УДК 661.183.4-911.48

DOI: 10.18577/2071-9140-2014-0-s6-59-66

Ю.Е. Лебедева¹, Н.В. Попович², Л.А. Орлова², А.С. Чайникова²

СИНТЕЗ И ПЕРСПЕКТИВНОЕ ПРИМЕНЕНИЕ МАТЕРИАЛОВ В СИСТЕМЕ Y₂O₃-Al₂O₃-SiO₂

Рассмотрены процессы фазообразования в системе Y_2O_3 —SiO₂. Высокая температура плавления, низкая пропускаемость кислорода, значение температурного коэффициента линейного расширения (ТКЛР), близкое к значению ТКЛР карбида кремния, — все это делает силикаты иттрия превосходными компонентами для защиты материалов на основе карбида кремния от воздействия высоких температур в окислительной атмосфере.

Ключевые слова: силикаты иттрия, высокотемпературные покрытия, карбид кремния.

Phase formation processes of Y₂O₃—Al₂O₃—SiO₂ system are considered. High melting temperature, low oxygen tranmittivity, low value of thermal expansion close to silicon carbide one – all this does yttrium silicates excellent components for protection silicon carbide materials from influence of high temperatures in oxidation atmosphere now. **Keywords:** yttrium silicates, high temperature coatings, silicon carbide.

[Federal state unitary enterprise «All-Russian scientific research institute of aviation materials» State research center of the Russian Federation] E-mail: admin@viam.ru

²Российский химико-технологический университет им. Д.И. Менделеева [D. Mendeleyev University of Chemical-technological of Russian] E-mail: rector@muctr.ru

Введение

В настоящее время без новых материалов развитие многих невозможно отраслей промышленности - авиационной, электроэнергетики, машиностроения, строительства, медицины, приборостроения, электроники и др. Многолетняя отечественная и зарубежная практика показывает, что >80% инновационных разработок в ведущих отраслях промышленности и секторах экономики базируется на внедрении новых материалов и технологий их производства. В связи с развитием новых направлений в современной технике значительно возрос интерес к материалам с особыми свойствами, которые используются и могут быть использованы в качестве квантовых генераторов, модуляторов светового пучка, гидродинамических преобразователей, жаростойких и бездислокационных материалов, отличающихся высокой оптической активностью, механической прочностью, устойчивостью к действию высоких температур, радиации, химических и других сред [1-3].

Необходимая основа для разработки технологии производства новых материалов – изучение диаграмм состояния соответствующих систем, установление закономерностей синтеза и классификации новых неорганических соединений, исследование формирования фазового состава и микроструктур материалов, получение их физикохимических, кристаллохимических, структурных и других характеристик [4–9].

Материалы и методы

Все чаще подобные исследования проводят

для редкоземельных элементов. Соединения на их основе приобретают определенное научное и практическое значение (например, силикаты и алюминаты РЗЭ). Благодаря богатству кристаллографических форм и ряду уникальных свойств эти соединения особенно ценны для специалистов, работающих в области изучения твердого тела.

Иттрий, скандий, лантан и лантоноиды составляют группу РЗЭ, совместно встречающихся в природе. Иттрий применяется для легирования и рафинирования сплавов, в виде Y₂O₃ – в производстве цветных люминофоров, специального оптического стекла, катализаторов, огнеупоров, тиглей для плавки металлов, железоиттриевых и алюмоиттриевых гранатов, оксидных катодов. Иттрий применяется как конструкционный материал в ядерных реакторах, оксид иттрия (Y₂O₃) – для изготовления иттриевых ферритов для радиоэлектроники, счетно-решающих устройств и др.

Кроме того, оксид иттрия и другие оксиды РЗЭ используются для получения перспективных керамических материалов, главным образом – на основе Si₃N₄ и SiO. После высокотемпературной термообработки силикаты иттрия формируются на границах зерна, что при кристаллизации улучшает механические свойства материала и температуроустойчивость, поскольку силикаты иттрия имеют высокие температуры плавления и прочностные характеристики. Силикаты иттрия имеют несколько полиморфных модификаций, способных при определенных температурах переходить друг в друга [10–15].

