Archive

Aviation materials and tecnologes №3, 2016

DOI: 10.18577/2071-9140-2016-0-3-3-8

UDC: 669.018.29

Pages: 3-8

N.Yu. Serebrennikova1, V.V. Antipov1, O.G. Senatorova1, V.S. Erasov1, V.V. Kashirin2

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,
[2] Public Joint Stock Company «Tupolev»,

Hybrid multilayer materials based on aluminum-lithium alloys applied to panels of plane wing

It is an opportunity to improve weight efficiency by application of laminated skin from hybrid material which consists of high-strength Al-Li alloy sheets and aluminium-glassplastic Laminate SIAL-type. Such materials have high resistance of fatigue crack growth, lower density and high strength in comparison with monolithic materials. The structure and properties of prototype of hybrid wing panel of Tu-204 aircraft were evaluated was produced in commercial conditions, OAO «Voronezh Aircraft JVC» (VASO). Standard samples were used for tensile, compression low fatigue tests and for determination of FGGR (dl/dN). Hybrid laminated materials are recommended to use for lower and upper wing panels. The work is executed within implementation of the complex scientific direction 6.2. «Layered crack resistant, high-strength metal polymer materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: hybrid laminated material, wing panel, skin, stringer, Al–Li alloy, SIAL.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Mashinostroenie: Enciklopediya v 40 t. [Mechanical engineering: encyclopedia in 40 vol.] M.: Mashinostroenie, 2001. T. II-3. Cvetnye metally i splavy. Kompozicionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. 880 s.
3. Fridlyander I.N. Vospominaniya o sozdanii aviakosmicheskoj i atomnoj tehniki iz alyuminievyh splavov [Memories of creation of aerospace and nuclear equipment from aluminum alloys]. M.: Nauka. 2005. 275 s. 
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Kablov E.N. Vserossijskomu institutu aviacionnyh materialov – 80 let [To the All-Russian institute of aviation materials – 80 years] // Deformaciya i razrushenie materialov. 2012. №6. S. 17–19. 
6. Kablov E.N. VIAM: рrodolzhenie puti [Way continuation] // Nauka v Rossii. 2012. №3. S. 36–44. 
7. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230. 
8. Senatorova O.G., Antipov V.V., Lukina N.F., Sidel\'nikov V.V., Shestov V.V., Popov V.I., Ershov A.S. Vysokoprochnye, treshhinostojkie, legkie alyumostekloplastiki SIAL – perspektivnye materialy dlya aviacionnyh konstrukcij [High-strength, treshchinostoyky, easy alyumostekloplastiki SIAL – perspective materials for aviation designs] // TLS. 2009. №2. S. 29–31. 
9. Antipov V.V., Lavro N.A., Suhoivanenko V.V., Senatorova O.G. Opyt primeneniya Al–Li splava 1441 i sloistogo materiala na ego osnove v gidrosamoletah [Experience of application of Al–Li of alloy 1441 and layered material on its basis in seaplanes] // Tsvetnye metally. 2013. №8. S. 46–50.
10. Laminate of metal sheets and polymer: pat. 0256370 US; publ. 20.10.11.
11. Plokker M., Daverschot D., Beumler T. Hybrid structure solution for the A400M wing attachment frames // 25th ICAF Symposium. Rotterdam. 2009.
12. Roebroeks G.H.J.J., Hooijmeijer P.A., Kroon E.J., Heinimann M.B. The development of central // First International Conference on Damage Tolerance of Aircraft Structures. 2009.
13. Proektirovanie, konstrukcii i sistemy samoletov i vertoletov. Enciklopediya v 40 t. [Design, designs and systems of airplanes and helicopters: the encyclopedia in 40 vol.] M.: Mashinostoroenie. 2004. T. IV-21. Mashinostroenie. Kn. 2: Samolety i vertolety. C. 226–252. 
14. OST1-12085–77. Bolty s umenshennoj shestigrannoj golovkoj iz titanovogo splava dlya soedinenij so specialnoj perehodnoj posadkoj [Bolts with the reduced hexagon head from titanium alloy for connections with special transitional landing]. 
15. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistyh alyumostekloplastikov na osnove alyuminij-litievogo splava 1441 s ponizhennoj plotnostyu [New class layered alyumostekloplastikov on basis aluminum-lithium alloy 1441 with lowered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–183. 
16. Shestov V.V., Antipov V.V., Senatorova O.G., Sidelnikov V.V. Konstrukcionnye sloistye alyumostekloplastiki 1441-SIAL [Constructional layered aluminum glass plastics 1441-SIAL] // MiTOM. 2013. №9. S. 28–32. 
17. Skornyakov V.I., Antipov V.V. Innovacionnyj harakter sotrudnichestva OAO «KUMZ» i FGUP «VIAM» [Innovative nature of cooperation of JSC «KUMZ» and FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 11–14. 
18. Sloistye kompozicionnye materialy–98: sb. trudov Mezhdunarodnoj konf. [Layered composite materials-98: collection of works of the International conference]. Volgograd, 1998. 351 s.
19. Antipov V.V., Senatorova O.G., Beumber T., Lipma M. Investigation of a new fibre metal laminate (FML) family on the base of Al–Li alloy with lower density // Materials Science and Engineering Techology. 2012. №4. P. 350–355. 
20. Fibre Metal Laminates / Ed. by Ad.Vlot, Y.W.Gunnik Academic Publishers. 2001. Р. 527.
21. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: October 14, 2015).
22. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117.

DOI: 10.18577/2071-9140-2016-0-3-9-16

UDC: 621.791:669018.44

Pages: 9-16

B.D. Annin1, V.M. Fomin2, E.V. Karpov1, A.G. Malikov2, A.M. Orishich2

[1] Siberian branch of Russian academy of sciences Lavrentev Institute of hydrodynamic,
[2] Siberian branch of Russian academy of sciences Khristianovich Institute of theoretical and applied mechanics,

Complex research of laser welding of high-strength alloy V-1469

Complex experimental research of laser welding of aluminum-lithium alloy В-1469 in order to obtain heat-resistant welded joint is considered in the work. It is found, that plastic deformation of the welded joint allows increasing weld strength by 5-10% in comparison with non-deformed welded joint. Heat treatment of welded joint increases it`s strength, however it essentially reduces strength of the main alloy out of thermal influence zone of welding process. Application of heat treatment allows obtaining the strength of welded joint equal to 0,85 from strength of the main alloy as received state T1.

Keywords: laser welding, aluminum-lithium alloy, strength, heat treatment.

Reference List

1. Klochkova Yu.Yu., Grushko O.E., Lantsova L.P., Burlyaeva I.P., Ovsyannikov B.V. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo alyuminijlitievogo splava V-1469 [Development in industrial production of semi-finished products from perspective aluminum lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2011. №1. S. 8–12.
2. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Hohlatova L.B. Alyuminij-litievye splavy [Aluminum-lithium alloys] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 163–171.
3. Splav na osnove alyuminiya i izdelie, vypolnennoe iz nego: pat. 2237098 Ros. Federaciya [Alloy on the basis of aluminum and the product which has been executed of it: stalemate. 2237098 Ros. Federation]; opubl. 24.07.03.
4. Zink W. Welding Fuselage shells // Industrial Laser Solutions. 2001. V. 16. Issue 8. P. 7–10. 
5. Dittrich D., Standfuss J., Liebscher J., Brenner B., Beyer E. Laser Beam Welding of Hard to Weld Al Alloys for a Regional Aircraft Fuselage Design – First Results // Physics Proceeding. 2011. V. 12. Р. 113–122.
6. Petrovic M., Veljic D., Rakin M., Radovic N., Sedmak A., Bajic N. Friction-stir welding of highstrength aluminium alloys and a numerical simulation of plunge stage // Materials in technology. 2012. V. 46. №3. P. 215–221.
7. Ovchinnikov V.V., Grushko O.E., Alekseev V.V., Magnitov V.S., Egorov R.V. Struktura i svojstva svarnyh soedinenij alyuminievogo splava V-1469, poluchennyh elektronno-luchevoj svarkoj [Structure and properties of welded compounds of the V-1469 aluminum alloy received by electron beam bonding] // Zagotovitel\'nye proizvodstva v mashinostroenii. 2012. №5. S. 7–11.
8. Ovchinnikov V.V. Tehnologiya svarki alyuminievyh splavov: ucheb. posobie [Welding technology of aluminum alloys: manual]. M.: MGIU, 2005. 68 s.
9. Annin B.D., Fomin V.M., Antipov V.V., Ioda E.N., Karpov E.V., Malikov A.G., Orishich A.M., Cherepanov A.N. Issledovanie tehnologii lazernoj svarki alyuminievogo splava 1424 [Research of technology of laser bonding of aluminum alloy 1424 ] // Doklady akademii nauk. 2015. T. 465. №4. S. 419–424.
10. Annin B.D., Fomin V.M., Karpov E.V., Malikov A.G., Orishich A.M., Cherepanov A.N. Development of a technology for laser welding of the 1424 aluminum alloy with a high strength of the welded joint // Journal of Applied Mechanics and Technical Physics. 2015. V. 56. №6. P. 945–950.
11. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Vliyanie termicheskoj obrabotki na harakteristiki svarnyh soedinenij vysokoprochnyh alyuminijlitievyh splavov [Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 06. Available at: http://www.viam-works.ru (accessed: April 20, 2016). DOI: 10.18577/2307-6046-2015-0-4-6-6.
12. Klochkova Yu.Yu., Klochkov G.G., Romanenko V.A., Popov V.I. Struktura i svojstva listov iz vysokoprochnogo alyuminij-litievogo splava V-1469 [Structure and properties of sheets from high-strength aluminum-lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 3–8. DOI: 10.18577/2071-9140-2015-0-4-3-8.

