Archive

Aviation materials and tecnologes №S2, 2016

DOI: 10.18577/2071-9140-2016-0-S2-3-10

UDC: 66.088

Pages: 3-10

S.V. Sibileva1, L.S. Kozlova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Review of technologies of applying coatings to titanium alloys by plasma electrolytic oxidation

The technologies of applying coatings on titanium alloys by plasma-electrolytic oxidation is examined and classified according to the properties of coatings: bioceramic, protective, wear-resistant, catalytic. The compositions of electrolytes, the process parameters and properties of the producing coatings are given. The ways to improve the biocompatibility, decorative, microhardness and corrosion resistance of PEO coatings are defined. PEO technologies are identified which allow to obtain coatings on titanium alloys with the best properties : hardness 780 HV, breakdown voltage 1200 V, coefficient of friction 0,06, porosity 0%, surface roughness Ra=0,29 µm, corrosion current 1,8·10-10 A/cm2, polarization resistance of 2,2·108 Ω·cm2.

Keywords: titanium alloys, plasma electrolytic oxidation (РЕО), microarc oxidation, microhardness, breakdown voltage, coefficient of friction, porosity, surface roughness, corrosion current, polarization resistance

Reference List

1. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
3. Zakharova L.V. Anodno-oksidnoe pokrytie – zashhita titanovyh splavov ot goryachesolevoj korrozii [Anodic oxide coating – protection of titanium alloys against hot salt corrosion] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 02. Available at: http://www.viam-works.ru (accessed: August 08, 2016). DOI: 10.18577/2307-6046-2015-0-10-2-2.
4. Kozlov I.A., Duyunova V.A. Vliyanie napolneniya v rastvore natrievogo zhidkogo stekla na elektrohimicheskie svojstva plazmennogo elektroliticheskogo pokrytiya na splave VML20 [Influence of filling in solution of sodium silicate solute on electrochemical properties of theVML20 alloy plasma electrolytic coating] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 61–66. DOI: 10.18577/2071-9140-2015-0-4-61-66.
5. Kozlov I.A., Pavlovskaja T.G., Volkov I.A. Vliyanie polyarizuyushhego toka na svojstva plazmennogo elektroliticheskogo pokrytiya dlya magnievyh splavov sistemy Mg–Zn–Zr [Influence of polarizing current on properties of plasma electrolytic covering for magnesium alloys of Mg–Zn–Zr system] // Aviacionnye materialy i tehnologii. 2013. №3. S. 7–12.
6. Gnedenkov S.V., Sidorova M.V., Sinebrjuhov S.L., Antipov V.V., Buznik V.M., Volkova E.F., Sergienko V.I. Stroenie i svojstva pokrytij, poluchennyh metodom plazmennogo elektroliticheskogo oksidirovaniya na aviacionnyh magnievyh splavah [Structure and properties of the coverings received by method of plasma electrolytic oxidation on aviation magnesium alloys] // Aviacionnye materialy i tehnologii. 2013. №SP2. S. 36–45.
7. Preparation method of ultrasonic microarc oxidation silver-carrying antibiotic bioactive coating on magnesium and titanium surface: pat. 101899700 CN; publ. 01.12.10.
8. Method of preparing hydroxyl apatite bioceramic film by plasma micro-arc oxidization method: pat. 101054708 CN; publ. 17.10.07.
9. Preparation method of active antibacterial composite coating on surface of titanium and titanium alloy medical instrument: pat. 102677125 CN; publ. 19.09.12.