Диаграмма состояния системы Y₂O₃-Al₂O₃--SiO₂ может быть представлена как совокупность

¹Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации

трех бинарных систем: $Y_2O_3-Al_2O_3$, $Y_2O_3-SiO_2$ и $Al_2O_3-SiO_2$. Система $Y_2O_3-Al_2O_3$ характеризуется наличием трех бинарных соединений: моноклинного $Y_4Al_2O_9$ (YAM), кристаллической фазы типа перовскита YAlO₃ (YAP) и кристаллов со структурой граната $Y_3Al_5O_{12}$ (YAG) – с молярными соотношениями $Y_2O_3:Al_2O_3$, равными 2:1, 1:1 и 3:5 соответственно. Поскольку данная система имеет ряд особенностей, существует большое количество версий ее фазовых диаграмм.

По данным из отечественных и зарубежных источников по исследованию иттрийалюминатной системы все три фазы плавятся конгруэнтно (в температурном интервале 1930–2030°С) и являются стабильными вплоть до температуры окружающей среды при охлаждении [12, 16–18]. Это не согласуется с современными, экспериментально проверенными данными о характере плавления YAP – плавление данного соединения при 1875°С происходит инконгруэнтно. Установлено также наличие обратимого фазового перехода YAM при 1377°С [19].

Для данной системы проведено большое количество экспериментальных исследований, но все еще остаются некоторые расхождения, касающиеся: характера процессов плавления и кристаллизации YAP и YAG, состава и температуры точки эвтектики, расположения линии ликвидус в области, обогащенной Y2O3, и термодинамической стабильности ҮАР при низких температурах. Некоторые исследователи полагают, что ҮАР разлагается при температурах ниже 1800-1400°С на YAM и YAG, в то время как большинство исследователей утверждают, что ҮАР является стабильной фазой в интервале - от температуры его плавления до температуры окружающей среды. По некоторым данным в этой системе образуются твердые растворы с общей формулой $Y_4Al_2(1-2x)Si_{2x}O_{9+x}$, где x может варьироваться от 0 до ~0,31 [16].

Бинарная система Y_2O_3 -SiO₂ была изучена Н.А. Тороповым и А.М. Бондарем. Диаграмма состояния системы показана на рис. 1 [17]. В данной системе известны три двойных соединения: Y_2O_3 ·SiO₂ – оксиортосиликат, $2Y_2O_3$ ·SiO₂ – ортосиликат и Y_2O_3 ·2SiO₂ – пиросиликат иттрия.

Соединение Y_2SiO_5 плавится конгруэнтно при 1980°С, а δ - $Y_2Si_2O_7$ – инконгруэнтно при ~1790°С. Соединение $2Y_2O_3$ · $3SiO_2$ устойчиво в температурной области 1350–1650°С. При 1650°С это соединение претерпевает распад с образованием смеси двух соединений: Y_2O_3 · SiO_2 и Y_2O_3 · $2SiO_2$, причем указанный процесс является обратимым [12, 17, 18].

В системе обнаружена область ликвации, которая граничит с полем кристобалита и ограничена изотермой, соответствующей 1700°С и интервалу концентраций 43–95% по массе (74,8– 98,6% мольн.) SiO₂. Критическая точка ликвации соответствует температуре 2200°С и составу: 20% по массе (6,22% мольн.) Y₂O₃ и 80% по массе (93,78% мольн.) SiO₂ [16].

Некоторыми исследователями в данной системе

было обнаружено соединение $Y_{9,33}(SiO_4)_6O_2$, имеющее структуру апатита. Однако химически чистое соединение $Y_{9,33}(SiO_4)_6O_2$ – нестабильно, но, как было установлено, может быть легко стабилизировано добавками анионов или катионов [12].

В системе Al₂O₃-SiO₂ присутствует только одно двойное соединение - муллит 3Al2O3·2SiO2, существующее при атмосферном давлении. По данным Н.Л. Боуэна и Дж.В. Грейга муллит плавится инконгруэнтно при 1870°С, разлагаясь на корунд и жидкость состава ~45% (по массе) SiO₂ и 55% (по массе) Al₂O₃. Более поздние исследования, проведенные советскими учеными Н.А. Тороповым и Ф.Я. Галаховым, показали, что выделение корунда при плавлении муллита (т. е. его инконгруэнтное плавление) наблюдается только в тех случаях, когда не предотвращается улетучивание кремнезема при высоких температурах их расплава муллитового состава. В условиях же, когда расплавы защищаются от улетучивания, муллит плавится конгруэнтно при 1910°С с образованием двух эвтектик.

