ЭРОЗИОННО-КОРРОЗИОННОСТОЙКИЕ ИОННО-ПЛАЗМЕННЫЕ ПОКРЫТИЯ ДЛЯ ЗАЩИТЫ ТИТАНОВОГО СПЛАВА ВТ8М-1

Приведены результаты исследований по разработке эрозионно-жаростойких защитных покрытий, наносимых методами вакуумной плазменной технологии высоких энергий (ВПТВЭ) и технологии плазмохимического синтеза (ТПХС). Покрытия предназначены для защиты титановых лопаток компрессора ГТД от воздействия окружающей среды во всеклиматических условиях.

По результатам проведенных металлографических, микрорентгеноспектральных, рентгеноструктурных исследований и испытаний установлено, что многослойные покрытия обеспечивают защиту титанового сплава BT8M-1 в общеклиматических и всеклиматических условиях при температуре 450°С при кратковременных забросах температур в диапазоне 500–600°С при сохранении механических свойств.

Многослойные ионно-плазменные эрозионно-коррозионностойкие покрытия нового поколения позволят увеличить ресурс титановых лопаток компрессора ГТД, эксплуатируемых во всеклиматических условиях, с возможностью взлета и посадки самолетов на аэродромах с грунтовой взлетно-посадочной полосой.

Ключевые слова: ионно-плазменные покрытия, титановые сплавы.

Одним из перспективных способов защиты титановых лопаток компрессора от воздействия окружающей среды в различных климатических условиях является разработка надежных покрытий, обеспечивающих на рабочей поверхности лопаток образование защитных слоев с сопротивлением агрессивному воздействию среды, в несколько раз превышающему сопротивление материала основы.

Анализ повреждений титановых лопаток компрессора ГТД после длительной эксплуатации показывает, что основными причинами возникновения дефектов являются:

- эрозионное воздействие пылевоздушного потока;

- поверхностное окисление.

ВИАМ провел работы по выбору материала и конструкции покрытия, а также исследование возможности создания эрозионно-жаростойкого покрытия с целью разработки комплексной защиты жаропрочного титанового сплава ВТ8М-1 во всеклиматических условиях в области температур 450–600°С [1–3].

В работе приведены результаты исследований по разработке эрозионножаростойких защитных покрытий, наносимых методами вакуумной плазменной технологии высоких энергий (ВПТВЭ) и технологии плазмохимического синтеза (ТПХС), для защиты титановых лопаток компрессора ГТД от воздействия окружающей среды во всеклиматических условиях.

Проведен экспериментальный анализ эрозионной стойкости большой группы керметных покрытий различного состава в контакте с жаропрочным титановым сплавом BT8M-1.

В качестве вариантов защитных покрытий использовались:

– керметные слои мононитридов (MeN) и монокарбидов (MeC) чистых металлов, где Me: Ti, Zr, Cr (толщиной δ=10–25 мкм);

- керметные слои нитридов на основе сплавов титана, циркония (толщиной δ=4-20 мкм);

 – керметные слои с прослойками, полученными из предварительно нанесенных слоев на основе чистых металлов (толщиной δ=10–25 мкм);

– многослойные покрытия систем (Co–Ni–Cr–Al–Y)+MeN; (Ni–Cr–Al–Y)+MeN; (Ni–Al–Y)+ +MeN; Me+MeN, получаемые последовательным нанесением слоев данных материалов, причем внешний слой наносят в среде реакционного газа (δ=20–40 мкм). С целью оценки эффективности выбранных вариантов защитных покрытий были проведены испытания на коррозионную и эрозионную стойкость в общеклиматических и во всеклиматических условиях.

Для определения коррозионной стойкости в морских условиях использовалась стандартная методика ускоренных циклических испытаний, по которой образцы с различными вариантами покрытий нагревались в воздушной среде до заданной температуры (испытания проводились при 500 и 600°С), далее осуществлялась выдержка в течение 1 ч, затем образцы подстуживались на воздухе 2–3 мин и охлаждались в 3%-ном растворе NaCl (методом окунания), после чего выдерживались во влажном эксикаторе в течение 22–24 ч. После каждого цикла испытаний (нагрев \rightarrow выдержка в эксикаторе) проводился осмотр образцов с целью выявления дефектов и определения степени поражения поверхности образца.

