Archive

Aviation materials and tecnologes №S1, 2016

DOI: 10.18577/2071-9140-2016-0-S1-3-7

UDC: 669.018.44:669.715

Pages: 3-7

I.S. Mazalov1, A.G. Evgenov1, S.M. Prager1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE

The microstructure features of VZh159 Ni-base superalloy synthesized by selective laser melting are reviewed in the article. It is shown that due to its high weldability this alloy forms better microstructure in comparison with similar alloys. Hot isostatic pressing and following heat treatment eliminate the anisotropy of the mechanical properties in synthesized specimens.

Keywords: Ni-base superalloy, selective laser melting, track structure, hot isostatic pressing

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
3. Kablov E.N. Chto takoe innovacii [What is the innovations] // Nauka i zhizn. 2011. №11. S. 16–21.
4. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-informac. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
5. Kisel V., Gulevich A. Itterbievye tverdotelnye lazernye sistemy [Ytterbium solid-state laser systems] // Fotonika. 2011. №2. S. 20–24.
6. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
7. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
8. Evgenov A.G., Rogalev A.M., Karachevcev F.N., Mazalov I.S. Vliyanie goryachego izostaticheskogo pressovaniya i termicheskoj obrabotki na svojstva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Influence of hot isostatic pressing and thermal processing on properties of alloy ЭП648 synthesized by method of the selection laser fusing] // Tehnologiya mashinostroeniya. 2015. №9. S. 11–16.
9. Belyaev M.S., Khvatskiy K.K., Gorbovets M.A. Sravnitelnyj analiz rossijskogo i zarubezhnyh standartov ispytanij na ustalost metallov [Comparative analysis of national standards of RF and the USA on methods of metals fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 12, 2016). DOI: 10.18577/2307-6046-2014-0-9-11-11.
10. Gorbovets M.A., Bazyleva O.A., Belyaev M.S., Khodinev I.A. Low-cycle fatigue of vkna type single-crystal intermetallic alloy under «hard» loading conditions // Metallurgist. 2014. Vol. 58. No. 7–8. P. 724–728.
11. Homenko M.D., Nizev V.G., Miradze F.H., Grishaev R.V. Issledovaniya IPLIT RAN po modelirovaniyu lazernogo spekaniya metallicheskih poroshkov [Researches IPLIT of the Russian Academy of Sciences on modeling of laser agglomeration of metal powders] // Additivnye tehnologii: nastoyashhee i budushhee: sb. dokl. Mezhdunar. nauch. konf. M.: VIAM, 2015. S. 6.
12. Svetlov I.L., Khvatskiy K.K., Gorbovets M.A., Belyaev M.S. Vliyanie goryachego izostaticheskogo pressovaniya na mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov [An effect of Hot Isostatic Pressing (HIP) on mechanical properties of casting Ni-based superalloys] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 10–14. DOI: 10.18577/2071-9140-2015-0-3-10-14.
13. Svetlov I.L., Hvackij K.K., Gorbovec M.A., Belyaev M.S. Vliyanie goryachego izostaticheskogo pressovaniya na mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 10–14. DOI: 10.18577/2071-9140-2015-0-3-10-14.
14. Svetlov I.L., Iskhodzhanova I.V., Evgenov A.G., Naprienko S.A. High-Temperature Creep and the Defect Structure of Nickel-Based Superalloy Single Crystals after Hot Isostatic Pressing // Russian Metallurgy (Metally). 2012. No. 4. P. 330–335.
15. Sufiyarov V.Sh., Popovici A.A., Borisov E.V., Polozov I.A. Selektivnoe lazernoe plavlenie zharoprochnogo nikelevogo splava [The selection laser melting of heat resisting nickel alloy] // Tsvetnye metally. №1 (865). 2015. S. 79–84.

DOI: 10.18577/2071-9140-2016-0-S1-8-15

UDC: 669.018.44

Pages: 8-15

A.G. Evgenov1, M.A. Gorbovets1, S.M. Prager1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing

The interrelation of structure features of the synthesized material including those related to orientation of specimens in synthesis process and mechanical properties of EP648 and VZh159 superalloys produced by selective laser melting is reviewed in the article. The significant properties anisotropy of synthesized specimens in dependence from growing orientation is confirmed. It is defined that in as-synthesized state minimal values of strength are inherent in the specimens grown in horizontal direction, but in contrast rupture strength has maximum values in vertical orientation synthesized specimens which is connected with high internal stress level. Heat-treatment and HIP substantially neutralize the difference in influence of the orientation and ensure high values of strength and rupture strength. The influence of the structure state of the synthesized material on fatigue properties is analyzed. It is shown that it has fatigue properties close to the properties of material produced by traditional technology. It is necessary to mention the higher sensitivity of materials produced by SLS to the load cycle asymmetry coefficient.

Keywords: selective laser melting, powder, rupture strength, fatigue properties, mechanical properties, track structure, hardening phase

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Chto takoe innovacii [What is the innovations] // Nauka i zhizn. 2011. №11. S. 16–21.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
4. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-informac. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
5. Kisel V., Gulevich A. Itterbievye tverdotelnye lazernye sistemy [Ytterbium solid-state laser systems] // Fotonika. 2011. №2. S. 20–24.
6. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
7. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
8. Evgenov A.G., Rogalev A.M., Karachevcev F.N., Mazalov I.S. Vliyanie goryachego izostaticheskogo pressovaniya i termicheskoj obrabotki na svojstva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Influence of hot isostatic pressing and thermal processing on properties of alloy ЭП648 synthesized by method of the selection laser fusing] // Tehnologiya mashinostroeniya. 2015. №9. S. 11–16.
9. Belyaev M.S., Khvatskiy K.K., Gorbovets M.A. Sravnitelnyj analiz rossijskogo i zarubezhnyh standartov ispytanij na ustalost metallov [Comparative analysis of national standards of RF and the USA on methods of metals fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 11. Available at: http://www.viam-works.ru (accessed: April 12, 2016). DOI: 10.18577/2307-6046-2014-0-9-11-11.
10. Gorbovets M.A., Bazyleva O.A., Belyaev M.S., Khodinev I.A. Low-cycle fatigue of vkna type single-crystal intermetallic alloy under «hard» loading conditions // Metallurgist. 2014. Vol. 58. No. 7–8. P. 724–728.
11. Belyaev M.S., Gorbovec M.A., Komarova T.I. Sposob ispytanij i raschetnoe opredelenie predela vynoslivosti dlya gorizontalnogo uchastka krivoj ustalosti [Way of tests and rated definition of limit of endurance for horizontal site of curve fatigue] // Aviacionnye materialy i tehnologii. 2012. №3. S. 50–55.
12. Svetlov I.L., Khvatskiy K.K., Gorbovets M.A., Belyaev M.S. Vliyanie goryachego izostaticheskogo pressovaniya na mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov [An effect of Hot Isostatic Pressing (HIP) on mechanical properties of casting Ni-based superalloys] //Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 10–14. DOI: 10.18577/2071-9140-2015-0-3-10-14.
13. Homenko M.D., Nizev V.G., Miradze F.H., Grishaev R.V. Issledovaniya IPLIT RAN po modelirovaniyu lazernogo spekaniya metallicheskih poroshkov [Researches IPLIT of the Russian Academy of Sciences on modeling of laser agglomeration of metal powders] // Additivnye tehnologii: nastoyashhee i budushhee: sb. dokl. Mezhdunar. nauch. konf. M.: VIAM, 2015. S. 6.
14. Nizev V.G., Miradze F.H. Chislennoe modelirovanie lazernogo spekaniya metallicheskih poroshkov [Numerical modeling of laser agglomeration of metal powders] // Vestnik Rossijskogo fonda fundamental\'nyh issledovanij. 2014. №3 (83). S. 58–67.
15. Svetlov I.L., Iskhodzhanova I.V., Evgenov A.G., Naprienko S.A. High-Temperature Creep and the Defect Structure of Nickel-Based Superalloy Single Crystals after Hot Isostatic Pressing // Russian Metallurgy (Metally). 2012. No. 4. P. 330–335.