Кроме того, муллит образует с корундом твердые растворы, область которых простирается от состава муллита ($3Al_2O_3 \cdot 2SiO_2$), соответствующего содержанию 71,8% (по массе) Al_2O_3 и 28,2% (по массе) SiO_2 , до предельного состава ($2Al_2O_3 \cdot SiO_2$), соответствующего содержанию ~78% (по массе) Al_2O_3 и 22% (по массе) SiO_2 . Данный структурный дефект может быть описан как $Al_2^{IV}(Al_{2+2x}^{IV} = Si_{2-2x})O_{10x}$, где x может варьироваться от 0,25 ($3Al_2O_3 \cdot SiO_2$) до 0,4 ($2Al_2O_3 \cdot SiO_2$). До сих пор не ясно, плавится ли муллит инконгруэнтно или конгруэнтно [12, 16, 17, 19].

Диаграмма состояния системы Y2O3-Al2O3--SiO₂ (рис. 2) состоит из 11 полей устойчивости следующих фаз: І - области двух стекол; ІІ - кристобалита; ІІІ – диорто-(пиро-)силиката иттрия (Y₂O₃·2SiO₂); IV – ортосиликата (2Y₂O₃·3SiO₂); V – оксиортосиликата (Y₂O₃ SiO₂); VI – оксида иттрия (Y₂O₃); VII – алюмината иттрия (2Y₂O₃·Al₂O₃); VIII – соединения типа перовскита (Y₂O₃·Al₂O₃); IX – соединения типа граната (3Y₂O₃·5Al₂O₃); Х – корунда; ХІ – муллита (3Al₂O₃·2SiO₂). Тройных соединений в данной системе пока не обнаружено, эвтектическая температура составляет 1370-1387°С [16]. На диаграмме состояния иттрийалюмосиликатной системы установлено восемь тройных точек, две из которых являются эвтектическими и шесть - реакционными. Все они представлены в табл. 1.

Довольно сложным в данной системе является стеклофазы образование И ee последующая кристаллизация. Первые работы в области изучения системы Y₂O₃-Al₂O₃-SiO₂, принадлежащие А.М. Бондарю и Ф.Я. Галахопоказали, что составы, способные вy, стекло, образовывать лежат в области, обогащенной SiO₂. Исходя из литературных

Рис. 1. Диаграмма состояния системы Y2O3-SiO2

Рис. 3. Область стеклообразования в системе Y_2O_3 - Al_2O_3 - SiO_2 : \circ – составы, образующие стекло; • – составы, содержащие стеклофазу; + – частично кристаллизующиеся составы; ×– легко кристаллизующиеся составы [19]

Рис. 4. Область стеклообразования в системе Y_2O_3 -Al₂O₃-SiO₂: I – составы, образующие стекло; II – составы, содержащие стеклофазу; III – составы, не образующие стекло [18]

Таблица 1

	Процесс, проте- кающий в инва- риантных точках	Темпера- тура, °С	Состав, % (по массе)		
Фаза			Y_2O_3	Al ₂ O ₃	SiO ₂
$Y_2O_3+2Y_2O_3$ ·Al_2O_3+Y_2O_3·SiO_2+жидкость	Эвтектика	1840	80,5	8,5	11,0
$2Y_2O_3$ ·Al_2O_3+Y_2O_3·SiO_2+Y_2O_3·SiO_2+жидкость		1680	70,0	14,0	16,0
Y_2O_3 ·Al_2O_3+3 Y_2O_3 ·5Al_2O_3+ Y_2O_3 ·SiO_2+жидкость	D	1600	60,0	16,6	23,4
Y_2O_3 ·SiO ₂ +2 Y_2O_3 ·3SiO ₂ +3 Y_2O_3 ·5Al ₂ O ₃ +жидкость		1565	56,5	18,2	25,3
$3Y_2O_3$ ·5Al_2O_3+2Y_2O_3·3SiO_2+5Al_2O_3+жидкость	Реакция	1400	45,0	24,5	30,5
Al ₂ O ₃ +3Al ₂ O ₃ ·2SiO ₂ +2Y ₂ O ₃ ·3SiO ₂ +жидкость		1385	41,4	25,8	32,8
$3Al_2O_3 \cdot 2SiO_2 + Y_2O_3 \cdot 2SiO_2 + Y_2O_3 \cdot 3SiO_2 + жидкость$		1360	34,5	21,5	44,0
3Al ₂ O ₃ ·2SiO ₂ +Y ₂ O ₃ ·2SiO ₂ +SiO ₂ +жидкость	Эвтектика	1345	32,0	22,0	46,0

