УДК 678.7

Р.В. Акатенков, В.М. Алексашин, И.В. Аношкин, А.Н. Бабин, В.А. Богатов, В.П. Грачев, С.В. Кондрашов, В.Т. Минаков, Э.Г. Раков

КРИТЕРИЙ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ФУНКЦИАЛИЗОВАННЫХ УГЛЕРОДНЫХ НАНОТРУБОК ДЛЯ УЛУЧШЕНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ЭПОКСИДНЫХ СМОЛ

Исследовано влияние малых концентраций функциализованных углеродных нанотрубок (фт-МУНТ) на изменение физико-механических и термомеханических свойств эпоксидных смол. На основании анализа различных композиций установлено, что при модификации эпоксидных матриц функциализованными нанотрубками параметр v_{ϕ}/v_x (количество узлов физической сетки зацепления/ количество узлов химических сшивок) не зависит от состава модифицируемой композиции и концентрации модификатора, а определяется лишь типом фт-МУНТ и режимом их модификации. При этом величина эффекта модификации определяется тем, насколько баланс между количеством физических и химических сшивок в модифицированной матрице близок к оптимальному для реализации максимального значения прочности каждой конкретной композиции.

Ключевые слова: эпоксидные олигомеры, углеродные нанотрубки.

Углеродные нанотрубки (УНТ) рассматриваются как перспективный наполнитель полимерных материалов уже более 10 лет [1], однако заметного по масштабу промышленного их применения так и не достигнуто. Судя по опубликованным работам, использование УНТ для улучшения служебных свойств композиционных материалов основывается на реализации собственных рекордных механических свойств УНТ, в результате чего ожидается пропорциональное влияние УНТ на свойства конечного композита [2–5].

В подавляющем большинстве известных работ заметные положительные изменения от добавления нанотрубок достигаются при концентрациях наполнителя порядка нескольких процентов [6]. Отмечается, что количество УНТ порядка 1–5% (по массе) оказывает сильное влияние на механические свойства и температуру стеклования композита, значительно увеличивает его электро- и теплопроводность, повышает термостабильность, а также улучшает трибологические свойства. Введение 1% (по массе) однослойных УНТ повышает теплопроводность эпоксидной смолы на 125% при комнатной температуре [7].

Масштабного влияния УНТ на полимерную матрицу и полного раскрытия потенциальных свойств нанотрубок можно добиться только при условии равномерного распределения их по матрице полимера и при обеспечении оптимальной прочности связи полимер–УНТ. Анализ литературных данных [8] и опыт работы приводят к пониманию необходимости применения химического модифицирования внешней поверхности УНТ. Однослойные УНТ, на которые возлагали большие надежды в начале работ по композитам с нанотрубками [9], оказываются в этом случае неприменимыми из-за потери устойчивости основного углеродного каркаса и образования большого количества дефектов при применении производительных методов химического модифицирования. Особую роль приобретают двухслойные УНТ, лишенные указанных недостатков вследствие сохранения внутреннего слоя. В работе [8] показано, что для существенного (на 45%) повышения трещиностойкости эпоксидной смолы необходимо вводить 0,3% (по массе) двухслойных УНТ. В работах [10,11] показано, что существенного изменения физико-механических характеристик полимерной матрицы можно добиться путем введения функциализованных углеродных нанотрубок (фт-УНТ) в количествах 0,03–0,06%. Понятно, что при столь малых концентрациях УНТ увеличение механических свойств уже не может быть объяснено аддитивностью свойств нанокомпозита.

В данной работе исследовано влияние такого типа структурирования на физикомеханические характеристики эпоксидных матриц.

Исходные материалы, методика приготовления нанокомпозитов, методы исследования

В работе использовали УНТ фирмы «Гранат», полученные каталитическим пиролизом СН₄ в присутствии H₂ при 940–960°С. Первичный продукт отмывали от катализатора горячей концентрированной HCl, промывали дистиллированной водой и сушили. Параметры тонких функциализованных многослойных углеродных нанотрубок (фт-МУНТ) регулировали составом катализатора.