10. Manufacturing method for antibacterial titanium implant and antibacterial titanium implant by the same: pat. 20140090962 KR; publ. 18.07.14.
11. Preparation method and application of magnesium-doped porous nano titanium oxide coating: pat. 101928974 CN; publ. 29.12.10.
12. Method of preparing magnesium-doped hydroxyapatite/titania active film on surface of medical titanium alloy: pat. 102747403 CN; publ. 24.10.12.
13. Silicon doping porous nanometer titanium oxide coating and preparation method thereof: pat. 102049064 CN; publ.11.05.11.
14. Zinc-doped porous nano-titanium oxide coating and its preparation method: pat. 102371005 CN; publ. 13.08.10.
15. Artificial tooth root or joint material and microarc oxidation preparation method thereof: pat. 102090982 CN; publ. 28. 09.11.
16. Method for preparing bio materials using coating of hydroxyapatite/zirconia compo-sites and bio materials prepared therefrom: pat. 20120002225 KR; publ. 05.01.12.
17. Preparation process of pleated hole-slot shaped titanium dioxide thin film with super wetting ability: pat. 102605411 CN; publ. 25.07.12.
18. Sposob mikrodugovogo polucheniya zashhitnyh plenok na poverhnosti metallov i ih splavov: pat. 2061107 Ros. Federaciya [Way of microarc receiving protective films on surface of metals and their alloys: pat. 2061107 Rus. Federation]; opubl. 27.05.96.
19. Elektrolit dlya polucheniya chernogo keramicheskogo pokrytiya na ventilnyh metallah i ih splavah, sposob ego polucheniya i pokrytie, poluchennoe dannym sposobom: pat. 2285066 Ros. Federaciya [Electrolit for receiving black ceramic coating on valve metals and their alloys, way of its receiving and the covering received in this way: pat. 2285066 Rus. Federation]; opubl. 10.10.06.
20. Preparation method of black high-temperature oxidation resistant coating positioned on surface of titanium alloy: pat. 103060881 CN; publ. 03.07.13.
21. Sposob polucheniya pokrytij: pat. 2238351 Ros. Federaciya [Way of receiving coverings: pat. 2238351 Rus. Federation]; opubl. 20.10.04.
22. Sposob polucheniya pokrytij: pat. 2238352 Ros. Federaciya [Way of receiving coverings: pat. 2238352 Rus. Federation]; opubl. 20.10.04.
23. Sposob plazmenno-elektroliticheskogo oksidirovaniya ventilnyh metallov i ih splavov: pat. 2263163 Ros. Federaciya [Way of plasma electrolytic oxidation of valve metals and their alloys: pat. 2263163 Rus. Federation]; opubl. 27.10.05.
24. Elektroliticheskij sposob naneseniya zashhitnyh pokrytij na poverhnost metallov i splavov: pat. 2294987 Ros. Federaciya [Electrolytic way of drawing protecting covers on surface of metals and alloys: pat. 2294987 Rus. Federation]; opubl. 10.03.07.
25. Elektroliticheskij sposob naneseniya zashhitnyh elektroizolyacionnyh pokrytij: pat. 2367727 Ros. Federaciya [Electrolytic way of drawing protective electric insulation coverings: pat. 2367727 Rus. Federation]; opubl. 20.09.09.
26. Sposob naneseniya pokrytij na titan i ego splavy metodom elektroiskrovogo legirovaniya v vodnyh rastvorah pri povyshennyh davleniyah: pat. 2476627 Ros. Federaciya [Way of drawing coverings on titanium and its alloys method of electric spark alloying in aqueous solutions at elevated pressures: pat. 2476627 Rus. Federation]; opubl. 27.02.13.
27. Sposob polucheniya nanokompozitnyh pokrytij: pat. 2471021 Ros. Federaciya [Way of receiving nanocomposite coatings: pat. 2471021 Rus. Federation]; opubl. 27.12.12.