DOI: 10.18577/2071-9140-2016-0-3-17-23

UDC: 669.721.5:620.178.6

Pages: 17-23

E.F. Volkova1, V.A. Duynova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Effect of unconventional deformation technology applicable to some commercial magnesium-based alloys

The paper confirms the principal possibility of hydrostatic extrusion (HE) application towards commercial high strength wrought magnesium based alloys MA5 (Mg-Al-Zn-Mn system) and МА14 (Mg-Zn-Zr system). It is proved, that it is possible to reach the strengthening effect of these alloys up to 25-40%. In present study it is stated, that the thermo mechanical processing (TMP) including the intermediate quenching before HE is not expedient because it does not lead to mechanical properties rising. It is proved, that discovered differences in HE influence on final level of MA5 and MA14 alloys properties are connected with peculiarities of strengthening phase morphology and with the structure of the alloys. The work is executed within implementation of the complex scientific direction 10.10. «Power effective, resource-saving and additive manufacturing techniques of deformable semi-finished products and mold castings from magnesium and aluminum alloys» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: magnesium alloys, hydrostatic extrusion, microstructure, phase composition, mechanical properties.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
4. Nikolas A., Rolnik S. Primenenie magnievyh komponentov v aerokosmicheskoj industrii [Application of magnesian components in the space industry] // Aerokosmicheskij kurer. 2011. №1. 
S. 42–44.
5. Volkova E.F. Sovremennye deformiruemye splavy i kompozicionnye materialy na osnove magniya [Modern deformable alloys and composite materials on the basis of magnesium] // MiTOM. 2006. №11. S. 5–9.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: May 15, 2015).
7. Ospennikova O.G., Bubnov M.V., Kapitanenko D.V. Kompyuternoe modelirovanie processov obrabotki metallov davleniem [Computer modeling of metal working processes by pressure] // Aviacionnye materialy i tehnologii. 2012. №S. S. 141–147.
8. Beresnev E.I., Ezerskij K.I., Trushin E.V. Fizicheskie osnovy i prakticheskoe primenenie gidroekstruzii [Physical bases and practical application of hydroextrude]. M.: Nauka, 1981. 239 s.
9. Volkova E.V., Lebedev V.M., Hrisanova Z.N. Osnovnye napravleniya razvitiya deformiruemyh magnievyh splavov [Main directions of development of deformable magnesium alloys] // Metallovedenie, lite i obrabotka splavov. M.: VILS, 1995. S. 108–112.
10. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: May 15, 2015).
11. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
12. Volkova E.F., Antipov V.V., Morozova G.I. Osobennosti formirovanija struktury i fazovogo sostava deformirovannyh polufabrikatov serijnogo splava MA14 [Features of forming of structure and phase structure of the deformed semi-finished products of serial alloy МА14] // Aviacionnye materialy i tehnologii. 2011. №3. S. 8–15.
13. Volkova E.F. Some Regular Features of Formation of Phase Composition in a Magnesium Alloy of the Mg–Zn–Zr–Y System // Metal Science and Heat Treatment. 2014. V. 55. №9–10. P. 477–482.
14. Volkova E.F., Ishodzhanova I.V., Tarasenko L.V. Strukturnye izmeneniya v magnievom splave MA14 pod vozdejstviem tehnologicheskih faktorov [Structural changes in MA14 magnesium alloy under the influence of technology factors] // MiTOM. 2010. №12. S. 19–23.
15. Volkova E.F., Sinebryuhov S.L., Gnedenkov S.V., Becofen S.Ya. Vliyanie deformacii i termicheskoj obrabotki na strukturu i svojstva magnievogo splava MA5 [Influence of deformation and thermal processing on structure and properties of MA5 magnesium alloy] // MiTOM. 2012. №10. S. 55–59.
16. Volkova E.F. Microstructural & mechanical characterization of magnesium base alloy MA14 (ZK60 A) under deformation & heat treatment // Proceedings of the 2014 International Conference on High Performance and Optimum Design of Structures and Materials. 2014. P. 17–25.

DOI: 10.18577/2071-9140-2016-0-3-24-32

UDC: 620.193.2

Pages: 24-32

M.G. Kurs1, V.V. Antipov1, A.N. Lutsenko1, A.E. Kutyrev1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Integral figure of corrosion damage of deformed aluminum alloys

Based on the results of 4-years exposure of five aluminum alloys (2 mm thick sheets) at full-scale accelerated tests, calculating procedure for integral figure of corrosion damage was developed by two methods: for samples after full-scale accelerated tests (method A) and for constructions using nondestructive control methods (method B). Application of integral research methods of corrosion resistance of aluminum alloys and calculation of integrated corrosion figure will allow to estimate strength variations of constructions losses, made from sheet aluminum alloys in the case of their corrosion damages in the process of operation when performing a scheduled inspection and remedial maintenance of aviation articles.

Keywords: integral figure, aluminum alloys, corrosion, full-scale accelerated tests.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87.
4. Grinevich A.V., Lutsenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [The design characteristic of metallic materials taking into account the humidity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 10. Available at: http://www.viam-works.ru (accessed: January 29, 2016). DOI: 10.18577/2307-6046-2014-0-7-10-10.
5. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
6. Semenychev V.V. Korrozionnaya stojkost listov splava D16ch.-T v morskih subtropikah [Corrosion resistance of alloy D16ch.-T sheets in marine subtropics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 11. Available at: http://www.viam-works.ru (accessed: December 15, 2015). DOI: 10.18577/2307-6046-2014-0-7-11-11.
7. Zhirnov A.D., Strekalov P.V., Karimova S.A., Zhilikov V.P., Tararaeva T.I., Mishchenkov E.N. Sezonnaya dinamika protsessa korrozii metallov na beregovoy zone Chernogo moray [Seasonal dynamics of process of corrosion of metals on coastal zone of Black Sea] // Korroziya: materialy, zashchita. 2007. №8. S. 23–29.
8. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoy atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (review)] // Korroziya: materialy, zashchita. 2013. №12. S. 6–18.
9. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri naturno-uskorennyh ispytaniyah. Ch. 1 [Research of corrosion destruction of deformable aluminum alloys at natural accelerated tests. P.1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–126.
10. GOST 9.908–85. Edinaya sistema zashchity ot korrozii i stareniya. Metally i splavy. Metody opredeleniya pokazateley korrozii i korrozionnoy stoykosti / Gos. komitet SSSR po standartam [GOST 9.908–85. Uniform system of corrosion protection and aging. Metals and alloys. Methods of definition of indicators of corrosion and corrosion resistance / State committee of the USSR on standards]. M., 1985. 17 s.
11. Iskhodzhanova I.V., Orlov M.R., Grigorenko V.B., Lapteva M.A. Primenenie metoda konfokalnoy lazernoy skaniruyushchey mikroskopii dlya issledovaniya korrozionnykh povrezhdeniy [Application of the confocal laser imaging microscopy method for corrosive damages study] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 11. Available at: http://www.viam-works.ru (accessed: Decenber 24, 2015). DOI: 10/18577/2307-6046-2015-0-4-11-11.
12. GOST 9.021–74. Edinaya sistema zashchity ot korrozii i stareniya. Alyuminiy i splavy alyuminievye. Metody uskorennykh ispytaniy na mezhkristallitnuyu korroziyu / Gos. komitet SSSR po standartam [GOST 9.021-74. Uniform system of corrosion protection and aging. Aluminum and alloys aluminum. Methods of accelerated tests on between crystalline corrosion / State committee of the USSR on standards]. M., 1974. 4 s.
13. GOST 9.904–82. Edinaya sistema zashchity ot korrozii i stareniya. Splavy alyuminievye. Metod uskorennykh ispytaniy na rasslaivayushchuyu korroziyu / Gos. komitet SSSR po standartam [GOST 9.904-82. Uniform system of corrosion protection and aging. Alloys aluminum. Method of accelerated tests on stratifying corrosion / State committee of the USSR  on standards]. M., 1982. 10 s.
14. Klyuev V.V. Nerazrushayushchiy kontrol i diagnostika: spravochnik [Non-destructive testing and diagnostics: directory]. M.: Mashinostroenie, 2003, 656 s.
15. Kurs M.G., Fomina M.A. Issledovanie zakonomernostey korrozionnogo razrusheniya deformiruemykh alyuminievykh splavov pri laboratornykh i naturnykh ispytaniyakh [Research of patterns of corrosion destruction of deformable aluminum alloys at laboratory and natural tests] // Fundamentalnye issledovaniya i poslednie dostizheniya v oblasti litya, deformatsii, termicheskoy obrabotki i zashchity ot korrozii alyuminievykh splavov: sb. dokl. konf. M.: VIAM, 2015. S. 21.