По данным ПЭМ исследования, трубки фт-МУНТ-2 имеют 1–3 слоя, а трубки фт-МУНТ-5: 2–5 атомных слоев. Величина их удельной поверхности составляет соответственно 700–900 м²/г и 600–700 м²/г. По данным элементного анализа, фт-МУНТ содержали не менее 93% (по массе) углерода и 3–7% (по массе) Со, заключенного во внутреннюю полость.

В исследованиях также использовали трубки фирмы «Bayer», которые имеют диаметр 15–35 нм. Величина их удельной поверхности составляет 150–250 м²/г.

Для функциализации, УНТ обрабатывали смесью HNO₃ (68% по массе) и H₂SO₄ (98% по массе), взятых в объемном отношении 1:3. Выход функциализованных трубок составил 50–60%. По данным ИК-спектроскопии, фт-МУНТ содержат гидроксильные группы.

Получение нанокомпозитов на основе эпоксидных смол с фт-МУНТ проводили следующим образом: эпоксидную композицию с отвердителем диаминодифенилсульфоном (ДАДФС), в стехиометрическом соотношении, растворяли в растворе ацетона (50% по массе), диспергировали в течение 60 мин с помощью диспергатора IKA ULTRA-TURRAX T-25, а затем смесь диспергировали в ультразвуковой ванне в течение 40 мин. Ацетон удаляли вакуумированием при температуре 100°С в течение 1 ч. Нанокомпозиты отверждали по режимам, которые обеспечивают степень конверсии не меньше 96–98%.

Термомеханические характеристики образцов связующего определяли методом ТМА на модуле SDTA-840 на приборе фирмы «Metler Toledo». Исследования проводили в динамических условиях со скоростью нагрева 5°С/мин при воздействии сжимающей переменной нагрузки от 0,1 до 0,3 H с частотой 1 Гц.

Определяли следующие физико-механические характеристики эпоксидной полимерной матрицы:

- ударную вязкость (по ГОСТ 4647-80);

– прочность при растяжении (по ГОСТ 11262-80).

Начальная стадия полимеризации эпоксидной системы, а также контроль равномерности диспергирования фт-МУНТ по объему изучена с помощью просвечивающего электронного микроскопа JEOL JEM 100С.

Экспериментальные результаты

В табл. 1 приведены составы, конкретные режимы отверждения композитов, их прочность и удлинение в условиях растяжения.

В качестве параметров, характеризующих структуру полимерной матрицы, выбраны T_c – температура стеклования и v_d/v_x – отношение количества узлов физической

сетки зацепления к количеству узлов химических сшивок. Так как величина динамического модуля упругости сжатия при $T < T_c$ определяется как «физическими», так и «химическими» сшивками, а в области высокоэластического состояния «работают» лишь узлы химических сшивок, то величину v_d/v_x можно вычислить по формуле:

$v_{\phi}/v_{x} = E_{T=25^{\circ}C}/E_{B.3}-1,$

где $E_{T=25^{\circ}C}$ и $E_{\text{в.э}}$ – значения динамического модуля упругости сжатия при 25°С и при температуре, превышающей $T_{\text{с}}$.

