продольном, так и в поперечном сечениях характеризуется наличием зоны столбчатых зерен в центре и на периферии и зоны равноосных зерен у поверхности (рис. 8); – в микроструктуре образцов хрома, подвергавшихся в процессе литья воздействию магнитного поля, наблюдается равномерное распределение мелких равноосных зерен по всему объему материала как в продольном, так и в поперечном направлениях (рис. 9).

Анализируя полученные результаты, можно выделить следующие закономерности. 1. Для хрома при кристаллизации без использования электромагнитного поля характерны:

крупное зерно (см. рис. 8, *a*);

 ямки травления в плоскости шлифа имеют различную конфигурацию и размеры (см. рис. 8, *a*-*в*), что указывает на различную кристаллографическую направленность зерен образца [3];

– отсутствие текстуры, четкие межзеренные границы малой протяженности по ширине («нерасширенные») – рис. 8, *в*.

2. Для хрома при кристаллизации с использованием магнитного поля характерны:

- значительное измельчение зерна (см. рис. 9, *a*);

– незначительное количество ямок травления, при этом имеющих сходную конфигурацию, что указывает на одинаковую кристаллографическую направленность анализируемых зерен в продольном направлении образца (наличие текстуры) – см. рис. 9, *a*–*e*;

– значительное уширение межзеренных границ (см. рис. 9, *в*). Последнее явление требует дополнительного исследования.

Рис. 8. Металлографический анализ образца хрома без обработки в ЭМ поле (*KC*U=3–4 Дж/см²). Параметр решетки 0,28840 нм:

a – общий вид микроструктуры литого образца (×50); δ – распространение трещины в теле зерна (×200); ϵ – стык зерен (×1000) a)

Рис. 9. Результаты металлографического анализа образца хрома после обработки в ЭМ поле (*KC*U=60 Дж/см²). Параметр решетки 0,28866 нм:

а – общий вид микроструктуры литого образца (×50); б – уширение границ зерен под действием магнитного поля (×500);
в – стык зерен с уширенными границами (×1000)

Природа связи электромагнетизма со структурой и свойствами в кристаллизующихся в ЭМ поле материалов требует дальнейших всесторонних исследований, однако уточнение технико-технологических параметров процесса управления обнаруженным эффектом уже сегодня представляется не менее актуальной и перспективной проблемой.

ЛИТЕРАТУРА

- 1. Тейлор А. Рентгеновская металлография: Пер. с англ. М.: Металлургия, 1965, 663 с.
- 2. Фридман Я.Б. Механические свойства металлов. 2-е изд. М.: Гособоронпром, 1952, 555 с.
- 3. Панченко Б.В., Скаков Ю.А., Попов К.В. //В кн.: Лаборатория металлографии.-М.: Металлургиздат, 1957, с. 452–465.