Результаты испытаний при температурах 500–600°С позволили выявить варианты защитных покрытий, которые после 10 циклов испытаний не имели дефектов на контрольной поверхности: $(Ni-Al-Y)^++ZrN$ и Zr^++ZrN .

Повышение температуры испытаний до 600°С привело к сокращению числа вариантов защитных покрытий, обеспечивающих высокую коррозионную стойкость композиции сплав-покрытие. При этом среди испытанных вариантов конденсированных покрытий из чистых металлов и сплавов не было выявлено композиций с высоким защитным эффектом. Наибольшей стойкостью обладали образцы с двухслойными комбинированными покрытиями следующих типов: (Co-Ni-Cr-Al-Y)+(Al-Co-Si-Y), (Co-Ni-Cr-Al-Y)+(Al-Ni-Y). При этом лучшие показатели по совокупности всех испытаний имело покрытие системы (Co-Ni-Cr-Al-Y)+(Al-Co-Si-Y).

Требования, предъявляемые к коррозионной стойкости защитных покрытий для лопаток компрессора ГТД, подразумевают (при наличии высоких антикоррозионных характеристик) и способность длительно защищать материал лопатки от обычной газовой коррозии при максимальной рабочей температуре. С целью оценки жаростойкости для нескольких типов покрытий были проведены испытания на образцах из сплава ВТ8М-1 при выдержке в спокойной воздушной атмосфере печи в течение 500 ч при температуре 450–600°С (рис. 1 и 2). Результаты испытаний показали, что покрытия системы (Co–Ni–Cr–Al–Y)+(Al–Co–Si–Y) и Zr⁺+ZrN обладают высокой жаростойкостью и окалиностойкостью в условиях проведенных испытаний. Данные по испытания на жаростойкость титанового сплава ВТ8М-1 с покрытием Zr⁺+ZrN в области температур 450–600°С приведены в табл. 1–3.

Рис. 1. Жаростойкость при температуре 600°С титанового сплава ВТ8М-1 без покрытия (■) и с двухстадийным покрытием СДП-1+ВСДП-20 (◆) после комбинированной ионной обработки в плазме сплавов системы Ni-Co-Cr-Al-Y и Al-Co-Si-Y

Рис. 2. Жаростойкость при температуре 450°С титанового сплава ВТ8М-1 с эрозионно-коррозионностойкими покрытиями:

- $\bullet (Ni Al Y)^{+} + Zr^{+} + ZrN;$
- $= -(Ni-Cr-Al-Y)^++Zr^++ZrN;$
- ▲ $-Zr^++ZrN; \circ -$ без обработки

Таблица 1

Жаростойкость сплава ВТ8М-1 с многослойными покрытиями и без покрытия при 450°С

Тип покрытия	Изменение массы, мг/см ² ,							
	после испытания в течение, ч							
	100	200	300	500				
Без покрытия	0,14	0,25	0,30	0,35				
$(Ni-Al-Y)^++Zr^++ZrN$	0,14	0,20	0,29	0,30				
$(Ni-Cr-Al-Y)^++Zr^++ZrN$	0,16	0,22	0,28	0,32				
Zr^++ZrN	0,10	0,15	0,21	0,25				

Таблица 2

Жаростойкость сплава ВТ8М-1 с многослойными покрытиями и без покрытия при 500°С

Тип покрытия	Изменение массы, мг/см ² ,				
	после испытания в течение, ч				
	100 400				
Без покрытия	0,11	0,15			
$(Ni-Al-Y)^++Zr^++ZrN$	-0,080	-1,40			
$(Ni-Cr-Al-Y)^++Zr^++ZrN$	-0,094	-1,51			
Zr ⁺ +ZrN	-0,077	-1,35			

Таблица З

Жаростойкость сплава ВТ8М-1 с многослойными покрытиями и без покрытия при 600°С

Тип покрытия	Изменение массы, Mr/cm^2 ,						
	после испытания в течение, ч						
	30 50 100						
Без покрытия	0,038	0,089	0,153				
$(Ni-Al-Y)^++Zr^++ZrN$	0,165	0,165	-1,858				
$(Ni-Cr-Al-Y)^++Zr^++ZrN$	-1,158	-1,400	-2,381				
Zr^++ZrN	0,254	0,318	-0,959				

