ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ИОННО-ПЛАЗМЕННЫХ ПОКРЫТИЙ ДЛЯ ТИТАНОВЫХ СПЛАВОВ

Основными направлениями развития авиационного двигателестроения и промышленного турбиностроения являются снижение удельной массы двигателей, повышение их удельных характеристик, ресурса и надежности.

Преимущественной областью применения жаропрочных титановых сплавов является производство газотурбинных двигателей, где общая доля таких сплавов в конструкции составляет ~28–37% от суммарной массы двигателя.

Одним из перспективных способов защиты титановых лопаток компрессора от воздействия окружающей среды являются надежные покрытия, обеспечивающие на рабочей поверхности лопаток образование защитных слоев с сопротивлением агрессивному воздействию среды, в несколько раз превышающим сопротивление материала основы.

Анализ повреждений титановых лопаток компрессора ГТД после длительной эксплуатации показывает, что основными причинами возникновения дефектов являются:

– эрозионное воздействие пылевоздушного потока;

- поверхностное окисление.

Повышение рабочих температур при эксплуатации деталей ГТД является критичным фактором для титановых сплавов, так как механизм окисления титановых сплавов при температурах выше 620°С протекает по нелинейному закону и сопровождается насыщением поверхностных слоев кислородом на глубину ~10–15 мкм, что приводит к охрупчиванию материала и досрочному снятию деталей с эксплуатации. Поэтому проблема обеспечения работоспособности при температурах выше 600°С и защита поверхности деталей из титановых сплавов является актуальной задачей.

Таким образом, существенный прорыв в области широкого применения титановых сплавов для деталей ГТД может быть связан с разработкой защитных и упрочняющих покрытий, которые позволят обеспечить ресурс и надежность ГТД в различных климатических условиях.

ВИАМ на протяжении многих лет проводит научно-исследовательские разработки по созданию ионно-плазменного оборудования и технологий нанесения ионноплазменных покрытий на лопатки ГТД.

В данной работе представлены результаты исследований и разработок ионноплазменных покрытий на титановых сплавах.

Ионное модифицирование поверхности

Технология ионно-плазменной обработки и модифицирования поверхности титановых сплавов обеспечивает получение на поверхности обрабатываемой детали насыщенного (диффузионного) слоя со структурно-фазовым состоянием, отличным от состояния материала основы. Разработки в этом направлении проводятся для решения задач повышения ресурса ответственных деталей авиационного двигателя, таких как лопатки компрессора и др. В проведенных исследованиях процесса ионного модифицирования поверхности титановых сплавов были опробованы различные способы ионной обработки поверхности:

– модифицирование в плазменном потоке чистых металлов, бинарных и многоком-понентных сплавов;

- последовательное модифицирование в плазменных потоках различного состава;

 модифицирование поверхности с применением конденсированных слоев плазмообразующего материала;

– модифицирование с предварительным нанесением конденсированного слоя («mix-ture» – перемешивание);

– модифицирование с предварительным и последующим нанесением конденсированного слоя.

В табл. 1 приведены результаты рентгеноструктурного анализа (РСА) (α+β)- и псевдо-α-титановых сплавов после ионного модифицирования.

Таблица 1

Фазовый состав поверхностных слоев титановых сплавов после ионного Модифицирования

Материал основы	Вид бомбардирующих ионов	Фазовый состав поверхностного слоя				
BT8M-1	Без обработки	α -Ti + β -Ti				
	Ni-Cr-Al-Y (осаждение)	α -Ti + γ -Ni + Ni ₃ Ti + Ti ₂ Ni + Ni ₂ Y				
	$(Ni-Cr-Al-Y)^+$	α -Ti + β -Ti + TiNi(B2) + TiNi(B19)'+ γ -Ni				
	Ni–Al–Y (осаждение)	α -Ti + γ -Ni + Ni ₃ Ti + Ti ₂ Ni + Ni ₂ Y				
	$(Ni-Al-Y)^+$	α -Ti + β -Ti + TiNi(B2) + TiNi(B19)' + γ -Ni				
	Zr^+	α -Ti + α' -Ti(Zr) + β -Ti(Zr)				
BT9	Без обработки	α -Ti + β -Ti				
	$(Ni-Cr-Al-Y)^+$	α -Ti + β -Ti + TiNi(B2) + TiNi(B19)' + γ -Ni				
BT18Y	Без обработки	α -Ti + β -Ti				
	$(Ni-Cr-Al-Y)^+$	α -Ti + β -Ti + TiNi(B2) + TiNi(B19)'+ γ -Ni				
ВТ25У	Без обработки	α -Ti + β -Ti				
	Zr^+	α -Ti + α' -Ti(Zr) + β -Ti(Zr)				

Полученные результаты микрорентгеноспектрального анализа показывают (табл. 2), что в процессе ионного модифицирования поверхности титановых сплавов происходит формирование модифицированных слоев с образованием диффузионной зоны на основе элементов материала основы и покрытия.