DOI: 10.18577/2071-9140-2016-0-3-33-48

UDC: 669.018.44:669.017.165

Pages: 33-48

Yu.I. Dimitrienko1, A.N. Lutsenko2, E.A. Gubareva1, E.I. Oreshko2, O.A. Bazyleva2, S.V. Sborschikov1

[1] Bauman Moscow State Technical University,
[2] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Calculating of mechanical characteristics of heat resistant intermetallic alloys on the basis of nickel by method of multi-scale modeling of structure

The article considers computational mathematical modeling of mechanical properties of heat resistant nickel alloys by method of multi-scale modeling of structure. Effect of crystallographic orientation (CGO) <001>, <011>, <111> on the microstructure of intermetallic alloy VKNA-1V is investigated. The decision to use two-level structure model of VKNA-1V alloy in the form of the periodic structure containing two phases with section boundary between them is made on the basis of performed metallographic analysis. The work is executed within implementation of the complex scientific direction 3.3 «Technology of forecasting of properties, modeling and implementation of modern processes of designing and production of products from non-metallic and composite materials with use of the digital methods compatible to CAD/CAM/CAE and PLM systems» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: VKNA-1V, microstructure, crystallographic orientation, intermetallide Ni3Al, monocrystal alloys, mathematical modeling, method of multilarge-scale modelling, finite element method, damage.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Konstrukcionnye zharoprochnye materialy na osnove soedineniya Ni3Al dlya detalej goryachego trakta GTD [Constructional heat resisting materials on the basis of Ni3Al connection for details of hot path of GTD] // Tehnologiya legkih splavov. 2007. №2. S. 75–80.
3. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38–52.
4. Povarova K.B., Bazyleva O.A., Kazanskaya N.K., Drozdov A.A. i dr. Konstrukcionnye zharoprochnye splavy na osnove Ni3Al: poluchenie, struktura i svojstva [Constructional hot strength alloys on the basis of Ni3Al: receiving, structure and properties] // Materialovedenie. 2011. №4. S. 39–48.
5. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
6. Buntushkin V.P., Bronfin M.B., Bazyleva O.A., Timofeeva O.B. Vliyanie legirovaniya i struktury otlivok na zharoprochnost intermetallida Ni3Al pri vysokoj temperature [Influence of alloying and structure of casting on thermal stability of Ni3Al intermetallic compound at high temperature] // Metally. 2004. №2. S. 107–110.
7. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Materialy na osnove intermetallida Ni3Al dlya polucheniya otlivok s reglamentirovannoj strukturoj [Materials on the basis of Ni3Al intermetallic compound for receiving otlivka with the regulated structure] // Struktura i svojstva intermetallidnyh materialov s nanofaznym uprochneniem. M.: MISiS, 2008. S. 182–219.
8. Bondarenko Yu.A., Bazyleva O.A., Echin A.B., Surova V.A., Narskij A.R. Vysokogradientnaya napravlennaya kristallizaciya detalej goryachego trakta iz intermetallidnogo zharoprochnogo splava VKNA-1V s monokristallicheskoj strukturoj [The high-gradient directed crystallization of details of hot path from intermetallidny VKNA-1B hot strength alloy with single-crystal structure] // Litejnoe proizvodstvo. 2012. №6. S. 12–16.
9. Bazyleva O.A., Turenko E.Yu., Shestakov A.V. Sovremennye perspektivnye vysokotemperaturnye intermetallidnye splavy serii VIN [Modern perspective high-temperature intermetallidny alloys of VIN series] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 10. Available at: http://www.materialsnews.ru (accessed: May 18, 2015).
10. Enomoto M., Harada. Analysis of γ/γʹ Equilibrium in Ni–Al–X Alloys by the Cluster Variation Method with the Lennard-Jones Potential // Metallurgical Transactions. 1989. V. 20A. №4. P. 649–664.
11. Goryunov A.V., Rigin V.E. Sovremennaya tehnologiya polucheniya litejnyh zharoprochnyh nikelevyh splavov [The modern technology of cast nickel base superalloys production] // Aviacionnye materialy i tehnologii. 2014. №2. S. 3–7.
12. Bondarenko Yu.A., Echin A.B., Surova V.A., Narskij A.R. Vliyanie uslovij napravlennoj kristallizacii na strukturu detalej tipa lopatki GTD [Influence of conditions of the directed crystallization on structure of details like GTD blade] // Litejnoe proizvodstvo. 2012. №7. S. 14–16.
13. Kablov E.N., Petrushin N.V., Svetlov I.L. Kompyuternoe konstruirovanie zharoprochnogo nikelevogo splava IV pokoleniya dlya monokristallicheskih lopatok gazovyh turbin [Computer designing of heat resisting nickel alloy IV of generation for single-crystal blades of gas turbines] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 98–115.
14. Dimitrienko Yu.I., Gubareva E.A., Yurin Yu.V. Asimptoticheskaya teoriya termopolzuchesti mnogoslojnyh tonkih plastin [Asymptotic theory of thermocreep of composite thin wafers] // Matematicheskoe modelirovanie i chislennye metody. 2014. №4. S. 18–36.
15. Dimitrienko Yu.I., Drogolyub A.N., Gubareva E.A. Optimizaciya mnogokomponentnyh dispersno-armirovannyh kompozitov na osnove splajn-approksimacii [Optimization of the multicomponent disperse reinforced composites on basis spline approximation] // Nauka i obrazovanie: elektron. nauch.-tehnich. izd. 2015. Available at: http://www.technomag.bmstu.ru (accessed: May 18, 2015).
16. Dimitrienko Yu.I., Fedonyuk N.N., Gubareva E.A., Sborshhikov S.V., Prozorovskij A.A. Mnogomasshtabnoe konechno-jelementnoe modelirovanie trehslojnyh sotovyh kompozitnyh konstrukcij // Nauka i obrazovanie: elektron. nauch.-tehnich. izd. 2014. №10. Available at: http://www.technomag.bmstu.ru (accessed: May 18, 2015).
17. Dimitrienko Yu.I., Sborshhikov S.V., Sokolov A.P., Sadovnichij D.N., Gafarov B.R. Chislennoe i jeksperimental\'noe modelirovanie prochnostnyh harakteristik sferoplastikov [Numerical and experimental modeling of strength characteristics sphere plastics] // Kompozity i nanostruktury. 2013. №3. S. 35–51.
18. Dimitrienko Yu.I., Sborshhikov S.V., Sokolov A.P. Chislennoe modelirovanie mikrorazrusheniya i prochnostnyh harakteristik prostranstvenno-armirovannyh kompozitov [Numerical modeling of microdestruction and strength characteristics of the space reinforced composites] // Mehanika kompozicionnyh materialov i konstrukcij. 2013. T. 19. №3. S. 365–383.
19. Dimitrienko Yu.I., Yakovlev N.O., Erasov V.S., Fedonyuk N.N., Sborshhikov S.V., Gubareva E.A., Krylov V.D., Grigorev M.M., Prozorovskij A.A. Razrabotka mnogoslojnogo polimernogo kompozicionnogo materiala s diskretnym konstruktivno-ortotropnym zapolnitelem [Development of multi-layer polymeric composite material with discrete constructive and orthotropic filler] // Kompozity i nanostruktury. 2014. T. 6. №1. S. 32–48.
20. Dimitrienko Yu.I., Gubareva E.A., Sborshhikov S.V., Bazyleva O.A., Lucenko A.N., Oreshko E.I. Modelirovanie uprugoplasticheskih harakteristik monokristallicheskih intermetallidnyh splavov na osnove mikrostrukturnogo chislennogo analiza [Modeling of elasto-plastic characteristics of single-crystal intermetallidny alloys on the basis of the microstructural numerical analysis] // Matematicheskoe modelirovanie i chislennye metody. 2015. №2. S. 3–22.
21. Dimitrienko Yu.I., Gubareva E.A., Sborshhikov S.V. Konechno-jelementnoe modelirovanie jeffektivnyh vyazkouprugih svojstv odnonapravlennyh kompozicionnyh materialov [Final and element modeling of effective viscoelastic properties of unidirectional composite materials] // Matematicheskoe modelirovanie i chislennye metody. 2014. №2. S. 28–48.
22. Kollerov M.Yu., Egorova M.V., Oreshko E.I., Rtishhev S.N., Karachunskij G.M., Radvanskaya S.N. Jeksperimental\'no-teoreticheskoe obosnovanie algoritma rannego ortodonticheskogo lecheniya detej s odnostoronnej rasshhelinoj guby i neba nesemnymi apparatami [Experimental and theoretical justification of algorithm of early orthodontic treatment of children with one-sided crevice of lip and the sky fixed devices] // Stomatologiya detskogo vozrasta i profilaktika. 2011. T. H. №1 (36). S. 23–27.
23. Gusev D.E., Kollerov M.Yu., Rudakov S.S., Korolev P.A., Oreshko E.I. Ocenka biomehanicheskoj sovmestimosti implantiruemyh opornyh plastin iz splavov na osnove titana i nikelida titana metodom komp\'yuternogo modelirovaniya [Assessment of biomechanical compatibility of implanted bed plates from titanium-based alloys and nikelida titanium method of computer modeling] // Titan. 2011. №3 (33). S. 39–44.
24. Kollerov M.Yu., Gusev D.E., Oreshko E.I. Eksperimentalno-teoreticheskoe obosnovanie vybora metoda i implantatov dlya ustraneniya voronkoobraznoj deformacii grudnoj kletki [Experimental and theoretical justification of choice of method and implants for elimination of funneled deformation of thorax] // Nauchnye trudy (Vestnik MATI). 2012. №19 (91). S. 331–336.
25. Kollerov M.Yu., Usikov V.D., Kuftov V.S., Gusev D.E., Oreshko E.I. Mediko-tehnicheskoe obosnovanie ispolzovaniya titanovyh splavov v implantiruemyh konstrukciyah dlya stabilizacii pozvonochnika [medico-technical justification of use of titanium alloys in implanted designs for backbone stabilization] // Titan. 2013. №1 (40). S. 39–45.
26. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117.
27. Oreshko E.I., Erasov V.S., Lucenko A.N. Matematicheskoe modelirovanie deformirovaniya konstrukcionnogo ugleplastika pri izgibe //Aviacionnye materialy i tehnologii. 2017 (v pechati).
28. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lucenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminij-litievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
29. Oreshko E.I., Erasov V.S., Lutsenko A.N., Terentev V.F., Slizov A.K. Postroenie diagramm deformirovaniya v trehmernom prostranstve ––t [Creation of charts of deformation in three-dimensional space of ––t] // Aviacionnye materialy i tehnologii. 2017 (v pechati).
30. Oreshko E.I., Erasov V.S., Lucenko A.N. Osobennosti raschetov ustojchivosti sterzhnej i plastin [Features of calculations of stability of rods and plates] // Aviacionnye materialy i tehnologii. 2017 (v pechati).
31. Dimitrienko Yu.I. Metod mnogourovnevoj gomogenizacii ierarhicheskih periodicheskih struktur [Method of multi-level homogenization of hierarchical periodic structures] // Vestnik MGTU im. N.E. Baumana. Ser.: Estestvennye nauki. 2002. №1. S. 58–73.
32. Dimitrienko Yu.I., Sokolov A.P. Sistema avtomatizirovannogo prognozirovaniya svojstv kompozicionnyh materialov [System of the automated forecasting of properties of composite materials] // Informacionnye tehnologii. 2008. №8. S. 31–36.
33. Dimitrienko Yu.I., Sokolov A.P. Chislennoe modelirovanie kompozicionnyh materialov s mnogourovnevoj strukturoj [Numerical modeling of composite materials with multi-level structure] // Izvestiya Rossijskoj akademii nauk. Ser. fizicheskaya. 2011. T. 75. №11. S. 1549–1554.
34. Dimitrienko Yu.I., Sokolov A.P. Mnogomasshtabnoe modelirovanie uprugih kompozicionnyh materialov [Multilarge-scale modeling of elastic composite materials ] // Matematicheskoe modelirovanie. 2012. T. 24. №5. S. 3–20.
35. Dimitrienko Yu.I. Mehanika sploshnoj sredy: ucheb. posob. v 4 t. [Mechanics of continuous medium: studies. posob. in 4 vol.] M.: Izd-vo MGTU im. N.E. Baumana, 2013. T. 4: Osnovy mehaniki tverdogo tela. 624 s.
36. Dimitrienko Yu.I., Sborshhikov S.V. Programma Microyes_NetGazer dlya trehmernoj vizualizacii i animacii rezul\'tatov resheniya zadachi imitacionnogo modelirovaniya mikrorazrusheniya kompozicionnyh materialov pri staticheskih nagruzkah, na osnove konechno-jelementnogo resheniya zadach na yachejke periodichnosti: programma dlya elektronnyh vychislitelnyh mashin (programmy dlya EVM) Rossiya №2015615102 [The Microyes_NetGazer program for three-dimensional visualization and animation of results of the solution of problem of imitating modeling of microdestruction of composite materials at static loads, on the basis of the final and element solution of tasks on frequency cell: program for electronic computers (computer program). Russia No. 2015615102]; data postupleniya: 12.03.15; data gosregistracii Programm dlya EVM: 07.05.15.
37. Arginbaeva E.G. Vliyanie legirovaniya, tehnologii litya i termicheskoj obrabotki na strukturu i svojstva intermetallidnyh splavov na osnove nikelya: avtoref. dis. … kand. tehn. nauk [Influence of alloying, casting technology and thermal processing on structure and properties of intermetallidny alloys on the basis of nickel: thesis Cand. Tech. Sci.]. 2014. 24 s.
38. Bazyleva O.A., Bondarenko Yu.A., Timofeeva O.B., Hvackij K.K. Vliyanie kristallograficheskoj orientacii na strukturu i svojstva splava VKNA-1V [Influence of crystallographic orientation on structure and property of alloy VKNA-1B] // Metallurgiya mashinostroeniya. 2012. №4. S. 9–13.
39. Arginbaeva E.G., Bazyleva O.A., Kolodochkina V.G., Khvatskij K.K. Vliyanie kristallograficheskoj orientacii na strukturu i fiziko-mehanicheskie svojstva intermetallidnogo splava na osnove Ni3Al [The influence of crystallographic oriental on structure, physical and mechanical properties of intermetallic alloys based on Ni3Al] // Aviacionnye materialy i tehnologii. 2013. №2. S. 3–7.