Инвариантные точки системы Y2O3-Al2O3-SiO2 [16]

Таблица 2 Физические свойства соединений, образующихся в иттрийалюмосиликатной системе [17, 18, 21–31]

Соединение	Температура плавления, °C Характер плавления	Характер	Плотность, г/см ³	Показатель преломления		ТКЛР:α·10 ⁷ , К ⁻¹	
		плавления		ng	np		
$3Al_2O_3 \cdot 2SiO_2$	1870	Конгруэнтный	3,17	1,654	1,642	_	
Y ₂ SiO ₅	1980	Конгруэнтный	4,45	1,825	1,807	50-77	
$Y_2Si_2O_7$	1790	Инконгруэнтный	4,30-4,11	1,745	1,737	22–39	
$2Y_2O_3 \cdot 3SiO_2$	Разлагается в твердом состоянии при 1650		_	1,780	1,765	_	
Y ₃ Al ₅ O ₁₂	1930	Конгруэнтный	4,57-5,69	1,832-1,873		82	
$Y_4Al_2O_9$	1930-2030	Конгруентный	-	_		-	
YAlO ₃	1875	Инконгруентный	4,88	_		20-100	

62

данных на диаграмме состояния может быть выделена область стеклообразования (рис. 3 и 4) [19, 20]. Однако данные различных работ часто противоречивы, поэтому процессы образования и кристаллизации стекол в системе Y₂O₃-Al₂O₃-SiO₂ имеют большой потенциал для исследований [18].

Следует отметить, что если в двойных силикатных системах с РЗЭ образуются значительные области расслаивания и получение прозрачных стекол затруднено, то с введением глинозема, наряду с ликвационной областью, простирающейся в тройную систему до 5% (по массе) Al₂O₃, существуют области опалесцирующих стекол при содержании 8% (по массе) Al₂O₃, а при более высоком содержании Al₂O₃ появляются составы прозрачных стекол [16].

В настоящее время появился большой интерес к изучению составов тройной системы. Материалы, получаемые на основе иттрийалюмосиликатной системы, находят все более широкое применение в различных областях промышленности благодаря своим уникальным физикомеханическим свойствам. Значения данных свойств определяются, прежде всего, фазовым составом готового изделия – задав конечные свойства материала, можно определить фазы, которые в конечном итоге должны преобладать в готовом изделии, и, наоборот, зная фазовый состав материала, можно оценить значение его свойств.

В табл. 2 представлены физические и кристаллохимические характеристики некоторых соединений, образующихся в иттрийалюмосиликатной системе.

Как видно из данных табл. 3, основные фазы, кристаллизующиеся в системе Y₂O₃–SiO₂, обладают высокими эксплуатационными характеристиками: высокими температурами плавления, низкими значениями температурного коэффициента линейного расширения.

Использование высокотемпературных материалов в газовых турбинах двигателей требует не только того, чтобы материал был способен противостоять воздействию высоких температур, но также он должен удовлетворять механическим свойствам во время использования при этих температурах, в том числе в циклических процессах [32, 33].

В неокислительной среде механические свойства керамики, армированной углеродными волокнами, сохраняются при температурах – до 2000°С. Фактор, который в настоящее время запрещает применение таких материалов в газовых турбинах двигателей, – это окисление углеродного волокна при температурах ~400°С. Чтобы предотвратить окисление, требуется устранить доступ кислорода к углеродному волокну.

Следовательно, необходимы внешние покрытия, способные предотвратить окисление

керамики, армированной углеродным волокном, в интервалах температур до 1600°С. Используемые покрытия крайне склонны к растрескиванию, особенно при эксплуатации в условиях термического цикла, так как они имеют низкий ТКЛР. Таким образом, данные покрытия состоят из различных мультислоев, разработанных, чтобы залечивать трещины путем формирования стекловидных фаз при взаимодействии с кислородом. В настоящее время силикаты иттрия являются перспективным материалом для использования в качестве высокотемпературных покрытий [34–37].