DOI: 10.18577/2071-9140-2016-0-S1-16-23

UDC: 621.762:669.018.44

Pages: 16-23

A.G. Evgenov1, S.I. Cherbakov2, A.M. Rogalev1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,
[2] Open Joint Stock Company «Salyut gas turbine engineering research and production center»,

Testing EP718 and EP648 superalloys powders produced by FSUE «VIAM» for repair of gas turbine engine components using laser-powder braze

Application aspects of domestic EP718 and EP648 alloys powders to restore the geometry of laser gas turbine engine parts by braze are discussed in the article. The morphology of the particles and the fractional composition of applied powder materials are investigated. Influence of key parameters of braze on geometry of the built-up material are investigated. The features of structure formation of deposited material, change of microhardness on the fusing height and base material are considered. It is shown that the optimal practiced fusing modes provide with dense dendritic structure without cracks, pores, opalescences.

Keywords:  laser gas powder braze, metal-powder composition, protective environment, dendritic structure, cellular structure, micro-hardness, the braze material

Reference List

1. Schmidt M. The Additive manufacturing in production: Challenges and opportunities // Proc. SPIE. 2-nd Int. Symp. on Laser 3D Manufacturing. 2015. No. 9353. P. 9353–2.
2. Shhedrin E.Yu., Yakushin N.I., Popov A.S. i dr. Vnedrenie industrialnoj tehnologii geterofaznoj poroshkovoj lazernoj metallurgii v PAO «KUZNECOV» dlya proizvodstva detalej dvigatelya NK-36ST [Implementation of industrial technology of heterophase powder laser metallurgy in PJS «KUZNETSOV» for production of engine components NK-36SТ] // Additivnye tehnologii: nastoyashhee i budushhee: mater. II Mezhdunar. konf. M.: VIAM, 2016. S. 14.
3. Li L. Heat Transfer and Residual Stress Characteristics in Laser Additive Manufacturing by Powder Injection // Proc. Pro-AM. 2014. P. 25.
4. Fan Z., Wong B.S. Potentials and Challenges of NDE Methods in Additive Manufacturing // Ibid. Paper 070. P. 12.
5. Hascoet J.Y., Marya S., Marya M., Singh V. «Materials Science» Challenges in the Additive Manufacturing of Industrial Parts // Ibid. 2014. Paper 037. P. 18.
6. Kablov E.N. Chto takoe innovacii [What is the innovations] // Nauka i zhizn\'. 2011. №11. S. 16–21.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
8. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-informac. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
11. Evgenov A.G., Rogalev A.M., Karachevcev F.N., Mazalov I.S. Vliyanie goryachego izostaticheskogo pressovaniya i termicheskoj obrabotki na svojstva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [Влияние горячего изостатического прессования и термической обработки на свойства сплава ЭП648, синтезированного методом селективного лазерного сплавления] // Tehnologiya mashinostroeniya. 2015. №9. S. 11–16.
12. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava na nikelevoj osnove dlya lazernoj LMD-naplavki [Research of finely divided metal powder of hot strength alloy on nickel basis for laser LMD welding] // Voprosy materialovedeniya. 2013. №4 (76). S. 98–107.
13. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
14. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: March 23, 2016). DOI: 10.18577/2307-6046-2014-0-3-1-1.
15. Ermolaev A.S., Ivanov A.M., Vasilev S.A. Lazernye tehnologii i processy pri izgotovlenii i remonte detalej gazoturbinnogo dvigatelya [Laser technologies and processes during the manufacturing and repair of details of the gas turbine engine] // Vestnik PNIPU. Aerokosmicheskaya tehnika. 2013. №35. S. 49–64.

DOI: 10.18577/2071-9140-2016-0-S1-24-30

UDC: 620.1

Pages: 24-30

D.P. Farafonov1, V.P. Migunov1, R.Sh. Aleshina1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Tribotechnical characteristics research of materials used for gas turbine engines blade shroud hardening

Results of tribotechnical characteristics research of heat resistant and wear-resistant alloys on the basis of nickel and cobalt developed by FSUE «VIAM» are provided. The test procedure is developed and comparison tests of alloys are carried out in conditions modeling the contact pads of the gas turbine engines blade shrouds. Optimal temperatures of wear-resistant alloys operation are determined. This work was carried out in the context of the integrated scientific directions: 9.7. «High-temperature deformable alloys and composite materials strengthened by high-melting metal fibers and particles, abraded sealing materials» and 10.3. «Technologies of atomization for fine-dispersed high-quality powders production of different metal alloys for additive technologies» («The strategic directions of materials and technologies of their processing development for the period till 2030»)

Keywords: friction coefficient, fretting corrosion, rotor blade shroud, wear resistance, deposit welding

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Petrik I.A., Perimilovskij I.A. Dalnejshee razvitie tehnologii uprochneniya bandazhnyh polok lopatok turbiny iz zharoprochnyh splavov [Further development of technology of hardening of bandage shelves of turbine blades from hot strength alloys] // Tehnologicheskie sistemy. 2001. №3 (9). S. 90–92.
3. Pejchev G.I., Zamkovoj V.E., Andrejchenko N.V. Sravnitelnye harakteristiki iznosostojkih splavov dlya uprochneniya bandazhnyh polok rabochih lopatok [Comparative characteristics of wear-resistant alloys for hardening of bandage shelves of working blades] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2010. №9 (76). S. 102–104.
4. Dmitrieva G.P., Cherepova T.S., Kosorukova T.A., Nichiporenko V.I. Struktura i svojstva iznosostojkogo splava na osnove kobal\'ta s karbidom niobiya [Structure and properties of wear-resistant alloy on the basis of cobalt with columbium carbide] // Metallofizika i novejshie tehnologii. 2015. T. 37. №7. S. 973–986.
5. Migunov V.P., Chatynyan L.A., Ivanov E.V., Antonova G.S., Soloveva T.A. Iznosostojkie i antifrikcionnye materialy dlya uzlov treniya [Wearproof and antifriction materials for friction nodes] // Aviacionnaya promyshlennost. 1982. №8. S. 71–73.
6. Pejchev G.I., Miloserdov A.B., Andrejchenko N.V. Issledovanie legkoplavkih evtektik v mikrostrukture iznosostojkogo splava HTN-61 [Research fusible evtectics in HTN-61 wear-resistant alloy microstructure] // Vestnik dvigatelestroeniya. 2012. №1. S. 211–214.
7. Tihomirova T.V., Gajduk S.V. Issledovanie metodom CALPHAD vliyaniya otnosheniya volframa k kremniyu na fazovyj sostav i harakteristicheskie temperatury kobaltovogo splava [Research by the CALPHAD method of influence of the relation of tungsten to silicon on phase structure and characteristic temperatures of cobalt alloy] // Vestnik dvigatelestroeniya. 2014. №2. S. 206–210.
8. Pejchev G.I., Zamkovoj V.E., Andrejchenko N.V. Razrabotka analoga iznosostojkogo splava HTN-61 povyshennoj zharostojkosti dlya gazoturbinnyh dvigatelej [Development of analog of HTN-61 wear-resistant alloy of the increased heat resistance for gas turbine engines] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2007. №8 (44). S. 11–13.
9. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
10. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
11. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: July 15, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
12. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava na nikelevoj osnove dlya lazernoj LMD-naplavki [Research of finely divided metal powder of hot strength alloy on nickel basis for laser LMD welding] // Voprosy materialovedeniya. 2013. №4 (76). S. 98–107.
13. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: July 15, 2016). DOI: 10.18577/2307-6046-2014-0-3-1-1.
14. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // Metallovedenie i termicheskaya obrabotka metallov. 1999. №1. S. 32–34.
15. Soloveva T.A., Zadyabina T.B., Buntushkin V.P. Primenenie iznoso- i zharostojkih splavov dlya uprochneniya lopatok GTD [Application of wear- and heat resisting alloys for hardening of blades of GTD] // Aviacionnaya promyshlennost. 1982. №8. S. 25–26.