28. Sposob polucheniya pokrytij: pat. 2250937 Ros. Federaciya [Way of receiving coverings: pat. 2250937 Rus. Federation]; opubl. 27.04.05.
29. Sposob polucheniya magnitoaktivnyh pokrytij na titane i ego splavah: pat. 2478738 Ros. Federaciya [Way of receiving magneto of active coverings on titanium and its alloys: pat. 2478738 Rus. Federation]; opubl. 10.04.13.
30. Sposob polucheniya supergidrofobnyh zashhitnyh pokrytij na titane i ego splavah: pat. 2441945 Ros. Federaciya [Way of receiving superwaterproof protecting covers on titanium and its alloys: pat. 2441945 Rus. Federation]; opubl. 10.02.12.
31. Sposob polucheniya zashhitnyh polimersoderzhashhih pokrytij na metallah i splavah: pat. 2569259 Ros. Federaciya [Way of receiving protective polymer’s containing coverings on metals and alloys: pat. 2569259 Rus. Federation]; opubl. 20.11.15.
32. Shokouhfar M., Dehghanian C., Baradaran A. Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance // Applied Surface Science. 2011. Vol. 257. P. 2617–2624.
33. Hussein R.O., Nie X., Northwood D.O. A spectroscopic and microstructural study of oxide coatings produced on a Ti–6Al–4V alloy by plasma electrolytic oxidation // Materials Chemistry and Physics. 2012. Vol. 134. P. 484–492.
34. Elektrolit dlya mikrodugovogo oksidirovaniya titana i ego splavov: pat. 1788793 Ros. Federaciya [Electrolit for microarc oksidirovaniye of titanium and its alloys:: pat. 1788793 Rus. Federation]; opubl. 27.05.96.
35. Microarc oxidation solution of titanium alloy wear-resistant coating and application thereof: pat. 102199785 CN; pub. 28.09.11.
36. Habazaki H., Tsunekawa S., Tsuji E., Nakayama T. Formation and characterization of wear-resistant PEO coatings formed on titanium alloy at different electrolyte temperatures // Applied Surface Science. 2012. Vol. 259. P. 711–718.
37. Yerokhin A.L., Nie X., Leyland A., Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti6Al4V alloy // Surface and Coatings Technology. 2000. Vol. 130. P. 195–206.
38. Rakoch A.G., Strekalina D.M., Gladkova A.A. Iznosostojkie pokrytiya na titanovom splave VT6, poluchaemye metodom plazmenno-elektroliticheskogo oksidirovaniya [Anti wear coatings on the BT6 titanium alloy, received by plasma electrolytic oxidation method] // Tsvetnye metally. 2016. №2. S. 80–84.
39. Wang Y.M., Jiang B.L., Lei T.Q., Guo L.X. Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution: Microstructure, mechanical and tribological properties // Surface & Coatings Technology. 2006. Vol. 201. P. 82–89.
40. Chen Fei, Zhou Hai, Chen Chen, Xia Yangjian. Study on the tribological perfor-mance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation // Progress in Organic Coatings. 2009. Vol. 64. P. 264–267.
41. Sposob polucheniya katalizatora dozhiga dizelnoj sazhi: pat. 2455069 Ros. Federaciya [Way of receiving catalyst dozhiga diesel soot: pat. 2455069 Rus. Federation]; opubl. 10.07.12.
42. Sposob formirovaniya kataliticheski aktivnyh sloev na titane i ego splavah: pat. 69127 UA [Way of forming catalystically active layers on titanium and its alloys: pat. 69127 UA]; opubl. 25.04.12.
43. Bayati M.R., Moshfegh A.Z., Golestani-Fard F. Effect of electrical parameters on morphology, chemical composition, and photoactivity of the nano-porous titania layers synthesized by pulse-microarc oxidation // Electrochimica Acta. 2010. Vol. 55. P. 2760–2766.
44. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.