Таблица 4

Результаты испытаний в камере тропического климата сплава ВТ8М-1

с покрытиями и осз покрытия								
Покрытие	Длительность	Потери	Внешний вид поверхности					
	испытаний, мес	массы, %	после коррозионных испытаний					
$(Ni-Al-Y)^++Zr^++ZrN$		Нет	Без поражений					
(Ni-Cr-Al-Y) ⁺ +Zr ⁺ +ZrN	2	То же	То же					
Zr^++ZrN	8 3		-«-					
Без покрытия			-«-					

Таблица 5

Результаты испытаний в камере солевого тумана сплава BT8M-1

с покрытиями и без покрытия									
Покрытие	Длительность	Потери	Внешний вид поверхности						
-	испытаний, мес	массы, %	после коррозионных испытаний						
$(Ni-Al-Y)^++Zr^++ZrN$)	1–2	Единичные точки продуктов						
			коррозии						
$(Ni-Cr-Al-Y)^++Zr^++ZrN$		30	На каждом образце по 1 питтин-						
	3		гу Ø(1–2) мм, по 3–4 питтинга						
			Ø(0,5−1,5) мм						
Zr ⁺ +ZrN		Нет	Без поражений						
Без покрытия		1–2	Поверхность покрыта						
	,		продуктами коррозии						

По результатам климатических испытаний в камерах солевого тумана (КСТ) и тропического климата (КТК) установлено (табл. 4 и 5), что на поверхности не наблюдаются коррозионные поражения и нет потери массы многослойного Zr^++ZrN покрытия, однако при испытаниях в КСТ на поверхности наблюдаются единичные точки продуктов коррозии и питтинги, что приводит к потерям массы многослойных (Ni–Cr–Al–Y)⁺+Zr⁺+ZrN и (Ni–Al–Y)⁺+Zr⁺+ZrN покрытий соответственно на 30 и 1–2%.

Были проведены металлографические исследования многослойных покрытий на титановом сплаве BT8M-1 в исходном состоянии и после испытаний на жаростойкость и коррозию. Микроструктура многослойного покрытия на титановом сплаве представлена в виде трехслойной композиции: коррозионный слой + промежуточный подслой + + эрозионный слой (рис. 3).

Рис. 3. Микроструктура (×500) сплава BT8M-1 с многослойными покрытиями: $a - (Ni-Cr-Al-Y)^++Zr^++ZrN; \ \delta - (Ni-Al-Y)^++Zr^++ZrN; \ e - Zr^++ZrN$

Проведены микрорентгеноспектральные и рентгеноструктурные исследования эрозионно-коррозионностойких ионно-плазменных покрытий на титановом сплаве BT8M-1. Микроструктура эрозионно-коррозионностойких покрытий и послойный элементный анализ представлены на рис. 4 и в табл. 6.

Рис. 4. Микроструктура титанового сплава BT8M-1 с эрозионно-коррозионностойкими покрытиями: $a - Zr^+ + ZrN (\times 1000); \delta - (Ni-Al-Y)^+ + Zr^+ + ZrN (\times 3000); e - (Ni-Cr-Al-Y)^+ + Zr^+ + ZrN (\times 3000);$ цифрами обозначены точки элементного анализа (см. табл. 6)