DOI: 10.18577/2071-9140-2016-0-S1-31-35

UDC: 669.017.165

Pages: 31-35

A.G. Evgenov1, O.A. Bazyleva1, V.A. Korolev1, E.G. Arginbaeva1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Prospects of Ni3Al-based intermetallic alloy VKNA-4UR application in additive technologies

Typical defects of intermetallic cast alloy VKNA-4UR connected with adverse allocation of carbide phase are considered. It is found that selective laser sintering with warming creation platform allows forming dense material without any cracks, with uniform distribution of carbides in metal volume on grain boundaries. Evolution of the synthesized material structure after heat treatment and high isostatic pressure processing are investigated. It is demonstrated that uniform and discrete distribution of carbides remains at their coagulation, for the synthesized material after heat treatment the optimum «maze» of the g¢-phase morphology and higher quantity of secondary strengthening phase is detected, which lead to increase of fatigue life compared with the cast alloy. This work is executed within implementation of the complex scientific direction 7.3. «Creation of nickel-based intermetallic alloys and composite materials on their basis» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: selective laser sintering, additive technology, Ni3Al-based intermetallic alloy,  γʹ -phase, microstructure, carbide phase

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 13–19.
3. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Intermetallidnye splavy na osnove Ni3Al [Intermetallic alloys on the basis of Ni3Al] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 27–29.
4. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
5. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
6. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Vysokotemperaturnye intermetallidnye splavy dlya detaley GTD [The high-temperature intermetallic alloys for parts of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2013. №3. S. 26–31.
7. Kablov E.N., Orlov M.R., Ospennikova O.G. Mehanizmy obrazovaniya poristosti v monokristallicheskih lopatkah turbiny i kinetika ee ustraneniya pri goryachem izostaticheskom pressovanii [Mechanisms of formation of porosity in single crystals turbine blades and kinetics of its elimination at hot isostatic pressing ] // Aviacionnye materialy i tehnologii. 2012. №S. S. 117–129.
8. Turenko E.Yu., Bazyleva O.A., Shestakov A.V. Sovremennye perspektivnye vysokotemperaturnye intermetallidnye splavy serii VIN [Modern perspective high-temperature intermetallic alloys of VIN series] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 10. Available at: http://www.materialsnews.ru (accessed: July 27, 2016).
9. Bazyleva O.A., Arginbaeva E.G. Vliyanie termicheskoj obrabotki na strukturu i zharoprochnost renijsoderzhashhego intermetallidnogo splava na osnove nikelya [Effect of heat treatment on the structure and heat resistance rhenium containing intermetallic nickel-based alloy] // Aviacionnye materialy i tehnologii. 2014. №2. S. 21–26. DOI: 10.18577/2071-9140-2014-0-2-21-26.
10. Li P., Li S.S., Han Y.F. Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX // Intermetallics. 2011. Vol. 19. P. 182–186.
11. Motonori Nakamura, Masahiko Demura, Ya Xu and Toshiyuki Hirano. Effect of Heat Treatment on the Ductility of Ni(γ)/Ni3Al(γʹ) Two-phase Alloy Foils // Advanced Intermetallic Based Alloys. Boston, Massachusetts, USA. 2006. November, 27–30. P. 548–554.
12. Jóźwik P., Bojar Z. Influence of Heat Treatment on the Structure and Mechanical Properties of Ni3Al-Based Alloys // Archives of Metallurgy and Materials. 2010. Vol. 55. Issue 1. P. 271–279.
13. Sabbadini S., Tassa O., Gennaro P., Ackelid U. Additive Manufacturing of Gamma Titanium Aluminide Parts by Electron Beam Melting // TMS 2010. 139th Annual Meeting & Exhibition. Materials Processing and Properties. Seattle, WA. P. 267–274.
14. Franzen S.F, Karlsson J., Dehoff R., Ackelid U., Rios O., Parish C., Peters W. Microstructural Properties of Gamma Titanium Aluminide Manufactured by Electron Beam Melting // The Minerals, Metals&Materials Society (TMS). 2011. Vol. 3. P. 455–462.
15. Baudana G., Biamino S., Ugues D., Lombardi M., Fino P., Pavese M., Badini C. Titanium aluminides for aerospace and automotive applications processed by Electron Beam Melting: Contribution of Politecnico di Torino // Metal Powder Report. Vol. 71. Issue 3. 2016. May–June. P. 193–199.
16. Terner M., Biamino S., Ugues D., Sabbadini S., Fino P., Pavese M., Badini C. Phase transitions assessment on γ-TiAl by Thermo Mechanical Analysis // Intermetallics. 2013. Issue 37. P. 7–10.
17. Biamino S., Penna A., Ackelid U., Sabbadini S., Tassa O., Fino P., Pavese M., Gennaro P., Badini C. Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation // Intermetallics. 2011. Vol. 19. P. 776–781.
18. Loeber L., Biamino S., Ackelid U., Sabbadini S., Epicoco P., Fino P., Eckert J. Comparison of Selective Laser and Electron Beam Melted Titanium Aluminides // Conference: Solid Freeform Fabrication Symposium. 2011. P. 547–556.

DOI: 10.18577/2071-9140-2016-0-S1-36-43

UDC: 669.017.165

Pages: 36-43

O.G. Ospennikova1, O.A. Bazyleva1, A.G. Evgenov1, E.G. Arginbaeva1, E.Yu. Turenko1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Microstructural and phase transformations in intermetalliс Ni3Al-based alloy after heat treatment and hot isostatic pressing

The influence of different parameters of heat treatment and hot isostatic pressing (HIP) on microstructure, including on morphology of carbide phase, and mechanical properties of intermetallic Ni3Al-based alloy with polycrystalline structure is investigated. It is demonstrated that adversity plate carbides partially dissolved during heat treatment, which leads to increase of mechanical properties. It is detected that optimum parameters of HIP leads to decrease of microporosity in blade’s castings at least in 2,5 times, increase of tensile strength for 30%, elongation - more than twice, fatigue limit more than on 150 MPa on level of tension, and more, than in 10 times by quantity of cycles before destruction due to optimization of microstructure - y`-phase precipitation size in dendritic axes is 2-3 mcm, secondary y`-phase precipitation size in g-solid solution is 0,2-0,3 mcm. This work is executed within implementation of the complex scientific direction 7.3. «Creation of nickel-based intermetallic alloys and composite materials on their basis» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: intermetallic Ni3Al, carbide, heat treatment, microporosity, microstructure, mechanical properties, equiaxed solidification, polycrystalline structure, hot isostatic pressing