Таблица 2

Материал	Вид	Содержание элементов, % (по массе)									
основы	бомбардирующих	Cr/Sn	Ni	Mo	W/Ta	Ti	Al	Si/Y	Nb	Zr	Co
	ИОНОВ										
BT8M-1	Ni-Al-Y (осаждение)	2,5/-	84,6	0,3	_	5,9	5,0	-/0,4	-	0,1	-
	$(Ni-Al-Y)^+$	-/0,2	55,7	0,3	-/0,5	39,1	2,4	—	-	0,3	_
BT18Y	Без обработки	-	_	1,0	_	90,0	3,5	0,2/-	1,1	3,0	_
	$(Ni-Co-Cr-Al-Y)^+$	21,1/-	50,6	—	_	1,5	7,1	_	_	_	19,3

Элементный состав модифицированных слоев

При ионной обработке в плазме сплавов бинарных или псевдобинарных (многокомпонентных) систем на основе никеля, алюминия, циркония происходит формирование внешнего слоя на основе материала покрытия, диффузионной зоны в виде модифицированных слоев на основе элементов покрытия и основы и внутреннего слоя (рис. 1, a, δ) или протяженной диффузионной зоны (рис. 1, e) в зависимости от растворимости материала модификатора в титановом сплаве и энергетических параметров технологического процесса.

Рис. 1. Микроструктура (×500) титановых сплавов после ионного модифицирования: *a* – сплав BT8M-1, обработанный в плазме сплавов на основе (Ni–Co–Cr–Al–Y)+(Al–Co–Si–Y); *б* – сплав BT18У, обработанный в плазме сплава на основе системы Ni–Co–Cr–Al–Y; *в* – сплав BT9, обработанный в плазме сплава на основе Zr–Y

С целью определения работоспособности титановых сплавов ВТ8М-1, ВТ18У и ВТ25У при температурах до 600°С проведены испытания на жаростойкость исходных образцов без обработки и после ионного модифицирования. Результаты испытаний представлены на рис. 2 и 3.

Рис. 2. Жаростойкость при 600°С сплава ВТ18У после ионного модифицирования в плазме сплава Ni–Co–Cr–Al–Y (СДП-1):

□, ■, ▲, ∘ – Т1, Т2, Т3, Т4 – варианты ионной обработки; ● – без покрытия

Приведенные испытания на жаростойкость в области температур 500–600°С титановых сплавов после ионного модифицирования показывают, что метод ионной обработки поверхности обеспечивает защиту поверхности титановых сплавов от насыщения ее кислородом в течение всего времени испытаний. Однако в настоящее время наблюдается тенденция увеличения продолжительности наработки до 1000, 2000 и 5000 ч, что потребует дальнейших исследований как технологии ионного модифицирования, так и процессов, происходящих в зоне взаимодействия материала основы и модификатора.

Эрозионностойкие покрытия

Для защиты титановых сплавов от воздействия пылевоздушного и абразивного потока в ВИАМ были разработаны технологические процессы нанесения упрочняющих эрозионностойких покрытий на основе титана и циркония в среде реакционного газа (азот, ацетилен).

Оценка эрозионной стойкости ионно-плазменных покрытий на титановых сплавах осуществлялась методом сравнительных испытаний на специальном стенде. В качестве эрозионной среды использовался кварцевый песок Люберецкого карьера со средним размером частиц ~300 мкм. Скорость частиц в потоке составляла ~20 м/с. Экспозиции подвергалась одна сторона плоского образца размером 25×25 мм (обратная сторона экранировалась от попадания частиц держателем, на котором закреплялся образец). Испытания проводились при двух различных ориентациях плоскости образца относительно оси набегающего потока (углы атаки α): α=70 град (обтекание, близкое к лобовому удару) и α=20 град (касательное обтекание).

Результаты проведенных сравнительных испытаний титановых сплавов с покрытиями на основе нитридов и карбидов в зависимости от толщины, состава и технологии нанесения представлены на рис. 4–6. На гистограммах за единицу принят относительный эрозионный износ титанового сплава.