Таблица б

Локальный химический состав образцов из сплава ВТ8М-1 с покрытием

Покрытие	Слой	Место анализа – точка	Содержание элементов, % (по массе)										
1	покрытия	(см. рис. 4)	A1	Si	Ti	Сг	Ni	Y	Zr	Ńb	Mo	Sn	Σ
Zr ⁺ +ZrN	Основа	Точка «0» (центр образца)	5,5	0,1	86,5	0,7	H/o*	0,1	1,3	0,1	4,2	1,4	99,9
	Первый	1 (край)	H/o*	1,0	0,1	H/o*	0,2	1,9	90,5	H/o*	H/o*	H/o*	93,7
	-	2 (середина)	То же	1,3	0,1	0,1	0,1	1,9	90,7	То же	0,5	То же	94,7
		3 (вблизи второго слоя)		1,0	3,3	H/o*	0,1	1,8	90,2		1,4		97,8
	Второй	4	1,3	0,9	25,8	0,5	H/o*	1,9	66,4	0,1	2,0	0,7	99,6
	-	5 (вблизи второго слоя)	1,5	1,1	37,2	0,5	То же	1,7	54,5	0,8	2,4	0,6	100,3
	Третий	б (середина)	2,1	0,6	44,7	0,3	0,1	1,6	45,5	0,8	3,2	0,6	99,5
	-	7 (вблизи основного	2,5	H/o*	49,6	0,2	0,1	0,1	41,5	1,8	3,4	0,6	99,8
		металла)											
$(Ni-Al-Y)^+ +$	Основа	Точка «0» (центр образца)	5,4	То же	86,7	0,4	0,1	0,4	1,5	0,3	4,2	1,4	100,4
$+Zr^{+}+ZrN$	Первый	1 (край)	0,1		0,1	H/o*	0,2	H/o*	92,4	1,2	H/o*	H/o*	94
		2 (середина)	H/o*		0,1	То же	0,3	То же	91,1	1,1	То же	То же	92,6
		3 (вблизи второго слоя)	То же		0,3	0,1	1,0		92,6	1,2			95,2
	Второй	4	1,0		1,3	0,5	21,0		71,6	2,1		0,4	97,9
	Третий	5 (вблизи второго слоя)	7,1		38,6	4,0	34,8	1,1	11,0	0,8	0,3	0,6	98,3
		6 (середина)	2,6		60,5	0,3	31,8	0,1	1,3	0,1	1,0	0,1	97,8
		7 (около зоны взаи-	2,4		41,8	1,7	48,3	H/o*	0,9	0,1	0,4	0,3	95,9
		модействия)											
		8 (около зоны взаи-	3,5	1,0	72,7	0,4	12,1	То же	1,0	0,3	5,5	0,7	97,2
		модействия)											
		9 (вблизи основного	4,5	1,4	77,0	0,3	5,9		0,9	H/o*	6,6	1,3	97,9
		металла)		<u> </u>	04.4	0.0	TT / .t.	0.1			1.0	1.0	
$(N_1-C_r-A_l-Y) + $	Основа	Точка «0» (центр образца)	5,4	0,2	86,6	0,3	H/o*	0,1	1,5	0,2	4,2	1,2	99,7
+Zr +ZrN	Первый	I (край)	H/0*	0,6	0,2	0,2	0,4	H/0*	92,4	1,4	H/0*	0,2	95,4
		2 (середина)	То же	H/0*	0,2	H/0*	0,3	То же	92,9	1,3	То же	H/0*	94,7
	D ~	3 (волизи второго слоя)	-«-	То же	0,3	0,2	1,7		94,0	0,8		0,4	97,4
	Второи	4	0,6	0,3	0,5	3,9	23,2	-«-	70,2	1,4		H/0*	100,1
		5	18,4	H/0*	2,3	36,3	38,3	0,6	3,4	0,2		То же	99,5
		0	9,5	То же	19,2	35,7	32,5	0,7	0,5	0,1		-«-	98,2
	Третии	/	6,1		35,1	19,9	34,9	0,5	1,2	0,1	0,4	0,1	98,9
	четвертый	δ	5,5		42,9	6,2	38,4	0,1	0,9	0,1	0,2	0,1	94,2
		9 (ВОЛИЗИ ОСНОВНОГО	2,6		59,7	2,1	32,6	H/0*	1,1	H/0*	0,9	0,2	99,2
	O	металла)	5.0		77.0	1.0	7.0	0.2	1.2	0.2	4.2	1.2	00
	Основной	10	5,6		11,2	1,2	/,6	0,2	1,5	0,3	4,5	1,5	99
	металл												

* Не обнаружено.

На рис. 5–7 представлены микроструктуры титанового сплава BT8M-1 с эрозионно-коррозионностойкими покрытиями после термостатирования по режиму 450°С, 200 ч в контакте с раствором 3%-ного NaCl (см. рис. 5); после испытаний на коррозионную стойкость в 3%-ном растворе NaCl после нагрева до 600°С, в течение 10 циклов (см. рис. 6) и 20 циклов (см. рис. 7) (1 цикл: нагрев до 600°С \rightarrow охлаждение в 3%-ном NaCl). Показано, что по результатам металлографических исследований после коррозионных испытаний эрозионно-коррозионностойких покрытий наблюдается сохранение структуры слоев, однако при визуальном осмотре поверхности титанового сплава с покрытиями наблюдаются единичные точки продуктов коррозии и питтинги на образцах с покрытиями (Ni–Cr–Al–Y) +Zr+ZrN и (Ni–Al–Y)+Zr+ZrN; на образцах с покрытием Zr⁺+ZrN повреждений не обнаружено.