Таблица 1

V елории ий	Модифицированных функциализованными наногрубками (ф1-1413 11)									Молифика	
условный	KOMEO2H-	отвержнения	Своиства к			молифицирорациой				тор**	
компози-	пий	отверждения	<u>с</u>	сз моди	фикаци Т	и <u>v./v</u>	σ.	с	т Т	0и /у	(концентра-
шии	цпп		0, МПа	с, %	°C	v _{\phi} /v _x	0, МПа	с, %	°C	v _ф /v _x	шия. %)
1	Эл-22	120°C 1 H +	92	48	190	0.38	95	51	185	0.57	фт-MVHT-2
1	ЛАЛФС	$\pm 180^{\circ}C 4 \pi$	12	-,0	170	0,50)5	5,1	105	0,57	(0.05)
		10000, 44	07	6.4	176	0.49	0.4	4.1	170	0.5	1- MVUT 2
2	ЭД-22(0,9), ЛЭГ 1(0,1)	$120^{\circ}C, 14 +$	97	0,4	170	0,48	64	4,1	172	0,5	(0.05)
	$\Pi \Delta \Pi \Phi C$	+ 180°C, 4 4									(0,05)
	длдФС	120°C 1 m	96	61	170	0.59	96	61	176	0.58	фт-MVHT-2
		120 C, 19 +	70	0,1	177	0,57	70	0,1	170	0,50	(0.05)
		+130 C, 1 4 +									(0,05)
3	VП 637(85)	+180 C, 4 4					117	5.1	160	0.6	dr MVHT 2
5	$V\Pi_{-610(15)}$	120 C, 19 H	_	_	_	_	117	5,1	100	0,0	(0.05)
	ЛАЛФС	+ 100 C, 4 4									(0,05)
4	Эл-22,	120°С. 1 ч +	75	3.0	200	0.32	90	4.2	197	0.56	фт-МУНТ-2
	ЭХД,	+ 180°С. 4 ч				<i>,</i>		,		· ·	(0,05)
	ДАДФС +	,									
	+ избыток										
	отвердителя										
	(20%)										
5	DER-330*,	120°С, 1 ч +	_	_	_	-	94	6,2	199	0,36	фт-МУНТ-5
	ДАДФС	+ 180°С, 4 ч									(0,05)
		10000	0.4	5.16	104	0.25	100		102	0.26	1 100007 5
		120°С, 1 ч +	94	5,16	194	0,35	100	5,7	192	0,36	фт-МУН1-5
		+ 150°С, 1 ч +									(0,05)
		+ 180°С, 4 ч									
		Towa					05	57	108	0.26	der MVHT 5
		10 же	_	_	_	_	95	5,7	196	0,50	(0.1)
											(0,1)
		-«-	_	_	_	_	88	5.1	190	0.37	фт-МУНТ-5
								- ,-		•,• ·	(0,5)
6	DER-330*(65),	120°С, 1ч +	81	3,5	208	0,2	88	4	202	0,21	фт-МУНТ
	ЭХД(35),	+ 150°С, 1 ч +									«Bayer»
	ДАДФС	+ 180°С 4 ч									
		120°С, 1 ч +	81	3,2	196	0,21	96	4,4	190	0,19	фт-МУНТ
		+ 150°С, 1 ч +									«Bayer»
		+ 170°С, 4 ч									

Изменение термо- и физикомеханических свойств эпоксидных композиций,	
молифицированных функциализованными нанотрубками (фт-МУНТ)	

* Массовая доля эпоксидных групп DER-330: 23,5%.

** Условные обозначения «2», «5» и «Вауег» - тип нанотрубок.

В рамках представлений, развитых на примере (мет)акриловых сетчатых полимеров в монографии [12], роль физических узлов сетки зацепления сводится к более равномерному перераспределению внешней нагрузки между узлами поперечных химических сшивок, которые обеспечивают прочностные характеристики полимера. Прочность материала, в зависимости от параметра v_{ϕ}/v_x , имеет экстремальный характер. При увеличении числа поперечных сшивок прочность растет и достигает максимума. Дальнейший рост числа химических сшивок приводит к «замораживанию» релаксационных процессов и, как следствие, к резкому падению прочности.

Таким образом, изменение параметра v_{ϕ}/v_x позволяет сместить баланс между количеством физических и химических сшивок, достигнутый в результате модификации эпоксидной матрицы фт-МУНТ.

Приведенные данные свидетельствуют, что в случае полного отверждения полимерной матрицы температура стеклования нанокомпозита (по сравнению с характеристиками исходных образцов) незначительно уменьшается или остается неизменной. Величина динамического модуля упругости сжатия уменьшается на 5–10%.

При модификации эпоксидных матриц функциализованными нанотрубками параметр v_{ϕ}/v_x не зависит от состава модифицируемой композиции и концентрации модификатора, а определяется лишь типом фт-МУНТ и режимом их модификации.

При этом величина эффекта модификации определяется тем, насколько баланс между количеством физических и химических сшивок в модифицированной матрице близок к оптимальному для реализации максимального значения прочности каждой конкретной композиции.