Рис. 4. Зависимость относительного эрозионного износа от толщины (δ) покрытия ZrN (эрозионная стойкость сплава OT4-1 без покрытия (\square) принята за единицу) при α =20 град и α =70 град

Рис. 5. Зависимость относительного эрозионного износа (воздействие речного песка при P=3 ат) от состава эрозионностойких покрытий на сплаве ОТ4-1 при угле атаки $\alpha=20$ град (\square) и $\alpha=70$ град (\square). Относительный износ ОТ4-1 без покрытия принят за единицу (\square)

Рис. 6. Зависимость относительного эрозионного износа (□ – α=20 град; □ – α=70 град) от текстуры эрозионностойкого покрытия TiN на титановом сплаве BT8M-1

Установлено, что эрозионная стойкость зависит от толщины наносимого покрытия. Так, покрытия с толщиной <10 мкм не обеспечивают нужной стойкости к пылевоздушному потоку при угле атаки 70 град, а покрытия с толщиной >30 мкм при испытаниях выкрашиваются и скалываются из-за остаточных напряжений на уровне 10–15 ГПа.

Наиболее оптимальная толщина эрозионностойкого покрытия составляет 12–25 мкм, при этом остаточные напряжения сохраняются на уровне 0,5–1,5 ГПа, что обеспечивает необходимую адгезию и эрозионную стойкость и не приводит к сколам и выкрашиванию покрытия.

Эрозионно-жаростойкие покрытия

В ВИАМ проводятся работы по исследованию эрозионно-жаростойкого покрытия с целью возможности создания комплексной защиты титанового сплава BT8M-1 в области температур 450–600°С для обеспечения работоспособности во всеклиматических условиях.

Проведены испытания на жаростойкость и коррозию образцов из сплава BT8M-1 с многослойными эрозионно-жаростойкими покрытиями $(Ni-Cr-Al-Y)^+ + Zr^+ + ZrN;$ $(Ni-Al-Y)^+ + Zr^+ + ZrN$ и $Zr^+ + ZrN$ при температурах 450–600°С. Установлено, что многослойные покрытия обладают жаростойкостью (привес 0,25–0,30 мг/см²) при температуре 450°С (табл. 3). По результатам испытаний в камерах солевого тумана (КСТ) и тропического климата (КТК) установлено (табл. 4 и 5), что на поверхности не наблюдаются коррозионные поражения и нет потери массы многослойного $Zr^+ + ZrN$ покрытия. Однако при использовании многослойных покрытий (Ni–Cr–Al–Y)⁺ + Zr^+ + ZrN и (Ni–Al–Y)⁺ + Zr^+ + ZrN на поверхности при испытаниях в КСТ наблюдаются единичные точки продуктов коррозии и питтинги, что приводит к потерям массы покрытий соответственно на 30 и 1–2%.

Таблица 3

Mupberbinkberb ensiaba bioni i nph reanteparype 100 C						
Тип покрытия	Привес, мг/см ² ,				Состояние покрытия	
	пос	ле испытан				
	100	200	300	500		
Без покрытия	0,14	0,25	0,30	0,35	_	
$Zr^{+} + ZrN$	0,10	0,15	0,21	0,25	Дефектов не наблюдается	

Жаростойкость сплава ВТ8М-1 при температуре 450°С

Таблица 4

Испытания в камере тропического климата (в течение 3 мес) сплава BT8M-1 с покрытиями и без покрытия

Покрытие	Потери массы, %	Внешний вид после коррозионных испытаний			
$(Ni-Al-Y)^+ + Zr^+ + ZrN$	Нет	Без поражений			
$(Ni-Cr-Al-Y)^+ + Zr^+ + ZrN$	То же	То же			
$Zr^{+} + ZrN$	-«-	-«-			
Без покрытия	-«-	-«-			

Таблица 5

Испытания в камере солевого тумана (в течение 3 мес) сплава ВТ8М-1 с покрытиями и без покрытия

Покрытие	Потери массы, %	Внешний вид после коррозионных испытаний			
$(Ni-Al-Y)^+ + Zr^+ + ZrN$	1–2	На поверхности единичные точки продуктов			
$(Ni-Cr-Al-Y)^+ + Zr^+ + ZrN$	30	коррозии На поверхности образцов по 1 питтингу Ø(1– 2) мм; по 3–4 питтинга Ø(0,5–1,5) мм			
$Zr^{+} + ZrN$	Нет	Без поражений			
Без покрытия	1–2	Поверхность покрыта продуктами коррозии			

Результаты испытаний на относительный эрозионный износ покрытия Zr⁺ + ZrN на титановом сплаве ВТ8М-1 приведены в табл. 6.