DOI: 10.18577/2071-9140-2016-0-3-49-52

UDC: 669.018.95

Pages: 49-52

D.V. Kosolapov1, A.A. Shavnev1, A.N. Nyavkin1, O.I. Grishina1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Research of forming of structure of composition granules of Al-SiC

The influence of mechanical alloying time on formation of composition structure of granules based on high-strength aluminum alloy is shown. Aluminum alloy of Al-Zn-Mg-Cu system and SiC silicon carbide powders were used as initial components. Stages of structure forming are shown. In the process of mechanical alloying under the influence of grinding bodies the initial components mixing, deformation, destruction and welding occurred. As time of mechanical alloying increased the forming of monolithic structure of composition granules occurred. The fractional structure of the received composition granules is shown. The conclusion about influence of mechanical alloying time on structure of composition granules is made. The work is executed within implementation of the complex scientific direction 12.1. «Metal composite materials (MCM) reinforced by particles and fibers of high-melting compositions» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: a metal matrix composite (MMC), aluminum, silicon carbide particles.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Alyuminievye splavy [Aluminum alloyes] // Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 143–156.
3. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
7. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: March 17, 2015).
8. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
9. Kurganova Yu.A. Perspektivy razvitiya metallomatrichnyh kompozicionnyh materialov promyshlennogo naznacheniya [Perspectives of development of metalmatrix composite materials of industrial function] // Servis v Rossii i za rubezhom. 2012. T. 30. №3. S. 235–240.
10. Kurganova Yu.A., Chernysheva T.A., Kobeleva L.I., Kurganov S.V. Ekspluatacionnye harakteristiki alyumomatrichnyh dispersno-uprochnennyh kompozicionnyh materialov i perspektivy ih ispol\'zovaniya na sovremennom rynke konstrukcionnyh materialov [Utilization properties of the alyumomatrichny disperse strengthened composite materials and perspective of their use in the modern market of constructional materials] // Metally. 2011. №4. S. 71.
11. Chawla N., Chawla K.K. Metal Matrix Composites. Springer Sience+Business Media. Inc., 2006. 401 p.
12. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
13. Kablov E.N., Grashhenkov D.V., Shhetanov B.V., Shavnev A.A., Nyafkin A.N., Vdovin S.M., Nishhev K.N., Chibirkin V.V., Eliseev V.V., Emih L.A. Metallicheskie kompozicionnye materialy na osnove Al–SiC dlya silovoj elektroniki [Metal composite materials on the basis of Al–SiC for power electronics] // Mehanika kompozicionnyh materialov i konstrukcij. 2012. T. 18. №3. S. 359–368.
14. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodyashchih osnovanij iz MMK Al–SiC v silovoj elektronike i preobrazovatelnoj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] // Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
15. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: March 17, 2015). DOI: 10.18577/2307-6046-2014-0-4-2-2.