Reference List

1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Jóźwik P., Polkowski W., Bojar Z. Applications of Ni3Al Based Intermetallic Alloys – Current Stage and Potential Perceptivities // Materials. 2015. Vol. 8 (5). P. 2537–2568.
3. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Vysokotemperaturnye intermetallidnye splavy dlya detaley GTD [The high-temperature intermetallic alloys for parts of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2013. №3. S. 26–31.
4. Jóźwik P., Bojar Z. Influence of Heat Treatment on the Structure and Mechanical Properties of Ni3Al-Based Alloys // Archives of Metallurgy and Materials. 2010. Vol. 55. Issue. 1. P. 271–279.
5. Bazyleva O.A., Arginbaeva E.G. Vliyanie termicheskoj obrabotki na strukturu i zharoprochnost renijsoderzhashhego intermetallidnogo splava na osnove nikelya [Effect of heat treatment on the structure and heat resistance rhenium containing intermetallic nickel-based alloy] // Aviacionnye materialy i tehnologii. 2014. №2. S. 21–26. DOI: 10.18577/2071-9140-2014-0-2-21-26.
6. Splav na osnove intermetallida Ni3Al i izdelie, vypolnennoe iz nego: pat. 2569283 Ros. Federaciya [Alloy on the basis of Ni3Al intermetallic compound and the product which has been executed of it: pat. 2569283 Rus. Federation]; zayavl. 18.09.14; opubl. 20.11.15. Byul. №32.
7. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
8. Sidorov V.V., Rigin V.E., Goryunov A.V., Kablov D.E. Vysokoeffektivnye tehnologii i sovremennoe oborudovanie dlya proizvodstva shihtovoj zagotovki iz litejnyh zharoprochnyh splavov [Highly effective technologies and the modern equipment for production of blend preparation from foundry hot strength alloys] // Metallurg. 2012. №5. S. 6–30.
9. Goryunov A.V., Rigin V.E. Sovremennaya tehnologiya polucheniya litejnyh zharoprochnyh nikelevyh splavov [The modern technology of cast nickel base superalloys production] // Aviacionnye materialy i tehnologii. 2014. №2. S. 3–7.
10. Bazyleva O.A., Turenko E.Yu., Rassohina L.I., Bityuckaya O.N., Shitikov A.V., Lapeev B.S. Litye bloki soplovogo apparata 2-j stupeni THP iz intermetallidnogo splava VKNA-4-VI [Cast blocks of the nozzle device of the 2nd step of TVD from intermetallidny alloy of VKNA-4-VI] // Litejnoe proizvodstvo. 2014. №10. S. 7–10.
11. Loshhinin Yu.V., Folomejkin Yu.I., Pahomkin S.I. Issledovanie teploemkosti metallicheskih materialov s pokrytiem metodom lazernoj vspyshki [Research of heat capacity of metal materials with covering method of laser flash] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №9. S. 40–44.
12. Bazyleva O.A., Rassohina L.I., Nefedov D.G., Rogalev A.M. Issledovanie vliyaniya vysokotemperaturnoj gazostaticheskoj obrabotki na strukturu i svojstva intermetallidnogo splava VKNA-4 [Research of influence of high-temperature gazostatichesky processing on structure and properties of intermetallidny alloy VKNA-4] // Pisma o materialah. 2014. T. 4. Vyp. 3. S. 163–166.
13. Grinberg B.A., Ivanov M.A. Intermetallidy Ni3Al i Ti3Al, mikrostruktura, deformacionnoe povedenie [Ni3Al and Ti3Al intermetallic compound, microstructure, deformation behavior]. Ekaterinburg: UrO RAN, 2002. 359 s.
14. Tolorajya V.N., Filonova E.V., Chubarova E.N. i dr. Issledovanie vliyaniya GIP na mikroporistost\' v monokristallicheskih otlivkah bezuglerodistyh zharoprochnyh splavov [Research of influence of GIP on microporosity in single-crystal otlivka of carbon-free hot strength alloys ] // Aviacionnye materialy i tehnologii. 2011. №1. S. 20–26.
15. Kablov E.N., Orlov M.R., Ospennikova O.G. Mehanizmy obrazovaniya poristosti v monokristallicheskih lopatkah turbiny i kinetika ee ustraneniya pri goryachem izostaticheskom pressovanii [Mechanisms of formation of porosity in single crystals turbine blades and kinetics of its elimination at hot isostatic pressing ] // Aviacionnye materialy i tehnologii. 2012. №S. S. 117–129.
16. Ospennikova O.G., Kalicev V.A., Evgenov A.G., Bazyleva O.A. Sovmeshhenie processov GIP i termicheskoj obrabotki polikristallicheskih otlivok iz splava na osnove Ni3Al [Combination of processes of GIP and thermal processing of polycrystalline otlivka from alloy on the basis of Ni3Al] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 88–96.

DOI: 10.18577/2071-9140-2016-0-S1-44-51

UDC: 669.017

Pages: 44-51

D.K. Ryabov1, V.V. Antipov1, V.A. Korolev1, P.N. Medvedev1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Effect of technological factors on structure and properties of Al-Si alloy obtained by selective laser melting

Additive technologies allow parts preparation from wide range of materials, including aluminum alloys. Quality of the parts depends on correct choice of different parameters of technological process. Results of investigation of AlSi10Mg alloy made by the selective laser sintering technology are presented in the article. Results of research of mechanical properties, structures and texture are introduced. The work is carried out under the realization of integrated research area 10.3. «Technologies of atomization for producing high quality metallic powders for additive manufacturing and powder for brazing» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: AK9ch alloy, SLM, heat treatment, additive manufacturing, strength

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: July 19, 2016). DOI: 10.18577/2307-6046-2015-0-2-2-2.
3. Chumakov D.M. Perspektivy ispolzovaniya additivnyh tehnologij pri sozdanii aviacionnoj i raketno-kosmicheskoj tehniki [Perspectives of use of the additive technologies at creation of aviation and space-rocket engineering] // Trudy MAI: elektron. zhurn. 2014. Vyp. 78. Available at: http://www.mai.ru/science/trudy (accessed: August 02, 2016).
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
6. Vrancken B., Thijs L., Kruth J. P. et al. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties // Journal of Alloys and Compounds. 2012. Vol. 541. P. 177–185.
7. Guan K., Wang Z. M., Gao M. et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel // Materials & Design. 2013. Vol. 50. P. 581–586.
8. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components // Science. 2003. Vol. 301 (5637). P. 1225–1227.
9. Bremen S., Meiners W., Diatlov A. Selective Laser Melting // Laser Technic Journal. 2012. No. 9 (2). P. 33–38.
10. Vilaro T., Colin C., Bartout J. D. et al. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy // Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 2012. Vol. 534. P. 446–451.
11. Ryabov D.K., Kolobnev N.I. Izmenenie mehanicheskih svojstv splava 1913 pri dvuhstupenchatom iskusstvennom starenii [Change of mechanical properties of alloy 1913 at two-level artificial aging] // Aviacionnye materialy i tehnologii. 2013. №4. S. 3–7.
12. Kolobnev N.I., Ber L.B., Hohlatova L.B., Ryabov D.K. Struktura, svojstva i primenenie splavov sistemy Al–Mg–Si–(Cu) [Structure, properties and application of alloys of Al–Mg–Si–(Cu) system] // Metallovedenie i termicheskaya obrabotka metallov. 2011. №9. S. 40–45.
13. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
14. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tehnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
15. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
16. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
17. Kempen K., Thijs L., Van Humbeeck J., Kruth J.P. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting // Phys. Procedia. 2012. Vol. 39. P. 439–446.
18. Olakanmi E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties // J. Mater. Process. Tech. 2013. Vol. 213. P. 1387–1405.
19. Brandl E., Heckenberger U., Holzinger V. et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior // Materials & Design. 2012. Vol. 34. Р. 159–169.
20. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science & Engineering: A. 2014. Vol. 590. P. 153–160.