Соединение Y_2SiO_5 встречается в виде двух модификаций (X₁ и X₂). Высокотемпературная фаза (X₂-фаза) силиката иттрия (Y₂SiO₅) обладает рядом преимуществ: хорошим сопротивлением эрозии и пониженной кислородной проходимостью при высоких температурах, что дает возможность использовать соединение Y₂SiO₅ в антиокислительных зашитных покрытиях для С/SiC- и SiC/SiC-композитов. Однако ТКЛР у соединения Y₂SiO₅ выше, чем у карбида кремния, поэтому и возникают микротрещины вдоль границ раздела фаз. В связи с этим необходимо высокое процентное содержание Y2Si2O7 в покрытиях для максимального приближения по ТКЛР с соединением SiC и для обеспечения стабильности. Другие благоприятные эффекты, наблюдающиеся при добавлении Y2Si2O7, - это уменьшение температуры синтеза и степени пористости покрытий [31, 36].

Соединение $Y_2Si_2O_7$ имеет четыре различные модификации (α , β , γ и δ в порядке повышения температуры) [17]. Авторы С.Н. Drummond и W.E. Lee отмечают наличие шести модификаций дисиликата (y, α , β , γ , δ и возможно z) [12]. Фазовые превращения между вышеуказанными модификациями происходят по следующей схеме [12]:

Фазовое превращени	e α τ	5°C 144 ➡β ▼	$5^{\circ}C \qquad 153$ $\longrightarrow \gamma \qquad \overline{\leftarrow}$	δ°C 177:	5°С <u>→</u> L (жидкость)
Плотность	(триклин- ная)	(моно- клинная)	(моно- клинная)	(ортором- бическая)	
г/см ³	4,30	4,03	4,04	4,11	

В табл. 3 указаны объемные изменения, связанные с фазовыми переходами между полиморфными модификациями дисиликата иттрия при нагревании.

Структуры Y₂SiO₅ и Y₂Si₂O₇ представлены на рис. 5. Дисиликат иттрия (Y₂Si₂O₇) является тугоплавким соединением и устойчив В окислительной атмосфере. Из шести полиморфных модификаций ү-Ү2Si2O7 является высокотемпературной фазой, устойчивой в области температур 1445–1535°С, имеет низкий ТКЛР $(3,9\cdot10^{-6} \text{ K}^{-1} \text{ в интервале температур})$ теплопроводность 200–1300°C) и низкую (<3 Вт/(м·К) при температуре >300°С). Кремний-(Si₃N₄, керамика содержащая SiC) И керамоматричные композиты, упрочненные

Рис. 5. Структуры Y₂SiO₅(*a*) и Y₂Si₂O₇(*б*) [21]: • – Y; • – Si; • – О

Рис. 6. Микроструктуры (СЭМ) поверхности (а) и поперечного сечения (б) покрытия на основе силикатов иттрия [35]

волокнами SiC, обладают превосходной жаропрочностью и износостойкостью, но в присутствии щелочей усиливается коррозия таких материалов из-за растворения защитной пленки SiO₂ на поверхности, а γ -Y₂Si₂O₇ позволяет предотвратить воздействие щелочей и влажной атмосферы [38, 39].

Высокая температура плавления, низкая пропускаемость кислорода, ТКЛР, близкий по значению к ТКЛР карбида кремния, – все это делает силикаты иттрия превосходными компонентами для защиты материалов на основе карбида кремния от воздействия высоких температур в окислительной атмосфере. Микроструктуры такого покрытия представлены на рис. 6 [35].

По данным работ [36, 37] покрытия на основе силикатов иттрия демонстрируют хорошую антиокислительную способность и противостояние тепловому удару. Например, у С/С- и С/SiC-композитов с покрытием, нанесенным гидротермальным электрофоретическим методом температуре, потери массы при низкой составляют только 0,32 10⁻³ г/см² после окисления на воздухе при 1500°С в течение 35 ч [37]. В случае покрытий, нанесенных метолом плазменного напыления, испытания образцов показали, что без покрытия потери массы C/SiC-композитов после 20 ч термообработки при 1500°С в окислительной атмосфере составили 20%, а потери массы образцов с покрытием после воздействия высокотемпературной окислительной среды от 10 до 73 ч составили только 1,93%. До 10 ч воздействия потери массы образцов не наблюдалось [36].