DOI: 10.18577/2071-9140-2016-0-3-53-59

UDC: 669.293:669.018.95

Pages: 53-59

B.V. Shchetanov1, I.U. Efimochkin1, S.V. Paegle1, F.N. Karachevtsev1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Study of high-temperature strength of Nb-Si-Ti in-situ-composites reinforced by single-crystal α-Al2O3

A set of experimental samples of fibrous composite materials (CMs) was fabricated by hot pressing techniques from mechanically alloyed powder of ternary Nb-Si-Ti system and continuous single-crystal α-Al2O3 fibers with and without TiN coating. The microstructure and phase composition of fibrous CMs were characterized by X-ray diffraction and electron probe microanalysis. Matrix phase composition consists: Nbs.s., Tis.s., Nb5Si3, Nb3Si, TiSi, Ti5Si4 and Nb4FeSi. It is established that the structure in the interaction zone of the matrix-fiber interface is changed due to the mutual elements diffusion of matrix and fiber (coating). Nb5Si3 phase is depleted by diffusion of silicon from a matrix interaction zone to the fiber that leads to formation of Nb3Si phase. High-temperature bending strength of Nb-Si-Ti in-situ composites reinforced by single-crystal fibers with and without barrier coating is investigated. It is found that the high-temperature bending strength of CM reinforced by fibers without covering at 1300°C is 1,5 times higher than for the pure (Nb-Si-Ti) matrix; and the one of CM reinforced by fibers with covering is 2,5 times higher. The work is executed within implementation of the complex scientific direction 12.3. «Metal composite materials (MCМ) on the basis of Nb, Mo and their intermetallic compound» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: Nb–Si–Ti composites, single-crystal α-Al2O3 fibers, diffusion barrier TiN coating, high-temperature bending strength, X-ray diffraction analysis and electron probe microanalysis.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. Vysokotemperaturnye Nb–Si-kompozity [High-temperature Nb-Si-composites] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 164–173.
3. ULTMAT Final Activity Report. Sept. 2008.
4. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: March 25, 2015).
5. Shhetanov B.V., Grashhenkov D.V., Efimochkin I.Yu., Shheglova T.M. Monokristallicheskie volokna oksida alyuminiya dlya vysokotemperaturnyh (do 1400°S) kompozicionnyh materialov [Single-crystal fibers of aluminum oxide for high-temperature (to 1400°С) composite materials] // Tehnologiya mashinostroeniya. 2014. №10 (148). S. 5–9.
6. Shhetanov B.V., Kuptsov R.S., Svistunov V.I. Metody polucheniya monokristallicheskih volokon oksida alyuminiya dlya sozdaniya kompozicionnyh materialov i vysokotemperaturnoj volokonnoj optiki [Methods of receiving single-crystal fibers of aluminum oxide for creation of composite materials and high-temperature fiber optics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 01. Available at: http://www.viam-works.ru (accessed: March 25, 2015).
7. Menon E.S.K., Mendiratta M.G., Dimiduk D.M. Oxidation of complex niobium based alloys // International Symposium Niobium; Science & Technology. Orlando. 2001. P. 121–146.
8. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
9. Jackson M.R., Bewley B.P., Rowe R.G., Skelly D.W., Lipsitt H.A. High Temperature Refractory Metall-Intermetallic Composites // JOM. 1996. V. 48. №1. P. 39–44.
10. Benjamin J.S. Dispersion Strengthened Superalloys by Mechanical Alloing // Metallurgical Transactions. 1970. V. 10. P. 2943–2951.
11. Shhetanov B.V., Stryukov D.O., Kolyshev S.G., Murasheva V.V. Monokristallicheskie volokna oksida alyuminiya: poluchenie, struktura, svojstva [Single-crystal fibers of aluminum oxide: receiving, structure, properties] // Vse materialy. Enciklopedicheskij spravochnik. 2014. №4. S. 14–18.
12. Basargin O.V., Kolyshev S.G., Shhetanov B.V., Shheglova T.M. Osobennosti vysokotemperaturnyh ispytanij pri izgibe obrazcov kompozicionnogo materiala s matricej na osnove Nb [Some features of high-temperature bend tests of Nb-based CM specimens] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 11. Available at: http://www.viam-works.ru (accessed: March 25, 2015). DOI: 10.18577/2307-6046-2015-0-5-11-11.
13. Basargin O.V., Shheglova T.M., Nikitina V.Yu., Svistunov V.I. Sposob opredeleniya prochnosti pri rastyazhenii monokristallicheskih volokon Al2O3 pri temperature 1400°S [High-temperature tensile strength determination of single crystal alumina fibers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 03. Available at: http://www.viam-works.ru (accessed: March 25, 2015). DOI: 10.18577/2307-6046-2014-0-4-3-3.
14. Zhao J.-C., Jackson M.R., Peluso L.A. Mapping of the Nb–Ti–Si phase diagram using diffusion multiples // Materials Science and Engineering A372. 2004. P. 21–27.
15. Bowman R.R., Misra A.K., Arnold S.M. Processing and Mechanical Properties of Al2O3 Fibwe-Reinforced NiAl Composites // Metallurgical and Materials Transactions. 1995. V. 26A. P. 615–628.
16. Svetlov I.L., Abuzin Yu.A., Babich B.N., Vlasenko S.Ya., Efimochkin I.Yu., Timofeeva O.B. Vysokotemperaturnye niobievye kompozity, uprochnennye silicidami niobiya [The high-temperature niobic composites strengthened by silicides of niobium] // Zhurnal funkcional\'nyh materialov. 2007. T. 1. №2. S. 48–53.

DOI: 10.18577/2071-9140-2016-0-3-60-65

UDC: 621.315.616.7

Pages: 60-65

A.M. Chaykun1, I.S. Naumov1, M.A. Venediktova1, E.V. Alifanov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

New researches of special purpose fluorosilicone rubber

The article shows modern tendencies in synthesis of fluorosilicone raw rubbers and vulcanizate stock based thereon. The subscribed problem is very actual since remarkable increase of aircraft operation intensity dictates new requirements to used rubbers. First of all they are the increase in temperature range of operation and improvement of performance parameters. That is why the improvement of rubber compounds based on fluorosilicone raw rubbers is of particular interest since they provide wide temperature range of operation and have high performance characteristics. Rubbers based on silicone raw rubbers can work in air at wide temperature range. However they have low fuel- and oil resistance. High-molecular fluorosilicone raw and vulcanizate rubbers have balanced combination of resistance to aggressive environment and good working ability in wide temperature range. Improving rubber compositions based on above-mentioned raw rubbers allows improving their performance parameters and thus increase the life time of aircraft. The patterns revealed in this work allow to research and compose new. The work is executed within implementation of the complex scientific direction 15.2. «Elastomeric and sealing materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: rubber, rubber compounds, fluorosilicone rubbers.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] // Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
3. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukciyah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://viam-works.ru (accessed: March 20, 2015).
4. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
5. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: March 20, 2015).
6. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
7. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
8. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
9. Bolshoj spravochnik rezinshhika v 2 ch. [Big directory of the specialist on rubbers in 2 parts]. M.: Tehinform, 2012. 1385 s.
10. Mahlis F.A., Fedyukin D.L. Terminologicheskij spravochnik po rezine [Terminological directory on rubber]. M.: Himiya, 1989. 400 s.
11. Tehnologiya reziny: Recepturostroenie i ispytaniya: per. s angl. / pod red. Dzh.S. Dika [Compounding structure and tests: trans. from English / ed. by J. S. Dick]. SPb.: Nauchnye osnovy i tehnologii, 2010. 620 s.
12. Shvejcer F.A. Korroziya plastmass i rezin [Corrosion of plastic and rubbers]. SPb.: Nauchnye osnovy i tehnologii, 2010. 637 s.
13. Martin Dzh.M., Smit U.K. Proizvodstvo i primenenie rezinotehnicheskih izdelij: per s angl. / pod red. S.Ch. Bhati [Production and application of industrial rubber products: trans. from English]. SPb.: Professiya, 2006. 480 s.
14. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of old-resistant rubbers on the basis on different unvulcanized rubbers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 04. Available at: http://www.viam-works.ru (accessed: March 20, 2015).
15. Chaykun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti postroeniya receptur dlya morozostojkih rezin [Compounding principles in the field of frost resistant rubbers] // Aviacionnye materialy i tehnologii. 2013. №3. S. 53–55.
16. Ito M., Noguchi T., Ueki H., Inukai H., Ino S., Takeuch K., End M. Adhesion and Reinforcement of CNT-fluoroelastomers Composite for Oilfield Application // Journal of The Adhesion Society of Japan. 2011. V. 47 (4). P. 146–153.

