Таким образом, были выявлены основные причины, препятствующие обеспечению требуемой величины вакуума в системе оснастка—вакуумный мешок, и найдены пути их устранения, хотя создание гидрозатвора жидким клеем в зоне соединения вакуумного мешка с оснасткой ведет к повышению трудоемкости. Однако это повышение трудоемкости незначительно в сравнении со снижением трудоемкости при поиске мест негерметичности в системе оснастка—вакуумный мешок.

В.Т. Минаков, В.И. Постнов, Н.И. Швец, О.Б. Застрогина, В.И. Петухов, К.В. Макрушин

ОСОБЕННОСТИ ИЗГОТОВЛЕНИЯ ТРЕХСЛОЙНЫХ СОТОВЫХ ПАНЕЛЕЙ С ПОЛИМЕРНЫМ ЗАПОЛНИТЕЛЕМ ГОРЯЧЕГО ОТВЕРЖДЕНИЯ

Рассмотрены особенности технологии изготовления трехслойных сотовых панелей с полимерным заполнителем-сферопластом горячего отверждения ВПЗ-15. Показано преимущество применения заполнителей горячего отверждения в производстве панелей интерьера самолетов.

Ключевые слова: трехслойные сотовые панели, заполнитель-сферопласт.

При изготовлении трехслойных сотовых панелей интерьера используется несколько видов компонентов: препреги на основе тканых наполнителей и полимерного связующего, из которых изготовляются обшивки (которые могут служить также носителем клеевой композиции), сотовые заполнители различных видов, предназначенные для придания панели высокой жесткости при минимальной массе, а также высокопрочный полимерный заполнитель-сферопласт (ВПЗ), предназначенный для заполнения ячеек сот по периметру панели и зон в местах установки элементов крепления с целью предотвращения повреждения в местах приложения сосредоточенных нагрузок (рис. 1).

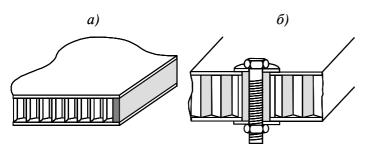


Рис. 1. Заполнение полимерным заполнителемсферопластом торца трехслойной панели (a) и зоны под установку крепежа (δ)

Полимерный заполнитель – композиция, состоящая из дисперсных неорганических или органических веществ (наполнителей), равномерно распределенных в непрерывной фазе полимерной матрицы с образованием гетерофазной системы. Отличительной особенностью таких систем является образование границы раздела фаз наполнитель—полимер, которая также оказывает влияние на свойства по-

лимерного заполнителя. Наполнители позволяют в широких пределах регулировать технологические (вязкость, липкость) и физико-механические свойства (плотность, прочность, модуль упругости, теплоизоляция) полимерных заполнителей. В качестве матрицы полимерного заполнителя используются эпоксидные или фенольные связующие. Наиболее часто наполнителями служат полые стеклянные микросферы, применение которых обусловлено их невысокой стоимостью и низкой плотностью, что дает возможность значительно снизить плотность готового полимерного заполнителя. Полимерные заполнители, применяющиеся в авиационных интерьерных панелях, должны быть легкими с плотностью в пределах 500–800 кг/м³ и иметь достаточную прочность,

чтобы выдерживать возникающие при сборке технологические нагрузки и эксплуатационные нагрузки в полете. Полимерный заполнитель, как и все материалы авиационных интерьеров, должны соответствовать требованиям ИКАО по пожаробезопасности. В зависимости от типа конструкций панелей и вида их нагружения при эксплуатации к материалу полимерного заполнителя предъявляют следующие требования: прочность при сжатии 20–60 МПа, плотность 500–800 кг/м³, усилие вырыва втулок – не менее 700 Н.

В настоящее время выпускается широкий спектр полимерных заполнителей на основе эпоксидных и фенольных смол, «холодного» и «горячего» отверждения, с различными технологическими (вязкость, жизнеспособность) и прочностными характеристиками (прочность при сжатии, смятии и др.), позволяющими удовлетворять все возрастающие требования к панелям интерьера. При этом жизнеспособность полимерного заполнителя определяется временным периодом, в течение которого он может использоваться для заполнения ячеек сот без их разрушения. Свойства некоторых полимерных заполнителей приведены в табл. 1.

Таблица 1

Характеристики	Показатели характеристик для материалов					
	ВП3-10	ВП3-15	Corfil 615	BR 623	BR 662	
Основа	Фенольная	Фенольная	Эпоксидная	Эпоксидная	Фенольная	
Число компонентов	2	1	2	1	1	
Плотность, $\kappa \Gamma / M^3$	620-640	680-700	579–670	700-800	640-830	
Прочность при сжатии, МПа	25	25	32,4	55	34,5	
Температура отверждения, °С	21	135-170	24–177	115-127	107-121	
Жизнеспособность, ч	1.0	120.0	0.5-1.0		_	

Свойства полимерных заполнителей-сферопластов

Заполнение ячеек сот полимерным заполнителем производится различными способами:

- вручную с помощью шпателя или шприца;
- с помощью специальных приспособлений и устройств, позволяющих механизировать процесс заполнения;
- на специальных установках, в том числе с программным управлением, дающих возможность повысить производительность труда и качество заполнения сот.