DOI: 10.18577/2071-9140-2016-0-S2-11-14

UDC: 620.193

Pages: 11-14

D.V. Chesnokov1, L.I. Avdyushkina1, E.A. Efimova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

The application of preventive inhibited compositions for further aircraft protection from corrosion

In this work, anti-corrosion properties of experiment compound in conditions of high humidity (WKL-100) and the salt spray chamber (FTC-35) are determined. Investigations were carried out on samples aluminum alloys D16-T, D16-AT. For comparison we used well known protecting compounds: Cor Ban 35, Dinitrol AV-40, NG 222AF (ТU38.401-58-215-98), PINS AT (TU38.401-58-120-95). This study showed high protective properties of experimental compound. Properties of the investigated materials batches allow us to recommend compound composition for use in manufacturing processes to additionally protect the materials of parts and units of aircraft.

Keywords: corrosion, thin-film inhibited oil compositions, preventive compositions, aviation, aircraft, aviation materials, aluminum alloys D16-T and D16-АТ, humidity, salt fog

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. II. Relaksatsiya iskhodnoy strukturnoy neravnovesnosti i gradient svoystv po tolshchine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] // Deformatsiya i razrushenie materialov. 2010. №12. S. 40–46.
5. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformatsiya i razrushenie materialov. 2010. №11. S. 19–27.
6. Kablov E.N., Petrova A.P., Narskiy A.R. G.V. Akimov – sozdatel otechestvennoy nauki o korrozii [Akimov – the creator of domestic science about corrosion] // Istoriya nauki i tekhniki. 2009. №11. S. 12–15.
7. Zaytseva E.I., Donskoy A.A. Novye polisulfidnye germetiki dlya aviatsionnoy promyshlennosti [New polysulphide hermetics for the aviation industry] // Klei. Germetiki. Tekhnologii. 2009. №3. S. 18–23.
8. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
9. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformatsiya i razrushenie materialov. 2011. №1. S. 34–40.
10. Semyonova L.V., Nefedov N.I. Pokrytiya dlya zashchity gidroagregatov [Coatings for protection of hydraulic units] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 05. Available at: http://www.viam-works.ru (accessed: August 01, 2016). DOI: 10.18577/2307-6046-2014-0-2-5-5.
11. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v usloviyah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. № 4. St. 02. Available at: http://www.viam-works.ru (accessed: August 01, 2016).
12. Zaytseva E.I., Chursova L.V. Issledovanie mikrobiologicheskoy stoykosti polisul\'fidnogo germetika s novymi antisepticheskimi dobavkami [Research of microbiological firmness of polysulphide hermetic with new antiseptic additives] // Klei. Germetiki. Tekhnologii. 2012. №1. S. 16–20.
13. Topliva, smazochnye materialy, tekhnicheskie zhidkosti. Assortiment. Primenenie: spravochnik / pod red. V.M. Shkolnikova. 2-e izd. [Fuels, lubricants, technical liquids. Range. Application: directory / ed. by V. M. Shkolnikov. 2nd ed.]. M.: Tekhinform, 1999. S. 384, 386.
14. GOST 9.054–80. Edinaya sistema zashchity ot korrozii i stareniya. Materialy konservatsionnye. Masla, smazki i neftyanye ingibirovannye tonkoplenochnye pokrytiya. Metody uskorennykh ispytaniy zashchitnykh svoystv [GOST 9.054-80. Uniform system of corrosion protection and aging. Materials konservatsionny. Oils, lubricant and oil inhibited thin-film coverings. Methods of accelerated tests of protective properties]. M.: Gos. komitet SSSR po standartam, 1980. S. 6–7.
15. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.

DOI: 10.18577/2071-9140-2016-0-S2-15-21

UDC: 621.792

Pages: 15-21

O.A. Eliseev1, Ya.A. Bryk1, D.N. Smirnov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Polysulfide sealants modification by corrosion inhibitors

Protective properties of polysulfide sealants including the sealants containing corrosion inhibitors were investigated after tropic chamber aging, salt spray chamber and after long-term water immersion. The influence of corrosion inhibitors introduction on polysulfide sealants physical, mechanical, adhesive and technological properties was studied. The storage time of the polysulfide sealants with corrosion inhibitors were evaluated. The study of sealants protective properties was performed by methods of electrochemistry. The highest protective properties were determined for the composition VITEF-2НТ based on polysulfide sealant with increased level of sodium bichromate. The sealant may be recommended for superficial and interseam sealing of structures fastening elements.