б)

Рис. 5. Микроструктура (×500) титанового сплава BT8M-1 с эрозионно-коррозионностойкими покрытиями после термостатирования по режиму 450°C, 200 ч в контакте с раствором 3%-ного NaCl: *a* – (Ni–Cr–Al–Y)⁺+Zr⁺+ZrN;

 $\delta - (Ni-Al-Y)^+ + Zr^+ + ZrN; \theta - Zr^+ + ZrN$

Рис. 6. Микроструктура (×500) титанового сплава BT8M-1 с эрозионнокоррозионностойкими покрытиями после испытаний на коррозионную стойкость в 3%-ном растворе NaCl при 600°C, 10 циклов (1 цикл: нагрев до 600°C—охлаждение в 3%-ном NaCl): $a - (Ni-Cr-Al-Y)^++Zr^++ZrN; \delta - (Ni-Al-Y)^++Zr^++ZrN; \epsilon - Zr^++ZrN$

Рис. 7. Микроструктура (×500) титанового сплава BT8M-1 с эрозионно-коррозионностойкими покрытиями после испытаний на коррозионную стойкость в 3%-ном растворе NaCl при 600°C, 20 циклов (1цикл: нагрев до 600°C, 1 ч→охлаждение в 3%-ном NaCl): $a - (Ni-Cr-Al-Y)^++Zr^++ZrN; 6 - (Ni-Al-Y)^++Zr^++ZrN; e - Zr^++ZrN$

Результаты испытаний на относительный эрозионный износ покрытия Zr⁺+ZrN на титановом сплаве BT8M-1 приведены в табл. 7.

Таблица 7

Относительная эрозионная стойкость сплава ВТ8М-1 с покрытием и без покрытия

Угол атаки эрозионного потока α, град	Тип покрытия	Относительный эрозионный износ (средняя фракция 300 мкм)
70	Без покрытия Zr ⁺ +ZrN	1 0,3
20	Без покрытия Zr ⁺ +ZrN	1 0,15

По результатам исследований и испытаний была определена конструкция многослойного эрозионно-жаростойкого покрытия: жаростойкий слой + эрозионный слой на титановом сплаве BT8M-1:

- жаростойкий слой формируется в плазме сплава на основе циркония;

– эрозионный слой формируется в плазме сплава на основе циркония в среде реакционного газа.

Таким образом, из широкой гаммы исследованных защитных покрытий предложена и определена конструкция эрозионно-коррозионностойкого ионно-плазменного покрытия на титановом сплаве BT8M-1, состоящая из внутреннего коррозионного слоя, полученного методом ионного модифицирования поверхности в плазме сплавов систем Ni–Cr–Al–Y, Ni–Al–Y и сплава на основе Zr, и внешнего эрозионностойкого слоя на основе нитрида циркония.

По результатам проведенных металлографических, микрорентгеноспектральных, рентгеноструктурных исследований и испытаний установлено, что многослойные покрытия обеспечивают защиту титанового сплава BT8M-1 в общеклиматических и всеклиматических условиях при температуре 450°С и кратковременных забросах в диапазоне температур 500–600°С при сохранении механических свойств.

Многослойные ионно-плазменные эрозионно-коррозионностойкие покрытия нового поколения позволят увеличить ресурс титановых лопаток компрессора ГТД, эксплуатируемых во всеклиматических условиях, с возможностью взлета и посадки на аэродромах с грунтовой взлетно-посадочной полосой.

ЛИТЕРАТУРА

- Мубояджян С.А., Луценко А.Н., Горлов Д.С. Перспективы применения ионноплазменных покрытий для титановых сплавов //В сб.: Перспективы развития и применения титановых сплавов для самолетов, ракет, двигателей и судов (посвященном 55-летию лаборатории «Титановые сплавы для конструкций самолетов и двигателей»). М.: ВИАМ. 2007. С. 61–68.
- 2. Луценко А.Н., Мубояджян С.А., Будиновский С.А. Промышленные технологические процессы ионной обработки поверхности //В сб.: Авиационные материалы и технологии. М.: ВИАМ. 2005. №1. С. 30–40.
- Мубояджян С.А., Луценко А.Н. Ионное модифицирование поверхности перспективный процесс для защиты лопаток компрессора ГТД от солевой коррозии и эрозии //Труды международн. научн.-техн. конф., посвященной 100-летию со дня рождения академика С.Т. Кишкина. М.: ВИАМ. 2006. С. 314–319.