DOI: 10.18577/2071-9140-2016-0-S1-52-59

UDC: 669.715:004.4

Pages: 52-59

A.O. Ivanova1, D.K. Ryabov1, V.V. Antipov1, S.I. Pahomkin1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Application of Thermo-Calc software for determination of parameters of heat treatment 1913 alloy and temperatures of gas atomization for aluminium alloys

A number of parameters of aluminum alloys treatment depend on temperatures of phase transformations. For choosing these or those temperatures of heat treatment or preparing powders it is necessary to carry out the analysis of multicomponent phase diagrams. Thus it is useful to apply mathematical modeling for the process optimization. Results of thermodynamic modeling of multicomponent systems using the Thermo-Calc software are presented in the article. Good correlation of determination results of the phase transformations temperatures received experimentally and by the computational method is shown. The work is carried out under the realization of integrated research area 10.3. «Technologies of atomization for producing high quality metallic powders for additive manufacturing and powder for brazing» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: temperature of phase transformation, thermodynamic modeling, multicomponent alloying, interval of crystallization

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Novikov I.I., Zolotorevskij V.S., Portnoj V.K. i dr. Metallovedenie [Metallurgical science]. M.: MISiS, 2009. T. 2. S. 262–312.
5. Mashinostroenie: enciklopediya [Mechanical engineering: encyclopedia]. M.: Mashinostroenie, 2001. T. II-3: Cvetnye metally i splavy. Kompozicionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. S. 57–91.
6. Rohlin L.L., Bochvar N.R., Dobatkina T.V. Sovmestnoe vliyanie nekotoryh perehodnyh metallov na izmenenie fazovogo sostava i rekristallizaciyu alyuminiya [Joint influence of some transition metals on change of phase structure and aluminum recrystallization] // Tehnologiya legkih splavov. 2009. №2. S. 20–27.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 08, 2016).
8. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
9. Kolobnev N.I., Mahsidov V.V., Samohvalov S.V., Ryabov D.K. Vliyanie soderzhaniya antirekristallizatorov na strukturu i svojstva listov iz splava 1370 sistemy Al–Mg–Si–Cu–Zr [Influence of the contents anti recrystallizers on structure and properties of sheets from alloy of the 1370th Al-Mg-Si-Cu-Zr system] // Tehnologiya legkih splavov. 2012. №1. S. 18–24.
10. Zaharov V.V., Elagin V.I., Rostova T.D., Filatov Yu.A. Metallovedcheskie principy legirovaniya alyuminievyh splavov skandiem [Materials science principles of alloying of aluminum alloys scandium] // Tehnologiya legkih splavov. 2010. №1. S. 67–73.
11. Ryabov D.K., Vakhromov R.O., Ivanova A.O. [An effect of small additions of elements with high solubility in aluminium on microstructure of ingots and cold-rolled sheets made of Al–Mg–Sc alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 05. Available at: http://www.viam-works.ru (accessed: August 08, 2016). DOI: 10.18577/2307-6046-2015-0-9-5-5
12. Ryabov D.K., Kolobnev N.I., Samohvalov S.V. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg(–Cu) alloy // Materials Science Forum. 2014. Vol. 794–796. P. 241–246.
13. Chirkov E.F. Temp razuprochneniya pri nagrevakh – kriteriy otsenki zharoprochnosti kon-struktsionnykh splavov sistem Al–Cu–Mg i Al–Cu [Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al–Cu–Mg and Al–Cu systems ] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2013. №2. St. 02. Available at: http://www.viam-works.ru (accessed: August 08, 2016).
14. Song Bai, Zhiyi Liu, Yanxia Gu, Xuanwei Zhou, Sumin Zeng. Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio // Materials Science and Engineering: A. 2011. No. 530. P. 473–480.
15. Хiao Yan Liu, Qing Lin Pan, Cong Ge Lu, Yun Bin He, Wen Bin Li, Wen Jie Liang. Microstructure and mechanical properties of Al–Cu–Mg–Mn–Zr alloy with trace amounts Ag // Materials Science and Engineering: A. 2009. No. 525. P. 128–132.
16. Antipov V.V., Vakhromov R.O., Phedorenko T.P., Lukina E.A. Structure and Properties of Semiproducts from Al–Cu–Mg–Ag V-1213 Alloy // 12-th International Conference on Aluminium Alloy. Yokohama: Japan Institute of Light Metals. 2010. Р. 2405–2410.
17. Goncharenko E.S., Kornysheva I.S., Lukina E.A. Struktura i svojstva splava sistemy Al–Cu–Mg [Structure and properties of alloy of Al–Cu–Mg system] // MiTOM. 2014. №6. S. 8–11.
18. Akopyan T.K., Zolotorevskij V.S., Hvan A.V. Raschet fazovyh diagramm sistem Al–Cu–Zn–Mg i Al–Cu–Zn–Mg–Fe–Si [Calculation of phase charts of Al–Cu–Zn–Mg and Al–Cu–Zn–Mg–Fe–Si systems] // Cvetnaya metallurgiya. 2013. №3. S. 44–51.
19. Akopyan T.K., Belov N.A., Alabin A.N., Zlobin G.S. Raschetno-eksperimentalnoe issledovanie fazovogo sostava alyuminievyh splavov na osnove sistemy Al–Zn–Mg–(Cu)–Ni–Fe [Rated pilot study of phase composition of aluminum alloys on the basis of Al–Zn–Mg– (Cu) system – Ni–Fe] // Metally. 2013. №4. S. 82–90.

DOI: 10.18577/2071-9140-2016-0-S1-60-64

UDC: 621.762

Pages: 60-64

A.I. Rodionov1, I.Yu. Efimochkin1, A.A. Buiakina1, M.N. Letnikov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

The spheroidization of metallic powders (review)

The onrush of additive manufacturing in the domestic production has encouraged the development of domestic metal powders production technologies. The article describes the main principles of layer by layer additive synthesis technology of metal and ceramic-metal composite materials. The methods of the production of initial high-temperature composite material are presented. They are mechanical alloying, developed by FSUE «VIAM», and the production of exothermic mixture of transition metal and aluminum by self-propagating high-temperature synthesis followed by hot deformation of products used in IMET RAS. The technological necessity of the initial powder usage with definite morphology and particle distribution is described. The patents of different methods of the spheroidization are presented: preparing powder particles in the flow of thermal plasma, physical vapor deposition, laser spheroidization.