Keywords: polysulfide rubber, thiokol, sealants, vitality, aggressive environment, the adhesive strength, tensile strength, elongation, tear, corrosion inhibitors

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 146–148.
5. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
6. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
7. Minkin V.S., Hakimullin Yu.N., Deberdeev T.R., Berlin Al. Al. Vliyanie ionov Fe (III) v sostave MnO2 na kinetiku vulkanizacii zhidkih tiokolov [Influence of ions of Fe (III) as a part of MnO2 on kinetics of curing of the liquid it is thiokol] // Klei. Germetiki. Tehnologii. 2009. №4. S. 28–30.
8. Zajceva E.I., Chursova L.V. Issledovanie mikrobiologicheskoj stojkosti polisulfidnogo germetika s novymi antisepticheskimi dobavkami [Research of microbiological firmness of polysulphide hermetic with new antiseptic additives] // Klei. Germetiki. Tehnologii. 2012. №1. S. 16–20.
9. Zaitsevа Е.I., Donskoi А.А. Sealants Based on Polysulfide Elastomers // Polymer Science. Ser. С. 2008. Vol. 1. P. 15–25.
10. Zajceva E.I., Donskoj A.A. Germetiki na osnove polisul\'fidnyh elastomerov [Hermetics on the basis of polysulphide elastomer] // Klei. Germetiki. Tehnologii. 2008. №6–7. S. 15–25.
11. Zajceva E.I., Donskoj A.A. Novye polisulfidnye germetiki dlya aviacionnoj promyshlennosti [New polysulphide hermetics for the aviation industry] // Klei. Germetiki. Tehnologii. 2009. №3. S. 18–23.
12. Petrova A.P., Donskoj A.A. Kleyashhie materialy. Germetiki: spravochnik [Gluing materials. Hermetics: directory]. SPb.: Professional, 2008. S. 503–567.
13. Zajceva E.I., Chursova L.V., Smirnov D.N. Perspektivy snizheniya plotnosti polisul\'fidnyh germetikov [Perspectives of decrease in density of polysulphide hermetics] // Klei. Germetiki. Tehnologii. 2012. №5. S. 10–14.
14. Mudrov O.A., Savchenko I.M., Shitov V.S. Germetiki na osnove zhidkih tiokolov: spravochnik po elastomernym pokrytiyam i germetikam v sudostroenii [Hermetics on the basis of the liquid it is thiokol: the directory on elastomeric coverings and hermetics in shipbuilding]. L.: Sudostroenie, 1982. S. 112–124.
15. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v usloviyah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 02. Available at: http://www.viam-works.ru (accessed: August 01, 2016).

DOI: 10.18577/2071-9140-2016-0-S2-22-27

UDC: 57.083.1:620.18

Pages: 22-27

G.M. Boukharev1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Express method for determing the biocides efficiency

Equipment reliability is determined in many aspects by its resistance to environmental influence including microbiological stability. Different biocides, including so called fungicides are developed for materials protection. To test fungicides properties the national standard GOST 9.803 based on a comparative kinetics analysis method of fungal biomass growth in fungicides serial dilution is used in the Russian Federation. The detailed analysis of GOST 9.803 is performed and a serial dilution method based on CLSI standards is offered. The method efficiency is shown and effective concentrations of four fungicides are determined.

Keywords: serial dilution method, biocides, fungicides, research, effectiveness, national standart GOST 9.803