Так, увеличение параметра v_{ϕ}/v_x с 0,32–0,38 (композиции №1 и №4 – см. табл. 1) до 0,56–0,57 приводит к увеличению прочности и удлинения на 5–15%. В случае когда величины баланса между физическими и химическими узлами для модифицированных и исходных композиций близки (композиции №2 и №5 – см. табл. 1), модификация не приводит к изменению физико-механических свойств. Для композиции №6 (см. табл. 1) модификация приводит к уменьшению количества химических узлов (температура стеклования снижается на 6–7°С), что при практически равном балансе химических и физических узлов обеспечивает повышение прочности и удлинения на 15 и 20% соответственно. Наряду с повышением прочности и удлинения в модифицированных композициях наблюдается повышение ударной вязкости разрушения до 30%. Повышение прочности достигается благодаря увеличению деформации при практически равном модуле упругости.

Необходимо отметить, что существенное изменение свойств наблюдается при малых (0,05%) концентрациях углеродных нанотрубок.

В табл. 2 приведены результаты модификации композиции DER-330/ДАДФС функциализованными нанотрубками с различной удельной поверхностью S_{yg} (массовая доля эпоксидных групп DER-330: 20%).

Таблица 2

	pustin month in a	- -	mano pjoon					
Параметр	Значения параметров для композиции							
	исходной	с модификаторами*						
	(без модифицирования)	фт-МУНТ-2	фт-МУНТ-5	фт-МУНТ «Bayer»				
$S_{ m yd}$, м $^2/\Gamma$	-	850	500	250				
v_{ϕ}/v_{x}	0,39	0,57	0,37	0,17				
$T_{\rm c}$, °C	193	193	192	192				
σ, МПа	76	89	77	78				
ε, %	3.7	5,1	3.8	3,9				

Модификации композиции DER-330/ДАДФС различными типами функциализованных нанотрубок

* Обозначения «2», «5» и «Вауег» (см. табл. 1) – тип нанотрубки.

На основании представленных данных можно сделать предположение о возможной корреляции сдвига баланса между физическими и химическими узлами в сторону увеличения количества физических узлов сетки зацепления с увеличением удельной поверхности модифицирующих фт-МУНТ.

Обсуждение экспериментальных результатов

Как следует из представленных результатов, изменение физико-механических параметров связано с изменением баланса между количеством физических и химических сшивок в эпоксидной матрице. При этом величина отношения количества физических и химических узлов коррелирует с величиной удельной поверхности углеродных нанотрубок, использованных для модификации.

Рис. 1. Дифрактограммы рентгеновского излучения образцов функциализованных углеродных нанотрубок (1), исходной (2) и модифицированных фт-МУНТ (3) полимерных матриц ЭД-22/ДАДФС (*d* – характеристический размер ячейки)

Возможный механизм наблюдаемых явлений связан с изменением структуры полимерной матрицы вблизи поверхности углеродной нанотрубки.

На существенное изменение структуры модифицированных углеродными нанотрубками образцов указывает изменение формы дифракционных кривых рентгеновского излучения в области малых углов (рис. 1). Анализ кривых показывает, что введение в полимерную матрицу фт-МУНТ приводит к смещению дифракционного *гало* в области характеристических размеров порядка 1,8 нм, что, вероятно, свидетельствует об изменении надмолекулярной структуры модифицированного полимера.

На рис. 2 приведены ПЭМ микрофотографии начальной стадии полимеризации эпоксидной смолы в присутствии нанотрубок. Видно, что отвержденная композиция локализована вдоль поверхности фт-МУНТ в виде плотных образований неправильной формы.

Рис. 2. Микрофотография зародышей эпоксидной матрицы на фт-МУНТ

В классических работах [13, 14] показано, что на границе раздела полимерная матрица–наполнитель и в пограничном слое, толщина которого может доходить до нескольких микрометров, происходит существенное изменение структуры полимера. При введении углеродных нанотрубок, которые обладают высокой (до 1000 м²/г) удельной поверхностью, следует ожидать, что уже при малых концентрациях (<0,1% по массе) наполнителя весь объем полимерной матрицы перейдет в состояние граничного слоя, а свойства матрицы существенным образом изменятся.