Keywords: methods of spheroidizing, metal-ceramic powder composition, additive manufacturing, spheroidization of powders

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Materialy Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
6. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
7. Grashhenkov D.V., Shhetanov B.V., Efimochkin I.Yu. Razvitie poroshkovoj metallurgii zharoprochnyh splavov [Development of powder metallurgy of hot strength alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2011. №5. S. 13–26.
8. Sposob polucheniya vysokotemperaturnogo kompozicionnogo materiala na osnove nikelya: pat. 2563084 Ros. Federaciya [Way of receiving high-temperature composite material on the basis of nickel: pat. 2563084 Rus Federation]; zayavl. 14.11.14; opubl. 20.09.15. Byul. №26.
9. Sposob polucheniya alyuminidov perehodnyh metallov: pat. 2032496 Ros. Federaciya [Way of receiving aluminides of transition metals: pat. 2032496 Rus. Federation]; zayavl. 19.02.93; opubl. 10.04.95.
10. Sposob plazmennoj obrabotki dispersnyh tugoplavkih materialov i ustrojstvo dlya ego osushhestvleniya: pat. 2128148 Ros. Federaciya [Way of plasma processing of disperse high-melting materials and the device for its implementation: pat. 2128148 Rus. Federation]; zayavl. 03.09.97; opubl. 27.03.99.
11. Sposob sferoidizacii poroshka tugoplavkogo materiala: pat. 2469817 Ros. Federaciya [Way of spheroidization of powder of high-melting material: pat. 2469817 Rus. Federation]; zayavl. 27.06.11; opubl. 20.12.12. Byul. №35.
12. Sposob polucheniya chastic fizicheskim osazhdeniem iz parovoj fazy v ionnoj zhidkosti: pat. 2404024 Ros. Federaciya [Way of receiving particles physical deposition from vapor phase in ionic liquid: pat. 2404024 Rus. Federation]; zayavl 17.01.07; opubl. 27.02.10. Byul. №6.
13. Sposob sferoidizacii poroshka oksida magniya: pat. 1835793 Ros. Federaciya [Way of spheroidization of powder of magnesium oxide: pat. 1835793 Rus. Federation]; zayavl. 15.06.90; opubl. 27.01.97.
14. Method for laser spheroidization of nonspherical powder of rare refractory metal and hard alloy: pat. 101602107 CN; publ. 16.11.11.
15. Process for producing spheroidized hard material powder: pat. 6428600 US; publ. 06.08.02.

DOI: 10.18577/2071-9140-2016-0-S1-65-73

UDC: 678.8

Pages: 65-73

M.M. Platonov1, S.A. Larionov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Investigation of phase transitions and structure of the polymer powder compositions based on polydodecanolactam obtained by crystallization from solutions in polar aprotic solvents

He article presents data on phase transitions and structure of the polymer powder compositions obtained by crystallization from polydodecanolactam (polyamide 12 - PA-12) solution in polar aprotic solvents. It is shown that fractional composition of the powder and morphology of the particles drastically depend on the temperature of deposition mode, the type and amount of crystal-forming fillers. The prepared experimental compositions have an average diameter 70-100 micron, a coefficient of circularity in the range of 1.1-1.2. Applying the method of crystallization solutions in polar aprotic solvents allows to obtain polymer powders with phase transitions (melting and crystallization) comparable with the PA 2200 (EOS GmbH) base material for SLS. The research results will be used in the development of the range of polymer powder formulations for the SLS additive technology.

Keywords: polydodecanolactam, polyamide PA-12, polymer powder compositions, materials for additive technologies, selective laser sintering

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
5. Petrova G.N., Rumyanceva T.V., Beyder E.Ya. Vliyanie modificiruyushhih dobavok na pozharobezopasnye svojstva i tehnologichnost polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 06. Available at: http://www.viam-works.ru (accessed: June 15, 2016).
6. Petrova G.N., Beider E.Ya., Perfilova D.N., Rumyantseva T.V. Pozharobezopasnye litevye termoplasty i termojelastoplastyv [Fire safety of injection molding thermoplastics and TPE materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 02. Available at: http://www.viam-works.ru (accessed: June 15, 2016).
7. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29. DOI: 10.18577/2071-9140-2014-0-1-25-29.
8. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
9. Huang S.H., Liu P., Mokasdar A., Hou L. Additive manufacturing and its societal impact: a literature review // Int. J. Adv. Manuf. Technol. 2013. Vol. 67. P. 1191–1203. DOI: 10.1007/s00170-012-4558-5.
10. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review// Int. J. Adv. Manuf. Technol. 2016. Vol. 83. P. 389–405. DOI: 10.1007/s00170-015-7576-2.
11. Novakova-Marcincinova L., Kuric I. Basic and Advanced Materials for Fused Deposition Modeling Rapid Prototyping Technology // Manuf. and Ind. Eng. 2012. Vol. 11 (1). P. 24–27.
12. Hill N., Haghi M. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate // Rapid Prototyping Journal. 2014. Vol. 20/3. P.  221–227. DOI: 10.1108/RPJ-04-2013-0039.
13. Goodridge R.D., Tuck C.J., Hague R.J.M. Laser sintering of polyamides and other polymers // Progress in Materials Science. 2012. Vol. 57. P. 229–267. DOI: 10.1016/j.pmatsci.2011.04.001.
14. Kruth J.-P., Levy G., Klocke F., Childs T.H.C. Consolidation phenomena in laser and powder-bed based layered manufacturing // Annals of the CIRP. 2007. Vol. 56/2. P. 730–759. DOI: 10.1016/j.cirp.2007.10.004.
15. Process for the manufacture of polyamide 12 powder with a high melting point: pat. CA 2498712 C; publ. 15.06.10.
16. Use of a polyamide 12 for selective laser sintering: pat. EP 0911142 B1; publ. 03.08.05.
17. Method of selective laser sintering with improved materials: pat. US 7794647 B1; publ. 14.08.06.
18. Rocío Seltzera, Federico Martín de la Escalerab, Javier Seguradoa. Effect of water conditioning on the fracture behavior of PA12 composites processed by selective laser sintering // Materials Science and Engineering A. 2011. Vol. 528. P. 6927–6933. DOI: 10.1016/j.msea.2011.05.045.
19. Schmid M., Amado A., Wegener K. Polymer Powders for Selective Laser Sintering (SLS) // 30th International Conference of the Polymer Processing Society, Cleveland, Ohio. 2014. DOI: 10.3929/ethz-a-010336188.
20. Shi Y., Li Z., Sun H., Huang S., Zeng F. Effect of the properties of the polymer materials on the quality of selective laser sintering parts // Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2004. Vol. 218. No. 3. P. 247–252. DOI: 10.1177/146442070421800308.
21. Dietmar Drummer, Dominik Rietzel, Florian Kühnlein. Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering // Physics Procedia. 2010. No. 5. P. 533–542. DOI: 10.1016/j.phpro.2010.08.081.
22. Sewell N.T., Felstead М. et al. A study of the degradation of Duraform PA due to cyclic processing // VRAP. Leiria, Portugal. 2007. October, 17–22. P. 299–300.
23. Krassimir Dotchev, Wan Yusoff. Recycling of polyamide 12 based powders in the laser sintering process // Rapid Prototyping Journal. 2009. Vol. 15. P. 192–203. DOI: 10.1108/13552540910960299.