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Falkiewicz-Dulik M., Janda K., Wypych G. Handbook of Material Biodegradation, Biodeterioration, and Biostablization. 2nd ed. Toronto: ChemTec Publishing, 2015. 465 p.
3. GOST 9.803–88. Edinaya sistema zashhity ot korrozii i stareniya. Fungicidy. Metod opredeleniya effektivnosti [GOST 9.803-88. Uniform system of corrosion protection and aging. Fungitsida. Method of determination of efficiency]. M.: Izd-vo standartov, 1988. 30 s.
4. Zashhita ot korrozii, stareniya i biopovrezhdenij mashin, oborudovaniya i sooruzhenij: spravochnik v 2 t. / pod red. A.A. Gerasimenko [Corrosion protection, aging and biodamages of machines, equipment and constructions: the directory in 2 t. / ed. by A.A. Gerasimenko]. M.: Mashinostroenie, 1987. T.1. 688 s.
5. Kuznetsov Yu.I., Kazanskij L.P. Fiziko-himicheskie aspekty zashhity metallov ingibitorami korrozii klassa azolov [Physical and chemical aspects of protection of metals inhibitors of corrosion of class of azoles] // Uspehi himii. 2008. T. 77. №3. S. 227–241.
6. Kablov E.N. Korroziya ili zhizn [Corrosion or life // Nauka i zhizn. 2012. №11. S. 16–21.
7. Pavlovskaya T.G., Deshevaya E.A., Zaytsev S.N., Kozlov I.A., Volkov I.A., Zaharov K.E. Korrozionnaya stojkost alyuminievyh splavov v usloviyah, imitiruyushhih faktory kosmicheskogo poleta [Corrosion resistance of aluminum alloys in conditions simulating space flight] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 11. Available at: http://www.viam-works.ru (accessed: August 08, 2016). DOI: 10.18577/2307-6046-2016-0-3-11-11.
8. Pehtasheva E.L. Biopovrezhdeniya neprodovolstvennyh tovarov: ucheb. dlya bakalavrov. 2-e izd., pererab. i dop. [Biodamages of nonfoods: the textbook for bachelors. 2nd ed., proc. and add.]. M.: Dashkov i K°, 2013. 332 s.
9. Kablov E.N., Polyakova A.V., Vasileva A.A., Goryashnik Yu.S., Kirillov V.N. Mikrobiologicheskie ispytaniya aviacionnyh materialov [Microbiological tests of aviation materials] // Aviacionnaya promyshlennost. 2011. №1. S. 35–40.
10. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
11. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Yakovenko T.V. Ispytaniya na mikrobiologicheskuyu stojkost v usloviyah teplogo i vlazhnogo klimata [Microbiological resistance tests under conditions of warm and damp climate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 06. Available at: http://www.viam-works.ru (accessed: August 08, 2016).
12. Handbook of Environmental Degradation of Materials / ed. by M. Kutz. New York: William Andrew Publishing, 2005. 602 p.
13. Morton LHG Gaylarde CC The Role of Microbial slimes in biodeterioration // Culture. [s.l.]: Oxoid, September, 2001. Vol. 22. P. 1–4.
14. Videla H.A., Herrera L.K. Microbiologically influenced corrosion. Looking to the Future // Int. Microbiology. 2005. Vol. 8. P. 169–180.
15. Smirnov D.N., Zaytseva E.I., Eliseev O.A. Maslobenzostojkij germetik so specialnymi svojstvami na osnove polisul\'fidnogo oligomera [Oil-gasoline-proof sealant with special properties on the base of polysulphide oligomer] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 07. URL: http://www.viam-works.ru (data obrashheniya: 08.08.2016). DOI: 10.18577/2307-6046-2014-0-11-7-7.
16. Avdeev Ya.G., Frolova L.V., Kuznetsov Yu.I., Zel O.O. Vliyanie proizvodnyh triazola na korroziyu i navodorozhivanie vysokoprochnoj stali v rastvorah mineralnyh kislot [Influence of derivatives triazole on corrosion and hydrogen saturation of high-strength steel in solutions of mineral acids] // Korroziya: materialy, zashhita. 2008. №11. S. 23–26.
17. Kuznetsov Yu.I., Agafonkina M.O., Shihaliev H.S., Andreeva N.P., Potapov A.Yu. Adsorbciya i passivaciya medi triazolami v nejtralnyh vodnyh rastvorah [Adsorption and copper  passivation by triazoles in neutral aqueous solutions] // Korroziya: materialy, zashhita. 2014. №7. S. 33–39.
18. Kuznetsov Yu.I., Frolova L.V. Ingibirovanie serovodorodnoj korrozii stalej triazolami [Inhibition of hydrosulphuric corrosion steel tree azoles] // Korroziya: materialy, zashhita. 2014. №5. S. 29–37.
19. Selyaninov I.A., Kazanskij L.P. Formirovanie nanorazmernyh sloev dinitrobenzimidazola na medi v shhelochnyh fosfatnyh rastvorah [Forming of nanodimensional layers dinitrobenzamide on copper in caustic phosphatic solutions] // Korroziya: materialy, zashhita. 2008. №7. S. 19–24.
20. Interactions of Yeasts, Moulds, and Antifungal Agents. How to Detect Resistance / G.S. Hall. Springer Science+Business Media, LLC. 2012. 183 p.