DOI: 10.18577/2071-9140-2016-0-3-66-72

UDC: 678.747.2:620.165.79

Pages: 66-72

A.E. Sorokin1, E.Ya. Beider1, T.F. Izotova1, E.V. Nikolaev1, A.K. Shvedkova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Investigation of carbon fiber reinforced plastic on polyphenylenesulfide resin after accelerated and natural climatic test

This article contains a properties study of structural thermoplastic carbon fiber reinforced plastic (CFRP) based on polyphenylenesulfide matrix after accelerated and full-scale climatic tests. CFRP has high resistance to tropical climate, water and humid environment at normal and elevated temperatures. It is shown that CFRP is characterized by low water- and moisture absorption. Thermal aging of CFRP is accompanied by increasing of its’ glass transition temperature, because of structuration processes. Effects arising during full-scale climatic tests of CFRP resulted in slight reducing of its’ strength characteristics and increasing of fireproof properties. The work is executed within implementation of the complex scientific direction 13.2. «Constructional PСM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: polymer composite material, carbon fiber plastic, thermoplastic matrix, accelerated aging, full-scale climatictests.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Sirotkin O.S., Andryunina M.A., Bejder E.Ya. Novye konstrukcionnye i funkcionalnye PKM na osnove termoplastov i tehnologii ih formovaniya [New constructional and functional PKM on the basis of thermoplastics and technology of their formation] // Aviacionnaya promyshlennost. 2012. №4. S. 43–47.
3. Beider E.Ya., Petrova G.N., Izotova T.F., Barbotko S.L. Stekloplastiki na termoplastichnoj matrice [Glass reinforced plastics on the basis of thermoplastic matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 03. Available at: http://www.viam-works.ru (accessed: March 28, 2015).
4. Petrova G.N., Bejder E.Ya., Izotova T.F., Malyshenok S.V. Kompozicionnye termoplastichnye materialy – sposoby polucheniya i pererabotki [Composite thermoflexible materials – ways of receiving and processing] // Vse materialy. Enciklopedicheskij spravochnik. 2013. №10. S. 10–17.
5. Bejder E.Ya., Malyshenok S.V., Petrova G.N. Kompozicionnye termoplastichnye materialy – svojstva i sposoby pererabotki [Composite thermoflexible materials – properties and ways of processing] // Plasticheskie massy. 2013. №7. S. 56–60.
6. Beider E.Ya., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and foam polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 01. Available at: http://www.viam-works.ru (accessed: March 28, 2015).
7. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
8. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional carbon the plastics modified by nanoparticles] //Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
9. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
10. Gulyaev I.N., Vlasenko F.S., Zelenina I.V., Raskutin A.E. Napravleniya razvitiya termostojkih ugleplastikov na osnove poliimidnyh i geterociklicheskih polimerov [Development Directions of heat-resistant carbon–fiber–reinforced–plastics based on polimide and heterocyclic polymers] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 04. Available at: http://www.viam-works.ru (accessed: March 28 data, 2015). DOI: 10.18577/2307-6046-2014-0-1-4-4.
11. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. SPb.: NOT. 2008. 820 s.
12. Kerber M.L., Vinogradov V.M. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya. 2009. 560 s.
13. Nozdrina L.V., Korotkova V.I., Bejder E.Ya. Primenenie kompozicionnyh materialov s termoplastichnoj matricej [Application of composite materials with thermoflexible matrix] // Konstrukcii iz kompozicionnyh materialov. 1991. №1. S. 18–24.
14. Ustinov V.A., Bejder E.Ya. Primenenie kompozicionnyh materialov s termoplastichnoj matricej [Application of composite materials with thermoflexible matrix] // Konstrukcii iz kompozicionnyh materialov. 1991. №1. S. 25–32.
15. Petrova G.N., Beider E.Ya. Construction materials based on reinforced thermoplastics // Russian Journal of General Chemistry. 2011. V. 81. №5. P. 1001–1007.
16. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
17. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. II. Relaksaciya ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] // Deformaciya i razrushenie materialov. 2012. №6. S. 17–19.
18. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
19. Сhen-chi M.M., Chang-lun L., Min-jong C., Wyan-hwa T. Effect of physical aging on the thoughness of carbon fiber-reinforsed poly(ether ether ketone) and poly (phenylene sulfide) composite // Polymer composite. 1992. V. 13. №6. P. 441–447.
20. Сhen-chi M.M., Chang-lun L., Min-jong C., Wyan-hwa T. Hydrothermal behaivor of carbon fiber-reinforsed poly(ether ether ketone) and poly (phenylene sulfide) composite // Polymer composite. 1992. V. 13. №6. P. 448–453.
21. Batista N.L., Faria M.C.M., Jha K., Olivera P.C., Bothelho E.C. Influence of water immersion and ultraviolet weathering on mechanical properties of polyphenylene sulfide-carbon fiber composites // Journal of thermoplastic composite materials. 2013. №1. P. 1–17.
22. Choqueuse D., Davies P., Mareas F., Baireur R. Aging of Composites in water: comparison of five materials in term of absorption kinetics and revolution of mechanical properties // Polymeric composites. 1997. V. 2. P. 73–96.
23. Ishak Z.A., Berry J.P. Hygrothermal aging studies of short carbon fiber reinforced nylon 6.6 // Journal of applied polymer science. 1994. V. 51. №13. Р. 2144–2155.
24. Amore A.D., Cocchini K., Pompo A., Apicella A., Nicolais L. The effect of physical aging on long-term properties of poly ether-ketone (PEEK) and PEEK based composites // Journal of applied polymer science. 1990. V. 39. P. 1163–1174.
25. Dao D., Hodgkin J., Krstina J., Mardel J., Tian W. Accelerated aging versus realistic aging aerospace composites. II Chemistry of thermal aging // Journal of applied polymer science. 2006. 
V. 102. P. 3221–3232.
26. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy [Thermosteady polymers and polymeric materials]. SPb.: Professiya. 2006. 624 s.
27. Bullions T.A., McGrath J.E., Loos A.C. Thermal-oxidative aging effects on the properties of a carbon fiber-reinforced phenylethynyl-terminated poly(etherimide) // Composites Science and Technology. 2003. №63. Р. 1737–1748.
28. Schambron T., Lowe A., McGregor H.V. Effects of environmental ageing on the static and cyclic bending properties of braided carbon fiber/PEEK bone plates // Composites: Part B. 2008. №39. P. 1216–1220.
29. Nesterova T.A., Barbotko S.L., Nikolaeva M.F., Gerter Yu.A. Mnogoslojnyj zashhitno-dekorativnyj material dlya dekorirovaniya detalej v salonah samoletov i vertoletov [Multi-layer protective and decorative material for decorating details in the cabin of aircraft and helicopters] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2013. №8. St. 04. Available at: http://www.viam-works.ru (accessed: March 28 data, 2015).
30. Skryljov N.S., Volnyj O.S., Postnov V.I., Barbotko S.L. Issledovanie vliyaniya teplovyh faktorov klimata na izmenenie harakteristik pozharobezopasnosti polimernyh kompozicionnyh materialov [Research of influence of environment’s thermal  factors on fire safety characteristics drift of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 05. Available at: http://www.viam-works.ru (accessed: March 28 data, 2015).
31. Kirillov V.N., Efimov V.A., Barbot\'ko S.L., Nikolaev E.V. Metodicheskie osobennosti provedeniya i obrabotki rezultatov klimaticheskih ispytanij polimernyh kompozicionnyh materialov [Methodical features of carrying out and processing of results of climatic tests of polymeric composite materials] // Plasticheskie massy. 2013. T. 1. №1. S. 37–41.
32. Barbotko S.L., Volnyj O.S., Kirienko O.A., Lutsenko A.N., Shurkova E.N. Sopostavlenie metodov ocenki pozharnoj opasnosti polimernyh materialov v razlichnyh otraslyah transporta i promyshlennosti [Comparison of methods of assessment of fire danger of polymeric materials in the different industries of transport and the industry] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №1. S. 2–9, №2. S. 2–9.

DOI: 10.18577/2071-9140-2016-0-3-73-81

UDC: 678.8:620.179

Pages: 73-81

V.V. Murashov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Assessment of accumulation degree of microdamages of PCM structure in structures determined by nondestructive methods