DOI: 10.18577/2071-9140-2016-0-S1-74-79

UDC: 669.018.44:669.245

Pages: 74-79

A.M. Volkov1, A.V. Vostrikov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Low-cycle fatigue resistance of PM Ni-base superalloys (review)

To assess the item workability in the operation, in addition to the static parameters and long-term strength gas turbine engine (GTE) developers need to have data on the characteristics of low-cycle fatigue resistance, taking into account the real factors. Basic material requirements of GTE disks in terms of a given resource in the operation are presented. Particularities of control of the mechanical properties of granular heat-resistant nickel alloys are considered. The existing research scenario of the low-cycle characteristics of granular materials is described. Research on the distribution of nonmetallic inclusions (depending on size) in different p/m alloys used for the manufacture of turbine disks is presented. The work is executed within implementation of the complex scientific direction 10.2. «Isothermal deformation on air of new generation of heterophase difficult-to-form hot strength alloys» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: disk billet, jet-engine, powder, Ni-base superalloy, LCF, microstructure, non-metallic inclusion

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Nauka kak otrasl ekonomiki [Science as economy industry] // Nauka i zhizn. 2009. №10. S. 6–12.
3. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatelya» [Materials and VIAM technologies for «Aircraft engine»] // Permskie aviacionnye dvigateli: inform. byul. 2014. №S. S. 43–47.
4. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzheniya pri ustalostnyh ispytaniyah [Rigid cycle of loading at fatigue tests] // Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
5. Kablov E.N., Grinevich A.V., Erasov V.S. Harakteristiki prochnosti metallicheskih aviacionnyh materialov i ih raschetnye znacheniya [Characteristics of durability of metal aviation materials and their calculated values] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 370–379.
6. Zhegina I.P., Kotelnikova L.V., Grigorenko V.B., Zimina Z.N. Osobennosti razrusheniya deformiruemyh nikelevyh splavov i stalej [Features of destruction of deformable nickel alloys and steel] //Aviacionnye materialy i tehnologii. 2012. №S. S. 455–465.
7. Terentev V.F., Belyaev M.S., Bakradze M.M. i dr. Razrushenie zharoprochnogo splava VZh175 v usloviyah zhestkogo malociklovogo nagruzheniya [Fracture of Ni-based VZH175 superalloy under strain low cycle fatigue tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 12. Available at: http://www.viam-works.ru (accessed: April 15, 2016). DOI: 10.18577/2307-6046-2014-0-11-12-12. 
8. Inozemcev A.A., Nihamkin M.Sh., Il\'inyh A.V., Ratchiev A.M. Eksperimentalnaya proverka modeli summirovaniya povrezhdenij pri ciklicheskom nagruzhenii diskov turbin [Experimental check of model of summing of damages at cyclic loading of disks of turbines] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2012. T. 14. №4 (5). S. 1372–1375.
9. Nide N.J., Henderson M.B., Reed P.A.S. Effects of grain and precipitate size variation on creep-fatigue behaviour of Udimet 720Li in both air and vacuum // Superalloys–2000. A Publ. of TMS (The Minerals, Metals, Materials Society). USA. Warrendale. Pennsylvania. 2000. P. 495–503.
10. Everitt S., Starink M.J., Reed P.A.S. Temperature and dwell dependence of fatigue crack propagation in various heat treatment turbine disk alloys // Superalloys–2008. A Publ. of TMS (The Minerals, Metals, Materials Society). USA. Warrendale. Pennsylvania. 2008. P. 741–750.
11. Potapov S.D., Perepelica D.D. Raschetnoe i eksperimentalnoe issledovanie skorosti rosta treshhin v obrazcah iz nikelevogo splava pri prostyh i slozhnyh ciklah nagruzheniya [Rated and pilot study of growth rate of cracks in samples from nickel alloy at simple and difficult cycles of loading] // Vestnik Ufimskogo gosudarstvennogo aviacionnogo tehnicheskogo universiteta. 2011. T. 15. №1 (41). S. 64–66.
12. Tumanov N.V., Lavrent\'eva M.A., Cherkasova S.A., Servetnik A.N. Modelirovanie ustojchivogo rosta ustalostnyh treshhin v diskah turbiny aviadvigatelej pri prostom i slozhnom ciklah nagruzheniya [Modeling of strong growth of fatigue cracks in turbine disks of aircraft engines at simple and difficult cycles of loading] // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2009. №3 (19). S. 188–199.
13. Nozhnickij Yu.A. Problemy primeneniya granuliruemyh splavov v perspektivnyh GTD [Problems of application of granulated alloys in perspective GTE] // Tehnologiya legkih splavov. 2007. №4. S. 13–20.
14. Kravchenko I.F., Zamkovoj V.E., Sheremetev A.V., Garashhuk L.A., Kulgejko T.N. Primenenie diskov iz granul splava EP741NP v novyh dvigatelyah ZMKB «Progress» [Application of disks from granules of alloy EP741NP in the ZMKB «Progress» new engines] // Tehnologiya legkih splavov. 2006. №4. S. 81–85.
15. Volkov A.M., Vostrikov A.V., Bakradze M.M. Principy sozdaniya i osobennosti legirovaniya granuliruemyh zharoprochnyh nikelevyh splavov dlya diskov GTD [Principles of creation and feature of alloying of granulated heat resisting nickel alloys for disks GTE] // Aviacionnye materialy i tehnologii. 2016 (v pechati).
16. Fajnbron A.S. Fraktograficheskie osobennosti razvitiya treshhin v obrazcah zharoprochnyh granuliruemyh splavov [Fractographic features of development of cracks in samples of heat resisting granulated alloys] // Tehnologiya legkih splavov. №2. 2013. S. 43–50.
17. Fajnbron A.S., Percovskij N.Z., Savin V.N. Osobennosti zarozhdeniya razrusheniya granulirovannogo nikelevogo splava EP741NP pri ispytaniyah na malociklovuyu ustalost [Features of origin of destruction of the granulated EP741NP nickel alloy at tests for low-cyclic fatigue] // MiTOM. 1993. №6. S. 32–34.
18. Available at: http://www.gruppofrattura.it/ocs/index.php/ICF/icf13/paper/download/11242/10621 (accessed: April 15, 2016).
19. Garibov G.S., Volkov A.M. Issledovanie veroyatnostnogo raspredeleniya parametrov nemetallicheskih vklyuchenij v zagotovkah diskov iz granul zharoprochnyh nikelevyh splavov [Research of probabilistic distribution of parameters of non-metallic inclusions in preparations of disks from granules of heat resisting nickel alloys] // Sb. tez. Mezhdunar. foruma dvigatelestroeniya. «Nauchno-tehnicheskij kongress po dvigatelestroeniyu» (NTKD–2014). M.: ASSAD, 2014. S. 106–108.
20. Vostrikov A.V., Garibov G.S., Koshelev V.Ya. Vliyanie vklyuchenij na soprotivlenie malociklovoj ustalosti materiala iz granul zharoprochnyh nikelevyh splavov [Influence of inclusions on resistance of low-cyclic fatigue of material from granules of heat resisting nickel alloys] // Konversiya v mashinostroenii. 2006. №3. S. 19–22.
21. Bonacuse P., Kantzos P., Telesman J. Ceramic Inclusions // P/M disk alloys: characterization and modeling – NASA/CP–2002-211682. USA, Ohio. 2002. P. 359–391.
22. Reed R.C. The Superalloys fundamentals and applications. UK, Cambridge: Cambridge University Press, 2006. 372 p.
23. Garibov G.S. Evolyuciya mehanicheskih harakteristik zagotovok diskov so snizheniem krupnosti granul [Evolution of mechanical characteristics of preparations of disks with decrease in fineness of granules] // Tehnologiya legkih splavov. 2014. №4. S. 58–61.
24. Garibov G.S., Gric N.M., Volkov A.M., Vostrikov A.V., Fedorenko E.A. Metallovedcheskie aspekty proizvodstva zagotovok diskov iz granuliruemyh zharoprochnyh nikelevyh splavov metodom GIP [Metal science aspects of production of preparations of disks from granulated heat resisting nickel alloys GIP method] // Tehnologiya legkih splavov. 2014. №3. S. 54–59.