21. ASTM D4445-10. Standard Test Method for Fungicides for Controlling Sapstain and Mold on Unseasoned Lumber (Laboratory Method).
22. ASTM E1259-10. Standard Practice for Evaluation of Antimicrobials in Liquid Fuels Boiling Below 390°C.
23. ASTM E1428-99 (2009). Standard Test Method for Evaluating the Performance of Antimicrobials in or on Polymeric Solids Against Staining by Streptoverticillium reticulum.
24. ASTM E1839-07. Standard Test Method for Efficacy of Slimicides for the Paper Industry–Bacterial and Fungal Slime.
25. ASTM E1891-10a. Standard Guide for Determination of a Survival Curve for Antimicrobial Agents Against Selected Microorganisms and Calculation of a D-Value and Concentration Coefficient.
26. ASTM E2149-10. Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions.
27. ASTM E2783-11. Standard Test Method for Assessment of Antimicrobial Activity for Water Miscible Compounds Using a Time-Kill Procedure.
28. ASTM E645-07. Standard Test Method for Efficacy of Microbicides Used in Cooling Water Systems.
29. ASTM E723-07. Standard Test Method for Efficacy of Antimicrobials as Preservatives for Aqueous-Based Products Used in the Paper Industry (Bacterial Spoilage).
30. ASTM E875-10. Standard Test Method for Efficacy of Fungal Control Agents as Preservatives for Aqueous-Based Products Used in the Paper Industry.
31. ASTM E979-09. Standard Test Method for Evaluation of Antimicrobial Agents as Preservatives for Invert Emulsion and Other Water Containing Hydraulic Fluids.
32. GOST 9.023–74. Edinaya sistema zashhity ot korrozii i stareniya. Topliva neftyanye. Metod laboratornyh ispytanij biostojkosti topliv, zashhishhennyh protivomikrobnymi prisadkami [GOST 9.023-74. Uniform system of corrosion protection and aging. Fuels oil. Method of laboratory tests of biofirmness of the fuels protected by antimicrobic additives]. M.: Izd-vo standartov, 1975. 9 s.
33. GOST 9.052–88. Edinaya sistema zashhity ot korrozii i stareniya. Masla i smazki. Metody laboratornyh ispytanij na stojkost k vozdejstviyu plesnevyh gribov [GOST 9.052-88. Uniform system of corrosion protection and aging. Oils and lubricant. Methods of laboratory tests on resistance to influence of fungi]. M.: Standartinform, 2006. 10 s.
34. GOST 9.048–89. Edinaya sistema zashhity ot korrozii i stareniya. Izdeliya tehnicheskie. Metody laboratornyh ispytanij na stojkost k vozdejstviyu plesnevyh gribov [GOST 9.048-89. Uniform system of corrosion protection and aging. Products technical. Methods of laboratory tests on resistance to influence of fungi]. M.: Izd-vo standartov, 1989. 22 s.
35. GOST 9.049–91. Edinaya sistema zashhity ot korrozii i stareniya. Materialy polimernye i ih komponenty. Metody laboratornyh ispytanij na stojkost k vozdejstviyu plesnevyh gribov [GOST 9.049-91. Uniform system of corrosion protection and aging. Materials polymeric and their components. Methods of laboratory tests on resistance to influence of fungi]. M.: Izd-vo standartov, 1995. 14 s.
36. GOST 9.050–75. Edinaya sistema zashhity ot korrozii i stareniya. Pokrytiya lakokrasochnye. Metody laboratornyh ispytanij na ustojchivost k vozdejstviyu plesnevyh gribov [GOST 9.050-75. Uniform system of corrosion protection and aging. Coverings paint and varnish. Methods of laboratory tests on stability to influence of fungi]. M.: Izd-vo standartov, 2003. 7 s.
37. GOST 9.802–84. Edinaya sistema zashhity ot korrozii i stareniya. Tkani i izdeliya iz naturalnyh, iskusstvennyh, sinteticheskih volokon i ih smesej. Metod ispytaniya na gribostojkost [GOST 9.802-84. Uniform system of corrosion protection and aging. Fabrics and products from natural, artificial, synthetic fibers and their mixes. Test method on funginertness]. M.: Izd-vo standartov, 1984. 8 s.
38. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Buharev G.M. Ispytaniya na mikrobiologicheskuyu stojkost v naturnyh usloviyah razlichnyh klimaticheskih zon [Microbiological resistance tests under nature conditions in variety of climatiс zones] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 11. Available at: http://www.viam-works.ru (accessed: August 08, 2016). DOI: 10.18577/2307-6046-2016-0-4-11-11.
39. NCCLS. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. NCCLS document M38-A. NCCLS, USA, 2002.
40. Hamada S., Fujita S. DAPI staining improved for quantitative cytofluorometry // Histochemistry. 1983. Vol. 79. P. 219–226.
41. Alef K., Nannipieri P. Methods in Applied Soil Microbiology and Biochemistry. Academic Press. 1995.