It is suggested to assess the micro-damage accumulation degree in polymer composites by their strength characteristics determined by the nondestructive method using the integrated parameter that contains the ultrasonic testing pulse velocity values in the product plane and the main ultrasonic testing impulse spectral component frequency values that got through the product dimension direct and reverse. The work is executed within implementation of the complex scientific direction 2.3 «Methods of nondestructive research and control» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: non-destructive testing, polymer composite materials, micro-damages, strength characteristics.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki // Aviacionnye materialy i tehnologii [Quality control of materials – security accreditation of operation of aviation engineering]. M.: VIAM, Vyp.: Metody ispytanij i kontrolya kachestva metallicheskih i nemetallicheskih materialov. 2001. S. 3–8.
4. Kablov E.N. Shestoj tehnologicheskij uklad //Nauka i zhizn\'. 2010. №4. S. 2–7.
5. Murashov V.V., Mishurov K.S. Ocenka prochnostnyh harakteristik ugleplastikov akusticheskim metodom //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 81–85.
6. Generalov A.S., Murashov V.V., Kosarina E.I., Bojchuk A.S. Postroenie i analiz korrelyacionnyh svyazej dlya ocenki prochnostnyh svojstv ugleplastikov reverberacionno-skvoznym metodom //Aviacionnye materialy i tehnologii. 2014. №1. S. 58–63.
7. Murashov V.V., Kosarina E.I., Generalov A.S. Kontrol\' kachestva aviacionnyh detalej iz polimernyh kompozicionnyh materialov i mnogoslojnyh kleenyh konstrukcij //Aviacionnye materialy i tehnologii. 2013. №3. S. 65–70.
8. Murashov V.V. Nerazrushayushhij kontrol\' zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala dlya mnogorazovogo kosmicheskogo korablya «Buran» //Trudy VIAM. 2013. №4. St. 05 (viam-works.ru).
9. Murashov V.V., Generalov A.S. Kontrol\' mnogoslojnyh kleenyh konstrukcij nizkochastotnymi akusticheskimi metodami //Aviacionnye materialy i tehnologii. 2014. №2. S. 59–67.
10. Maksimov R.D., Ponomarev V.M. Predposylki kompleksnogo diagnostirovaniya nakopleniya povrezhdenij pri deformirovanii gibridnogo kompozita //Metody i sredstva diagnostiki nesushhej sposobnosti izdelij iz kompozitov. Riga: Zinatne. 1983. S. 150–155.
11. Sorokin K.V., Murashov V.V., Fedotov M.Yu., Goncharov V.A. Prognozirovanie razvitiya defektov v konstrukciyah iz PKM sposobom opredeleniya izmenenij zhestkosti pri aktyuirovanii materiala [Forecasting of development of defects in designs from PCM in the way of definition of changes of rigidity at material actuation conditions] // Aviacionnye materialy i tehnologii. 2011. №2. S. 20–22.
12. Nagem R.J., Seng J.M., Willians J.H. Residual life predictions of composite aircraft structures via nondestructive testing. Part 1: Prediction methodology and via nondestructive // Materials Evaluation. 2000. V. 58. №9. Р. 1065–1074.
13. Nagem R.J., Seng J.M., Williams J.H. Residual life predictions of composite aircraft structures via nondestructive testing. Part 2: Degradation modeling and residual life prediction // Materials Evaluation. 2000. V. 58. №11. Р. 1310–1319.
14. Murashov V.V., Rumyancev A.F., Buznikov Yu.N. Akusticheskij kompleksnyj metod ocenki fiziko-mehanicheskih svojstv polimernyh kompozitnyh materialov [Acoustic complex method of assessment of physicomechanical properties of polymeric composite materials] // Metody i sredstva diagnostiki nesushhej sposobnosti izdelij iz kompozitov. Riga: Zinatne, 1983. S. 165–170.
15. Murashov V.V., Rumyancev A.F., Buznikov Yu.N. Ocenka fiziko-mehanicheskih harakteristik ugleplastikov kompleksnym akusticheskim metodom [Assessment of physicomechanical characteristics ugleplastikov complex acoustic method] // Voprosy aviacionnoj nauki i tehniki. Ser.: Aviacionnye materialy. M.: VIAM, 1986. Vyp.: Nemetallicheskie kompozicionnye materialy. S. 105–111.
16. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
17. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
18. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
19. Gunasekera A.M. Monitoring of impact damage products from PCM // Materials Evaluation. 2010. V. 68. №8. Р. 880–887.
20. Murashov V.V. K voprosu opredeleniya uprugih i prochnostnyh svojstv polimernyh kompozicionnyh materialov akusticheskim kompleksnym metodom [To question of determination of elastic and strength properties of polymeric composite materials acoustic complex method] // Deformaciya i razrushenie materialov. 2014. №11. S. 39–45. 
21. Potapov A.I., Pekker F.P. Nerazrushayushhij kontrol konstrukcij iz kompozicionnyh materialov [Non-destructive testing of designs from composite materials]. L.: Mashinostroenie. 1977. 190 s.
22. Gershberg M.V., Ilyushin S.V., Smirnov V.N. Nerazrushayushhie metody kontrolya sudostroitelnyh stekloplastikov [Nondestructive control methods of ship-building fibreglasses]. L.: Sudostroenie. 1971. 200 s.
23. Ashkenazi E.K., Gershberg M.V., Ilyushin S.V. Kosvennyj sposob ocenki prochnosti stekloplastikov pri sdvige [Indirect way of assessment of durability of fibreglasses at shift] // Svojstva sudostroitelnyh stekloplastikov i metody ih kontrolya. L.: Sudostroenie, 1974. Vyp. 3. S. 198–202.
24. Murashov V.V., Ilin V.M., Zaharova T.T. Ocenka prochnostnyh svojstv stekloplastika AP-66-151 v tonkostennyh krupnogabaritnyh detalyah bez ih razrusheniya [Assessment of strength properties of fibreglass AP-66-151 in thin-walled large-size details without their destruction] // Avtomobilnaya promyshlennost. 1973. №9. S. 34–36. 
25. Gershberg M.V., Lanchin V.F., Lanchina T.N. Prochnost stekloplastika i ee svyaz s parametrami impulsnogo metoda [Durability of fibreglass and its communication with parameters of pulse method] // Svojstva sudostroitel\'nyh stekloplastikov i metody ih kontrolya. L.: Sudostroenie, 1974. Vyp. 3. S. 167–184.
26. Kablov E., Murashov V., Rumyantsev A. Diagnostics of Polymer Composites by Acoustic Methods // Ultrasound. 2006. №2. Р. 7–10.
27. Latishenko V.A. Diagnostika zhestkosti i prochnosti materialov [Diagnostics of rigidity and durability of materials]. Riga: Zinatne. 1968. 329 s.
28. Nerazrushayushhij kontrol: spravochnik / pod obshh. red. V.V. Klyueva [Non-destructive testing: directory in 8 vol. / gen. ed. by V. V. Klyuev]. M.: Mashinostroenie, 2006. T. 3. Ultrazvukovoj control / I.N. Ermolov, Yu.V. Lange. 864 s.
29. Hand W. Testing reinforced plastics with ultrasonics // Plastics Technology. 1962. №2. P. 62–67.
30. Ashkenazi E.K. Anizotropiya mashinostroitelnyh materialov [Anisotropy of machine-building materials]. L.: Mashinostroenie. 1969. S. 37–39.
31. Baryshev S.E. Spektralnaya plotnost posledovatelnosti eho-signalov [Spectral density of sequence echo signals] // Defektoskopiya. 1974. №2. S. 19–25.
32. Merkulov L.G., Tokarev V.A. Fizicheskie osnovy spektralnogo metoda izmereniya zatuhaniya ul\'trazvukovyh voln v materialah [Physical bases of spectral method of measurement of attenuation of ultrasonic waves in materials] // Defektoskopiya. 1970. №4. S. 3–11.
33. Baryshev S.E. Vliyanie zatuhaniya na spektralnuyu plotnost\' eho-signalov [Influence of attenuation on spectral density echo signals] // Defektoskopiya. 1978. №1. S. 56–62.
34. Sposob opredeleniya fiziko-mehanicheskih harakteristik materialov: a. s. 808930 SSSR [Way of definition of physicomechanical characteristics of materials: copyright certificate 808930 USSR]; opubl. 28.02.81 Byul. №8.
35. Viktorov I.A. Fizicheskie osnovy primeneniya ultrazvukovyh voln Releya i Lemba v tehnike [Physical bases of application of ultrasonic waves of Reley and Lamb in equipment]. M.: Nauka. 1966. S. 84–87.
36. Alabin M.A., Rojtman A.B. Korrelyacionno-regressionnyj analiz statisticheskih dannyh v dvigatelestroenii [The correlation and regression analysis of statistical data in engine building]. M.: Mashinostroenie. 1974. 124 s. 
37. Mitropolskij A.K. Tehnika statisticheskih vychislenij [Equipment of statistical calculations]. M.: Nauka. 1971. 87 s.

DOI: 10.18577/2071-9140-2016-0-3-82-87

UDC: 629.7.023

Pages: 82-87

S.A. Evdokimov1, S.St. Solntsev1, G.V. Yermakova1, D.I. Davletchin1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