Таблица б

o moentenbium spositonnum eronikoerb entiubu broist i						
с покрытием и без покрытия						
Угол атаки эрозионного	Тип покрытия	Относительный эрозионный износ				
потока а, град		(средняя фракция 300 мкм)				
70	Без покрытия	1				
	$Zr^{+} + ZrN$	0,3				
20	Без покрытия	1				
	$Zr^{+} + ZrN$	0,15				

Относительная эрозионная стойкость сплава ВТ8М-1

По результатам исследований определена конструкция многослойного эрозионножаростойкого покрытия – жаростойкий слой + + эрозионный слой на титановом сплаве ВТ8М-1:

– жаростойкий слой формируется в плазме сплава на основе циркония;

- эрозионный слой формируется в плазме сплава на основе циркония в среде реакционного газа.

На рис. 7 представлена микроструктура эрозионно-жаростойкого покрытия на титановом сплаве ВТ8М-1.

Рис. 7. Микроструктура (×3000) сплава BT8M-1 с многослойным эрозионножаростойким покрытием $Zr^+ + ZrN$

Применение защитных и упрочняющих ионно-плазменных покрытий на изделиях из титановых сплавов

Разработанные технологии нанесения защитных и упрочняющих ионноплазменных покрытий на титановых сплавах могут быть реализованы на установках МАП-1М (модернизированный вариант серийной промышленной установки МАП-1) или МАП-2 (установка МАП-1М с автоматизированной системой управления технологическим процессом – АСУ ТП), которыми оснащены моторные заводы отрасли, или на новой автоматизированной установке МАП-3 с возможностью ассистированного ионно-плазменного осаждения.

Для защиты титановых сплавов ВИАМ предлагает следующие варианты:

- ионная обработка поверхности для защиты титановых сплавов от поверхностного окисления и обеспечения термостабильности при температурах 500-600°С; покрытия на основе нитридов ZrN для защиты титановых сплавов от воздействия пылевоздушного потока (толщина 15-30 мкм); применяются в серийном производстве на двигателях ТВЗ-117, РДЗЗ и др.;

- двухстадийные покрытия с эрозионностойким слоем на основе нитридов TiN, ZrN и жаростойким слоем для защиты лопаток из титановых сплавов в различных климатических условиях (всеклиматика).

Таким образом, разработанные защитные и упрочняющие ионно-плазменные покрытия для титановых сплавов обеспечивают повышение в 2–5 раза жаростойкости, многократное повышение эрозионной стойкости (в зависимости от угла атаки пылевоздушного потока) и защитный эффект в общеклиматических и во всеклиматических условиях. Дальнейшие исследования и разработки ионно-плазменных покрытий на титановых сплавах будут направлены на повышение рабочих температур композиции основа–покрытие выше 600°С, что обеспечит защиту нового титанового сплава BT41 и сплавов на интерметаллидной основе. Увеличение доли применения жаропрочных титановых сплавов в конструкции деталей ГТД способствует снижению удельной массы двигателя.

В.Г. Анташев, О.С. Кашапов, Т.В. Павлова, Н.А. Ночовная

СОСТОЯНИЕ, ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ СОЗДАНИЯ ЖАРОПРОЧНЫХ ТИТАНОВЫХ СПЛАВОВ ДЛЯ ДЕТАЛЕЙ КОМПРЕССОРА

Уже практически полвека титановые сплавы занимают прочное положение в конструкциях различных типов газотурбинных авиационных двигателей. К настоящему времени объем их применения составляет до 36% от массы двигателя, при этом основная масса потребления приходится на наиболее ответственные детали компрессора низкого и высокого давления – лопатки и диски.

Основными достоинствами титановых жаропрочных сплавов, подтвержденными многолетней эксплуатацией двигателей, являются высокие удельные характеристики прочности, жаропрочности и коррозионная устойчивость, обеспечившие высокую надежность и весовую эффективность двигателей.

На рис. 1 схематически показаны области применения различных титановых сплавов в зависимости от температуры рабочей зоны двигателя, а в табл. 1 – основные показатели их свойств.

Рис. 1. Области применения жаропрочных титановых сплавов в конструкции компрессора ГТД