В современном мире особое значение приобретает технология стеклянных микросфер для развития средств доставки источников радиоактивного излучения к внутренним органам человека. Это обусловлено тем, что онкологические заболевания – самая распространенная причина смертности в мире после сердечно-сосудистых заболе-

NºS6 2014

ваний. Например, рак печени занимает пятое место по распространенности в мире у мужчин и восьмое место - у женщин, при этом неоперабельными являются 75-90% всех опухолей печени. Альтернативным способом лечения онкологических заболеваний органов является локальная радиотерапия органа, подвергшегося заболеванию (радионуклидная терапия или брахитерапия). Эта технология основана на «доставке» лечебной радиации непосредственно к опухоли для ее полного разрушения посредством радиоактивного излучения. Селективная внутренняя радиотерапия позволяет уничтожать раковые клетки не внешним источником излучения, а внутренним, доставленным непосредственно к больному органу. В случае с опухолями печени и поджелудочной железы требуется эмболизация сосудов, питающих пораженные органы. Именно поэтому наиболее удачной формой для введения микроисточников радиации являются сферы, размеры которых сопоставимы с размерами кровеносных сосудов. Микросферы из иттрийалюмосиликатного стекла, разработанные группой российских ученых, предназначены для радиотерапии первичных и метастатических опухолей печени, а также злокачественных новообразований внутренних органов верхнего отдела брюшной полости.

Перед введением в организм человека микросферы подвергают нейтронному облучению в ядерном реакторе, при котором в иттрийалюмосиликатном стекле образуется короткоживущий изотоп Y⁹⁰ с периодом полураспада 64,1 ч. Этого времени достаточно для того, чтобы доставить препарат в клинику и провести операцию. Изотоп ⁰ облалает удобными с точки зрения терапевти- Y^9 ческого применения ядерно-физическими характеристиками: энергия β-излучения 2,28 МэВ, максимальный пробег в мягких тканях 12 мм со средней длиной проникновения излучения 2,8 мм. Входящие в состав стекла оксиды Al_2O_3 и SiO_2 не образуют долгоживущих изотопов при облучении и обеспечивают высокую химическую стойкость препарата во внутренней среде организма. Сходная технология может быть использована для получения большого разнообразия микросфер для ядерной медицины [40-42].

Таким образом, иттрийалюмосиликатные составы, обладающие уникальным набором физико-химических свойств и эксплуатационных характеристик, являются перспективными материалами для использования их в качестве высокотемпературных антиокислительных покрытий для перспективных композитов типа C/SiC и SiC/SiC, а также в ядерной медицине.

ЛИТЕРАТУРА

- Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года //Авиационные материалы и технологии. 2012. №S. С. 7–17.
- Гращенков Д.В., Солнцев С.Ст., Щеголева Н.Е., Наумова А.С., Гапонов Б.Н. Стеклокерамический композиционный материал //Авиационные материалы и технологии. 2012. №S. С. 368–372.
- Каблов Е.Н., Гращенков Д.В., Исаева Н.В., Солнцев С.С. Перспективные высокотемпературные керамические композиционные материалы //Российский химический журнал. 2010. Т. LIV. №1. С. 20–24.
- Севастьянов В.Г., Симоненко Е.П., Симоненко Н.П., Кузнецов Н.Т. Синтез высокодисперсного тугоплавкого оксида циркония–гафния–иттрия с использованием золь-гель техники //Журнал неорганической химии. 2012. №57(3). С. 355–361.
- Симоненко Е.П., Игнатов Н.А., Симоненко Н.П., Ежов Ю.С., Севастьянов В.Г., Кузнецов Н.Т. Синтез высокодисперсных сверхтугоплавких карбидов тантала-циркония Ta₄ZrC₅ и тантала-гафния Ta₄HfC₅ через золь-гель технику //Журнал неорганической химии. 2011. №56(11). С. 1763–1769.
- Способ получения высокодисперсных тугоплавких карбидов для покрытий и композитов на их основе: пат. 2333888 Рос. Федерация; опубл. 20.09.2008.