DOI: 10.18577/2071-9140-2016-0-S1-80-86

UDC: 669.018:669.245

Pages: 80-86

E.I. Razuvaev1, M.V. Bubnov1, M.M. Bakradze1, S.A. Sidorov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Hot isostatic pressing and deformation of the granulated heat resistant nickel alloys

The article presents information about development and application of technological process of manufacturing discs and other aviation gas turbine engines parts from difficult-to-form heterogeneous nickel-based superalloys using powder (granules) metallurgy. The article describes influence of different technological factors on structure formation, technological and service characteristics of products made from domestic and foreign nickel-based superalloy powder. Decisive influence of structure on properties of products compacted by the hot isostatic pressing (HIP) is presented. The results of EP741NP superalloy powder particles quality examination confirm expedience of complex technology including HIP followed by hot forming with prevailing shear movement which enhance performance properties and stability of the product performance characteristics.

Keywords: heat resistant nickel alloys, granules, technological process, hot isostatic pressing, hot plastic deformation, disks of gas-turbine engines

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
3. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
4. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: April 05, 2016). DOI: 10.18577/2307-6046-2015-0-2-3-3.
5. Sklyarov N.M. Put dlinoyu v 70 let [Way of 70 years]. M.: MISiS–VIAM. 2002. S. 317–319.
6. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / ed. by E.N. Kablov]. M.: VIAM, 2012. S. 245–248.
7. Sklyarenko V.G., Vorobev N.A. Mehanicheskie svojstva krupnogabaritnoj shtampovki diska iz splava EK79ID [Mechanical properties of large-size punching of disk from alloy EK79ID] // Tehnologiya metallov. 2003. №2. S. 9–12.
8. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings]  // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 01. Available at: http://www.viam-works.ru (accessed: April 13, 2016).
9. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
10. Bondarev A.A., Ermanok M.Z., Sobolev Yu.P. Shtampovka granulirovannyh zharoprochnyh nikelevyh splavov (obzor zarubezhnoj literatury za 1980–1983 gg.) [Punching of the granulated heat resisting nickel alloys (the overview of foreign literature for 1980–1983)] // Tehnologiya legkih splavov. 1984. №6. S. 70–77.
11. Gessinger G.H. Poroshkovaya metallurgiya zharoprochnyh splavov [Powder metallurgy of hot strength alloys]. Chelyabinsk: Metallurgiya, 1988. S. 283–284.
12. Lindskog P.F., Bocchini G.F. Development of High Strength P/M Precision Components in Europe // International Journal of Powder Metallurgy & Powder Technology. 1979. Vol. 15. No. 3. P. 199.
13. Kerr J. The Engineer. 1980. Vol. 250. №6487. P. 544–546.
14. MayField J. Promises Of Cost Savings Motivate Innovative Technique // Aviation Week and Space Technology. 1978. Vol. 109. P. 44–45.
15. Ferguson B. Lynn Aerospace Applications: metals handbook. 9th ed. ASM Metals Park, Ohio, USA, 1984. Vol. 7. Powder Metallurgy. P. 646–650. 
16. Сhandler H.E. Metal Progress. 1979. Vol. 109. P. 44–55.
17. Malley D.R., Stulga I.E., Ondercin R.I. Production of Near Net Shapes by Hot Isostatic Pressing of Super-alloys Powder // National Powder Metallurgy Conference Proceedings. 1983. Vol. 38. P. 229–246.
18. William B. Eisen. PM – Past, Present and Future: report. Crucible Research. Рittsburg, PA. 1996. P. 23–27.
19. William B. Eisen. The Current Status of as-HIP Superalloy in Aircraft Engines // Proceeding of International Techno-Business Conference on the Superalloys Industry «Superalloys for Gas Turbine». Tampa, Florida, USA. 1998. P. 73–84.
20. Banik A., Lindsley B., Mourer D.P., Zimmer W.H. Alternative processing for the production of powder metal superalloy billet // Advanced Materials and Processes for Gas Turbines. Warrendale, PA: The Minerals, Metals and Materials Society (TMS). 2003. P. 227–236.
21. Kearsey R.M., Koul A.K., Beddoes J.C., Cooper C. Development and Characterization of a Damage Tolerant Microstructure for a Nickel Base Turbine Disc Alloy // Superalloys–2000. P. 117–126.
22. Locq D., Marty M., Caron P. Optimisation of Mechanical Properties of a New Superalloys for disk Application // Ibid. P. 395–403.
23. Hunt D.W., Skelton D.K., Knowles D.M. Microstructural Stability and Crack Growth Behaviour of a Polycrystalline Nickel Base Superalloy // Ibid. P. 795–802.
24. Poroshkovaya metallurgiya. Annotaciya zarubezhnyh materialov [Powder metallurgy. Summary of foreign materials]. M.: VILS. 1982. №1 (41). S. 8.
25. Kolcum E.H. New Production Methods Gain // Aviation Week and Space Technology. 1978. Vol. 109. No. 16. P. 46–47.
26. Fatkullin O.H., Eremenko V.I., Kolesnikov Yu.N. i dr. Osobennosti formirovaniya struktury v processe deformacii i termicheskoj obrabotki granuliruemogo splava EP741NP [Features of forming of structure in the course of deformation and thermal processing of granulated alloy EP741NP] // Tehnologiya legkih splavov. 1991. №12. S. 71–78.
27. Fatkullin O.H., Garibov G.S., Nekrasov V.A., Kononov I.A. Razrabotka perspektivnyh tehnologij dlya zharoprochnyh splavov [Development of perspective technologies for hot strength alloys] // Tehnologiya legkih splavov. 1999. №3. S. 53–61.
28. Ermanok M.Z., Sobolev Yu.P., Bondarev A.A. Plasticheskaya deformaciya granulirovannyh zharoprochnyh nikelevyh splavov. Obzornaya informaciya [Plastic strain of the granulated heat resisting nickel alloys. Survey information] // Obrabotka cvetnyh metallov i splavov. 1985. №1. C. 1–53.
29. Anoshkin N.F., Ermanok M.Z., Kleshhev A.S. i dr. Shtampovka diskov iz predvaritelno profilirovannyh kompaktov zharoprochnyh splavov [Punching of disks from previously profiled compacts of hot strength alloys] // Metallurgiya granul. 1983. №1. C. 259–265.
30. Gelman A.A., Gerasimova L.P., Godovanec M.A. i dr. Nekotorye osobennosti deformacii i razrusheniya pri temperaturah obrabotki davleniem lityh i granuliruemyh nikelevyh splavov [Some features of deformation and destruction at processing temperatures pressure of cast and granulated nickel alloys] // Metallurgiya granul. 1993. №6. C. 272–282.
31. Sposob izgotovleniya diska iz vysokolegirovannogo zharoprochnogo splava: pat. 2256721 Ros. Federaciya [Way of manufacturing of disk from high-alloy hot strength alloy: pat. 2256721 Rus. Federation]; zayavl. 02.04.04; opubl. 20.07.05.