Расчет показывает, что при концентрации 0,05% (по массе) УНТ со средним диаметром 4 нм для полного заполнения объема структурированным полимером достаточно образование на УНТ оболочки диаметром всего около 220 нм (рис. 3), что согласуется с результатами ПЭМ-анализа.

Таким образом, в результате работы показано, что при выборе режима, обеспечивающего полное отверждение эпоксидной матрицы, введение в матрицу фт-МУНТ приводит к изменению соотношения количества физических и химических узлов полимерной сетки (v_{ϕ}/v_x), определяющего, при прочих равных условиях, прочность сшитых полимеров.

Величина v_{d}/v_{x} зависит от типа фт-МУНТ, используемого для модификации матрицы. Введение 0,06% (по массе) фт-МУНТ с удельной поверхностью 800-900 м²/г в промышленный состав ЭХД/ЭД-22/ДАДФС приводит воспроизводимому увеличению к прочности при разрыве на 20%, удлинения и ударной вязкости – на 30%. Эффект модификации эпоксидных смол фт-МУНТ сопоставим с увеличением свойств от применения существенно больших количеств немодифицированных нанотрубок (1-2% по массе).

Рис. 3. Расчетная зависимость диаметра полимерной оболочки УНТ, необходимой для полного заполнения объема композита, от концентрации и диаметра УНТ (1÷9 нм)

Вероятная причина значитель-

ного улучшения свойств связана с изменением структуры эпоксидной матрицы вблизи поверхности фт-МУНТ, что подтверждается СЭМ и ПЭМ исследованиями, а большое значение удельной поверхности и химическая совместимость с матрицей делают возможным и экономически эффективным применение низких концентраций фт-МУНТ для упрочнения промышленных эпоксидных композиций.

ЛИТЕРАТУРА

- 1. Ajayan P.M., Tour J.M. Nature. 2007. V. 447. P. 1066–1068.
- Bekyarova E., Thostenson E.T., Yu A., Kim H., Gao J., Tang J., Hahn H.T., Chou T.-W., Itkis M.E., Haddon R.C. //Langmuir. 2007. V. 23. P. 3970–3974.
- Chen H., Jacobs O., Wu W., Rüdiger G., Schädel B. // Polymer Testing. 2007. V. 26. №3. P. 351–360.
- 4. Tseng C.-H., Wang C.-C., Chen C.-Y. //Chem. Mater. 2007. V. 19. P. 308–315.
- 5. Zhu R., Pan E., Roy A.K. //Mat. Sci. Engin. 2007. V. A 447. P. 51–57.
- Du F., Winey K.I. Nanotubes in multifunctional polymer nanocomposites. In: Nanomaterials Handbook. Ed. by Yu. Gogotsi. CRC. Taylor & Francis. Boca Raton. London, New York. 2006. P. 565–583.
- 7. Biercuk M.J., Laguno M.C., Radosavljevic M., Hyun J.K., Johnson A.T., Fisher J.E. //Appl. Phys. Lett. 2002. V. 80. №15. P. 2767–2769.
- Fiedler B., Gojny F., Wichmann M., Nolte M. and Schulte K. 2006. //Composites Sci. Tech. 2006. V. 66. P. 3115–3125.
- 9. Thosterson E.T., Ren Z. T.-W. //Chou Composites Sci. Tech. 2001. V. 61. P. 1899–1912.
- 10. Moniruzzman M., Romero N., Du F., Winey K.I. Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method. //Polymer. 2006. V. 47. №1. P. 293–298.
- 11. Xie L., Xu F., Lu H., Yang Y. Macromoleculs. 2007. V. 40. No. P. 8672-8675.
- Королев Г.В., Могилевич М.М., Голиков И.В. Сетчатые полиакрилаты. Микрогетерогенные структуры, физические сетки, деформационно-прочностные свойства. М.: Химия. 1995. 275 с.
- 13. Липатов Ю.С. Межфазные явления в полимерах. Киев: Наукова думка. 1980. 257 с.
- 14. Мэнсон Дж., Сперлинг Л. Полимерные смеси и композиты. М.: Химия. 1979. 440 с.