- Способ получения нанодисперсных оксидов: пат. 2407705 Рос. Федерация опубл. 27.12.2010.
- Симоненко Е.П., Симоненко Н.П., Севастьянов В.Г., Гращенков Д.В., Кузнецов Н.Т., Каблов Е.Н. Функционально градиентный композиционный материал SiC/(ZrO₂-HfO₂-Y₂O₃), полученный с применением золь-гель метода //Композиты и наноструктуры. 2011. №4. С. 52–64.
- 9. Севастьянов В.Г., Симоненко Е.П., Игнатов Н.А., Ежов Ю.С., Симоненко Н.П., Кузнецов Н.Т. Низкотемпературный синтез нанодисперсных карбидов титана, циркония и гафния //Журнал неорганической химии. 2011. Т. 56. №5. С. 707–719.
- Lee W.E., Hilmas G.E. Microstructural changes in β-silicon nitride grains upon crystallizing the grainboundary glass //J. Amer. Ceram. Soc. 1989. V. 72. №10. P. 1931–1937.
- Becerro A.I., Escudero A., Florian P., Massiot D., Albaa M.D. Revisiting Y₂Si₂O₇ and Y₂SiO₅ polymorphic structures by ⁸⁹Y MAS-NMR spectroscopy //J. of Solid State Chemistry. 2004. №177. P. 2783–2789.
- Drummond C.H., Lee W.E. Cristallization and Characterization of Y₂O₃-SiO₂ //Glasses Ceram. Eng. Sci. Proc. 1988. V. 9. №9-10. P. 1343-1354.
- Cock A.M., Shapiro I.P., Todd R.I., Roberts S.G. Effects of Yttrium on the Sintering and Microstructure of Alumina–Silicon Carbide «Nanocomposites» //J. Am. Ceram. Soc. 2005. V. 88. №9. P. 2354–2361.

- Fukuda K., Matsubara H. Thermal Expansion of δ–Yttrium Disilicate //J. Amer. Ceram. Soc. 2004. V. 87. №1. P. 89–92.
- Каблов Е.Н., Оспенникова О.Г., Вершков А.В. Редкие металлы и редкоземельные элементы – материалы современных и будущих высоких технологий //Труды ВИАМ. 2013. №2. Ст. 01 (viam-works.ru).
- Kolitsch U., Seifert H.J., Ludwig T., Aldinger F. Phase equilibria and crystal chemistry in the Y₂O₃-Al₂O₃--SiO₂ system //J. of Materials Research. 1999. №14. V. 2. P. 447-455.
- Торопов Н.А. и др. Диаграммы состояния силикатных систем: Справочник. М.-Л.: Наука. 1965. 258 с.
- Harrysson R., Vomacka P. Glass formation in the system Y₂O₃–Al₂O₃–SiO₂ under conditions of laser melting //J. of the European Ceramic Society. 1994. №14. P. 377–382.
- Courcot E., Rebillat F., Teyssandier F., Louchet-Pouillerie C. Thermochemical stability of the Y₂O₃–-SiO₂ system //J. of the European Ceramic Society. 2010. V. 30. P. 905–910.
- Sainz M.A., Osendi M.I., Miranzo P. Protective Si-Al– -O-Y glass coatings on stainless steel in situ prepared by combustion flame spraying //Surface & Coatings Technology. 2008. №202. P. 1712–1717.
- Рабухин А.И., Савельев В.Г. Физическая химия тугоплавких неметаллических и силикатных соединений. М.: ИНФРА-М. 2008. 296 с.
- Торопов И.А., Бондарь И.А., Лазарев А.Н., Смолин Ю.И. Силикаты редкоземельных элементов и их аналоги. Л.: Наука. 1971. 230 с.
- 23. www.mincryst.ru
- 24. Shima J.B., Yoshikawa A., Nikl M., Soloviev N., Pejchal J., Yoon D.H., Fukuda T. Growth and characterization of Yb³⁺-doped YAIO₃ fiber single crystals grown by the modified micro-pulling-down method //J. of Crystal Growth. 2003. №256. P. 298–304.
- Liang Wu, Guanghua Liu, Jiangtao Li, Bin He, Zengchao Yang, Yixiang Chen. Dependence of glassforming ability on starting compositions in Y₂O₃-Al₂O₃--SiO₂ system //Ceramics – Silikáty. 2011. V. 55. №3. P. 228–231.
- 26. Дель Пино К.Х.С. Термическое разложение и некоторые физико-химические свойства кристаллогидратов нитрата иттрия. Автореф. дис. к.х.н. М.: РХТУ им. Менделеева.1981. 16 с.
- Yahong Zhang, Alexandra Navrotsky. Thermochemistry of Glasses in the Y₂O₃-Al₂O₃-SiO₂ System //J. Am. Ceram. Soc. 2003. V. 86. №10. P. 1727-1732.
- Shen Xiaoyi, Zhai Yuchun. Preparation and optical properties of Y₂O₃/SiO₂ powder //Rare Metalls. 2011. V. 30. №1. P. 33–38.
- MacLaren I., Richter G. The structure and possible origins of stacking faults in gamma-yttrium disilicate //Philosophical Magazine. 2009. V. 89. №2. P. 169–181.
- Ya-Qin Wang, Jian-Feng Huang, Li-Yun Cao, Xie-Rong Zeng. Direct Preparation of Y₂SiO₅ Nanocrystal-