High-temperature protective coating for C-C composite materials

The basic principles and possibilities of high-temperature chemical synthesis of protective coating on carbonaceous composite materials are regarded in the present article. It is shown that the application of high-temperature chemical synthesis allows to reach the necessary functional properties by means of varying the chemical composition of the coating. The results of thermo-gravimetric research of the carbonaceous composite material with anti-oxidant coating are given. The prospects of obtaining the high-temperature coating by high-temperature synthesis method on carbonaceous composite materials are shown. The work is executed within implementation of the complex scientific direction 14.1. «Constructional ceramic composite materials (ССM)» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: high-temperature chemical synthesis, carbonaceous composite material, anti-oxidant coating.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlya perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
3. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
4. Pierson H.O. Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. William Andrew. 1993. 419 с.
5. Sheeham J.E., Buesking K.W., Sullivan B.J. Carbon-carbon composites // Annual Review of Materials Science. 1994. V. 24 (1). P. 19–44.
6. Kang P.C., Chen G.Q., Zhang B., Wu G.H., Mula S., Koch C.C. Oxidation protection of carbonfibers by a reaction sintered nanostructured SiC coating // Surface & Coating Technology. 2011. V. 206. P. 305–311.
7. Solntsev S.S., Shalin R.E., Isaeva N.V. Reakcionnospekaemye keramicheskie pokrytiya [Reactionary sintered ceramic coatings] // Sb. tr. 8-j Vsemir. konf. po keramike i novym materialam. 1995. T. 9. S. 237–242.
8. Solntsev S.S., Isaeva N.V., Shvagireva V.V., Maksimov V.I. Vysokotemperaturnye pokrytiya dlya zashhity splavov i uglerodkeramicheskih kompozicionnyh materialov ot okisleniya [High temperature coatings for protection of alloys and carbon ceramic composite materials from oxidation] // Konversiya v mashinostroenii. 2004. №4. S. 77–80.
9. Solntsev S.S., Shvagireva V.V., Isaeva N.V., Soloveva G.A. Zharostojkoe pokrytie dlya zashhity vysokoprochnyh slozhnolegirovannyh nikelevyh splavov ot vysokotemperaturnoj gazovoj korrozii [High temperature coating for protection of high-strength complex alloyed of nickel alloys of high-temperature gas corrosion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 04. Available at: http://www.viam-works.ru (accessed: September 18, 2015). DOI: 10.18577/2307-6046-2014-0-6-4-4.
10. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Soloveva G.A. Vysokotemperaturnye pokrytiya dlya voloknistyh substratov [High-temperature coatings for fibers substratum] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 03. Available at: http://www.viam-works.ru (accessed: September 18, 2015).
11. Solntsev S.St., Shvagireva V.V., Isaeva N.V., Soloveva G.A. Mnogocelevoe stekloemalevoe pokrytie dlya zashhity lityh fasonnyh detalej gazoturbinnyh dvigatelej [Multipurpose glass-enamel coating for protection of cast parts of gas turbine engines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 04. Available at: http://www.viam-works.ru (accessed: September 18, 2015). DOI: 10.18577/2307-6046-2014-0-3-4-4.
12. Solntsev S.S. Vysokotemperaturnye kompozicionnye materialy i pokrytiya na osnove stekla i keramiki [High-temperature composite materials and coverings on the basis of glass and ceramics] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 90–99.
13. Solntsev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklokeramicheskie pokrytiya i kompozicionnye materialy [The high-temperature glass ceramic coatings and composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 359–368.
14. Sorokin O.Yu., Solntsev S.St., Evdokimov S.A., Osin I.V. Metod gibridnogo iskrovogo plazmennogo spekaniya: princip, vozmozhnosti, perspektivy primeneniya [Hybrid spark plasma sintering method: principle, possibilities, future prospects] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 11–16.
15. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V. Keramicheskie pokrytiya dlya zashhity vysokoprochnoj stali pri termicheskoj obrabotke [Ceramic coatings for protection of high-strength steel at thermal processing] // Aviacionnye materialy i tehnologii. 2011. №4. S. 3–8.
16. Grashhenkov D.V., Solncev S.St., Shhegoleva N.E., Naumova A.S., Gaponov B.N. Steklokeramicheskij kompozicionnyj material [Glass-ceramic composite material] // Aviacionnye materialy i tehnologii. 2012. №S. S. 368–372.
17. Yang X., Huang Q.Z., Su Z.A., Chang X., Chai L.Y., Liu C.X., Xue L., Huang D. Resistance to oxidation and ablation of SiC coating on graphite prepared by chemical vapor reaction // Corros. Sci. 2013. V. 75. P. 16–27.
18. Yao X.Y., Li H.J., Zhang Y.L., Wu H., Qiang X.F. A SiC–Si–ZrB2 multiphase oxidation protective ceramic coating for SiC-coated carbon/carbon composites // Ceram. Int. 2012. V. 38. P. 2095–2100.
19. Cabet C. Review: Oxidation of SiC/SiC Composites in Low Oxidizing and High Temperature Environment // Materials Issues for Generation IV Systems. 2008. Р. 351–366.
20. Saravanan S., Hari Srinivas G., Jayaram V., Paulraj M., Asokan S. Synthesis and characterization of Y3Al5O12 and ZrO2–Y2O3 thermal barrier coatings by combustion spray pyrolysis // Surface and Coatings Technology. 2008. V. 202. №19. Р. 4653–4659.

DOI: 10.18577/2071-9140-2016-0-3-88-94

UDC: 620.179

Pages: 88-94

E.I. Kosarina1, A.V. Stepanov1, A.A. Demidov1, O.A. Krupnina1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Sensitometer for technical radiographic films

This article is devoted to sensitometry of technical radiographic films. Features of the interaction of X-rays with microcrystals in the emulsion layer in contrast to the interaction of radiation in the optical range are shown. Variants of the emulsion film exposure are discussed so that the duration of exposure and the results of absorbance measurements obtained with the X-ray sensitometer, one can construct a characteristic curve of a radiographic film. The parameters of the two variants of Sensitometer with translational and rotational movement are calculated. The possibility of construction of the characteristic curves for different values of X-ray tube voltage is determined. It is possible to determine the relationship between mean gradient, sensitivity, resolution and the x-ray energy. The work is executed within implementation of the complex scientific direction 2.3. «Methods of nondestructive researches and control» («The strategic directions of development of materials and their processing technologies for the period till 2030»

Keywords: technical radiographic film, sensitometer, optical density, exposure dose of radiation, characteristic curve, mean gradient, sensitivity to radiation, resolution, spectral properties.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
4. Kablov E.N. K 80-letiyu VIAM [To VIAM 80 anniversary] //Zavodskaya laboratoriya. Diagnostika materialov. 2012. T. 78. №5. S. 79–82. 
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Gorohovskij Yu.N., Levenberg T.M. Obshhaya sensitometriya. Teoriya i praktika [General sensitometry. Theory and practice]. M.: Iskusstvo, 1963. 302 s.
7. Gorohovskij Yu.N., Baranova V.P. Svojstva cherno-belyh fotograficheskih plenok [Properties of black-and-white photographic films]. M.: Nauka, 1970. 388 s.
8. Gorohovskij Yu.N. Spektralnye issledovaniya fotograficheskogo processa [Spectral researches of photographic process]. M.: Fizmatgiz, 1960. 391 s.
9. Dzhejms T. Teoriya fotograficheskogo processa: per. s angl. [Theory of photographic process: trans. from English]. L.: Himiya, 1973. 672 s.
10. Stepanov A.V., Kosarina E.I., Savvina N.A. Trebovaniya k rentgenovskomu kontrolyu i kachestvu rentgenograficheskih snimkov v evropejskih normah i rossijskih standartah [Requirements to x-ray control and quality of radiographic pictures in the European norms and the Russian standards] // Vestnik MEI. 2011. №4. S. 85–90.
11. Stepanov A.V., Kosarina E.I., Savvina N.A. Razrabotka metodiki po ispytaniyu radiograficheskih plenok s cel\'yu opredeleniya celesoobraznosti ih primeneniya v defektoskopii [Development of technique on testing of radiographic films for the purpose of determination of expediency of their application in defect’s scope] // Kontrol. Diagnostika. 2011. №12. S. 65–67.
12. Stepanov A.V., Kosarina E.I., Savvina N.A. Radiograficheskie tehnicheskie plenki RT-K i RT-7T. Rezultaty ih ispytaniya [Radiographic technical films of RT-K and RT-7T. Results of their testing] // Aviacionnye materialy i tehnologii. 2012. №1. S. 37–42.
13. Kosarina E.I., Mihajlova N.A., Demidov A.A., Turbin E.M. Rentgenovskij kontrol krupnogabaritnyh otlivok slozhnoj formy iz splavov gruppy «silumin» [X-ray testing of large-sized intricate castings made from aluminum alloys] // Aviacionnye materialy i tehnologii. 2013. №2. S. 55–58.
14. Dobromyslov V.A. Radiacionnye metody nerazrushayushhego kontrolya [Radiation methods of non-destructive testing]. M.: Mashinostroenie, 1999. 104 s.
15. Klyuev V.V., Sosnin F.R. Teoriya i praktika radiacionnogo kontrolya: ucheb. posobie [Theory and practice of radiation monitoring: manual]. M.: Mashinostroenie, 1998. 170 s.
16. Rumyancev S.V., Shtan A.S., Goltsev V.A. Spravochnik po radiacionnym metodam nerazrushayushhego kontrolya [Directory on radiation methods of non-destructive testing]. M.: Energoizdat, 1982. 240 s.
17. BS EN 584-1:2006. Nerazrushayushhij kontrol. Promyshlennaya radiograficheskaya plenka. Chast 1. Klassifikaciya plenochnyh sistem dlya promyshlennogo radiograficheskogo kontrolya [Non-destructive testing. Industrial radiographic film. Part 1. Classification of film systems for industrial radiographic control.].
18. BS EN 584-2. Nerazrushayushhij kontrol. Plenka dlya promyshlennogo radiograficheskogo kontrolya. Chast 2. Kontrol za proyavleniem plenki s pomoshh\'yu etalonnyh znachenij [Non-destructive testing. Film for industrial radiographic control. Part 2. Control of film manifestation by means of reference values.]
19. Zernov V.A. Fotograficheskaya sensitometriya [Photographic sensitometry]. M.: Iskusstvo, 1980. 
351 s.