Полимерные заполнители «холодного» отверждения, т. е. отверждающиеся при температуре окружающей среды без дополнительного нагрева, после введения отвердителя имеют жизнеспособность в пределах одного часа. Низкая жизнеспособность полимерных заполнителей «холодного» отверждения затрудняет и практически делает невозможным использование средств механизации и автоматизации процесса заполнения ячеек сот, поэтому в этом случае применяются ручные способы заполнения. Кроме того, полимерные заполнители «холодного» отверждения технологически неудобны в производстве и приводят к увеличению трудоемкости и длительности производственного цикла изготовления трехслойных сотовых панелей интерьера, так как после заполнения ими ячеек сот перед формованием панели необходимо производить технологическую выдержку не менее 24 ч для отверждения заполнителя. После отверждения заполнителя на поверхности сот возможно образование наплывов заполнителя, которые перед укладкой препрега необходимо удалять с помощью механической обработки. В связи с разной плотностью полимерного заполнителя и сот, при механической обработке возможно образование неровностей, что приводит к дефектам в готовых панелях и дополнительной доработке их поверхности.

Полимерный заполнитель-сферопласт «горячего» отверждения, т. е. отверждающийся при повышенной температуре, имеет значительно более высокую жизнеспособность – до 120 ч, поэтому для заполнения объема ячеек сот возможно применение любых способов – как ручных, так и механизированных (рис. 2). Возможна также организация отдельных участков по изготовлению заготовок из сотового заполнителя с заполненными ВПЗ ячейками по заранее разработанным схемам (рис. 3). Срок хранения получаемых та-

ким образом заготовок сот составляет несколько месяцев и определяется в основном сроком хранения связующих, используемых для приготовления полимерного заполнителя.

Рис. 2. Пневматическое приспособление для заполнения ячеек сот

Рис. 3. Сотовый заполнитель с заполненными ячейками сот полимерным заполнителем ВПЗ-15

Полимерный заполнитель «горячего» отверждения не требует обязательной выдержки заготовок сот после их заполнения для его отверждения. Заготовки сот после заполнения ячеек полимерным заполнителем можно использовать для изготовления трехслойных сотовых панелей, а можно хранить на складе в течение нескольких месяцев. Отверждение полимерного заполнителя в данном случае производится во время формования трехслойной сотовой панели по совмещенной технологии. В результате использования этой технологии сокращается производственный цикл изготовления панелей за счет исключения технологической выдержки для отверждения полимерного заполнителя и устраняются дефекты заполнения ячеек сот благодаря перераспределению полимерного заполнителя в объеме ячеек сот во время технологического цикла.

Благодаря высокой жизнеспособности полимерных заполнителей «горячего» отверждения возможно изготовление крупногабаритных сотовых заготовок с заполненными ячейками и использование средств механизации и автоматизации для формирования групповых сотовых заготовок. Групповая технология изготовления панелей интерьера, при которой в одной заготовке объединяются несколько конструктивных вариантов панелей, повышает технологичность производства и снижает расход материалов. Применение компьютеров и современных программных продуктов позволяет объеди-

Рис. 4. Механическая обработка трехслойной сотовой панели на станке РФП-6

нять в одну группу панели с разной конфигурацией и оптимизировать раскладку панелей. Раскрой групповых заготовок трехслойных панелей с обработкой всех необходимых пазов и отверстий осуществляется на фрезерных станках с программным управлением, что дает возможность снизить объем ручного труда при производстве панелей интерьера. На рис. 4 показана механическая обработка крупногабаритной трехслойной сотовой панели (4000×1500 мм) короба багажной полки самолета Ту-204-200 на фрезерном станке с программным управлением РФП-6.

Введение в состав полимерных заполнителей антипиренов позволяет повысить пожаробезопасность не только самого заполнителя, но и всей панели в целом. В табл. 2 приведены характеристики пожаробезопасности трехслойных сотовых панелей, изго-

товленных из препрега стеклоткани Т-15(Π)-76 на связующем ФПР-520 и сотового заполнителя ПСП-1-2,5 толщиной 10 мм. Приведенные результаты показывают, что заполнение сот полимерным заполнителем ВПЗ-15 приводит к снижению общего тепловыделения панели при горении на 27% и скорости тепловыделения на 2 кВт/м².

 Таблица 2

 Характеристики пожаробезопасности трехслойных сотовых панелей

Вид	Горючесть	Дымообразование	Максимальная	Общее количество
заполнения			скорость выделе-	выделившегося тепла
ячеек сот			ния тепла, кВт/м ²	за первые 2 мин,
ПСП-1-2,5				$\kappa \mathrm{B} \mathrm{T} \cdot \mathrm{M} \mathrm{U} \mathrm{H} / \mathrm{M}^2$
Без ВПЗ	Самозатухающий	Слабодымящий	54	51
С ВПЗ-15	То же	То же	52	37

Таблица 3

Прочностные характеристики трехслойных сотовых панелей

Вид заполнения	Усилие отдира	Предел прочности, МПа	
ячеек сот	обшивки от сот, (Н⋅м)/м	при отрыве	при четырехточечном изгибе
ССП-1-2,5			
С ВПЗ-15	15,4	6,830	178,4
Без ВПЗ	10,8	2,96	156,7

В табл. 3 приведены прочностные характеристики трехслойных сотовых панелей из препрега стеклоткани Т-15(П)-76 на связующем ФПР-520 и сотового заполнителя ССП-1-2,5. Как видно в табл. 3, прочность сцепления обшивок с сотовым заполнителем образцов трехслойных сотовых панелей с заполнением их ВПЗ-15 выше, чем у панелей без заполнения сот, так как полностью заполненные соты имеют большую площадь контакта с обшивкой.

Рис. 5. Трехслойные сотовые панели интерьера самолета Як-40 с торцами, заделанными полимерным заполнителем ВПЗ-15

В заключение можно сделать вывод, что использование полимерных заполнителей «горячего» отверждения позволит повысить качество панелей интерьера самолета (рис. 5), снизить уровень тепловыделения, а также обеспечить автоматизацию процесса их изготовления с сокращением трудоемкости и уменьшением расхода материалов.