lites by a Microwave Hydrothermal Process //ISRN Nanotechnology. 2011. V. 1. P. 1–5.

- Ziqi Sun, Meishuan Li, Yanchun Zhou. Thermal properties of single-phase Y₂SiO₅ //J. of the European Ceramic Society. 2009. №29. P. 551–557.
- 32. Ивахненко Ю.А., Бабашов В.Г., Зимичев А.М., Тинякова Е.В. Высокотемпературные теплоизоляционные и теплозащитные материалы на основе волокон тугоплавких соединений //Авиационные материалы и технологии. 2012. №S. С. 380–385.
- Солнцев Ст.С., Розененкова В.А., Миронова Н.А. Высокотемпературные стеклокерамические покрытия и композиционные материалы //Авиационные материалы и технологии. 2012. №S. С. 359–368.
- Huang Jian-Feng, Zeng Xie-Rong, Li He-Jun, Xiong Xin-Bo, Fu Ye-Wei, Huang Min. SiC/yttrium silicate multi-layer coating for oxidation protection of carbon/ carbon composites //J. of Materials science. 2004. №39. P. 7383–7385.
- 35. Liu Miao, Huang Jianfeng, Zhang Yutao, Deng Fei, Cao Liyun, Wu Jianpeng. Phase, microstructure, and oxidation resistance of yttrium silicates coatings prepared by a hydrothermal electrophoretic deposition process for C/C composites //J. Coat. Technol. Res. 2008. V. 10. №1007. P. 128–136.
- Webster J.D., Westwood M.E., Hayes F.H. Oxidation Protection Coatings for C/SiC Based on Yttrium Silicate //J. Eur. Ceram. Soc. 1998. V. 18. P. 2345–2350.
- Aparicio M., Duran A. Oxidation protection of SiC (C/SiC) composite material by combination of yttrium silicates and silica coatings //J. of Am. Cer. Society. 2000. V. 83. №6. P. 1351–1355.
- Ziqi Sun, Meishuan Li, Yanchun Zhou. Kinetics and Mechanism of Hot Corrosion of γ-Y₂Si₂O₇ in Thin-Film Na₂SO₄ Molten Salt //J. Am. Ceram. Soc. 2008. №91 (7). P. 2236–2242.
- 39. Лебедева Ю.Е., Попович Н.В., Орлова Л.А. Защитные высокотемпературные покрытия для композиционных материалов на основе SiC //Труды ВИАМ. 2013. №2. Ст. 06 (viam-works.ru).
- 40. Sigaev V.N., Atroschenko G.N., Savinkov V.I., Sarkisov P.D., Babajew G., Lingel K., Lorenzi R., Paleari A. Structural rearrangement at the yttrium-depleted surface of HCl-processed yttrium aluminosilicate glass for ⁹⁰Y-microsphere brachytherapy //Materials Chemistry and Physics. 2012. V. 1. №133. P. 24–28.
- Атрощенко Г.Н., Савинков В.И., Палеари А., Саркисов П.Д., Сигаев В.Н. Стеклообразные микросферы для ядерной медицины с повышенным содержанием оксида иттрия //Стекло и керамика. 2012. №2. С. 3–7.
- 42. Sigaev V.N., Atroschenko G.N., Savinkov V.I., Paleari A.I., Sinyukov V., Levchuk A.V. Glass microspheres in the Y₂O₃-Al₂O₃-SiO₂ system with a high content of yttrium oxide /In: Proceedings of 2011 International Congress on Engineering and Technology. IEEE. China. 2011. V. 4. P. 323–325.