DOI: 10.18577/2071-9140-2016-0-S2-28-38

UDC: 621.794.62:621.357.7

Pages: 28-38

S.S. Vinogradov1, S.A. Demin1, O.G. Kirillova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Electrochemical corrosion protection by means of the inorganic composition coating of «aluminum-phosphates» system

The VIAM inorganic composite coating of aluminum - phosphates system is developed for corrosion protection of carbon steels. The coating becomes conductive and takes high protective properties (over 8000 hours in salt spray chamber) after a mechanical grinding of its surface. Electrochemical tests have confirmed the anodic type of the composite coating in relation to carbon steels. The composite coating possesses good adhesion with metallic base. The coating is water resistant and able to operate in environment of various oils. Mechanical tests have shown the possibility of composite coatings applying to high-strength carbon steels. The work is executed within implementation of the complex scientific direction 17.2. «The slip, gas dynamic and combined coatings for parts from carbon steels, including high-strength ones» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: electrochemical corrosion protection, inorganic composite coating, the coating based on phosphates and aluminum powder, protective property, grinding, electrochemical tests, water resistance, mechanical tests, oil resistance

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
3. Markova E.S., Pokrovskaya N.G., Shalkevich A.B., Gromov V.I. Martensitostareyushhie stali ‒ novye perspektivnye materialy dlya valov GTD [Maraging became ‒ new perspective materials for GTE shaft] //Aviacionnye materialy i tehnologii. 2012. №S. S. 81–84.
4. Markova E.S., Yakusheva N.A., Pokrovskaya N.G., Shalkevich A.B. Tehnologicheskie osobennosti proizvodstva martensitostareyushhej stali VKS-180 [Technological features of the production of maraging steel VKS-180] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 01. Available at: http://www.viam-works.ru (accessed: April 19, 2016).
5. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v usloviyah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 02. Available at: http://www.viam-works.ru (accessed: April 20, 2016).
6. Vinogradov S.S. ekologicheski bezopasnoe galvanicheskoe proizvodstvo [Ecologically safe galvanic production]. M.: Globus, 2002. 352 S.
7. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V. Keramicheskie pokrytiya dlya zashhity vysokoprochnoj stali pri termicheskoj obrabotke [Ceramic coatings for protection of high-strength steel at thermal processing] // Aviacionnye materialy i tehnologii. 2011. №4. S. 3–8.
8. Solntsev S.S. Vysokotemperaturnye kompozicionnye materialy i pokrytiya na osnove stekla i keramiki dlya aviakosmicheskoj tehniki [High-temperature composite materials and coverings on the basis of glass and ceramics for aerospace equipment] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 25–33.
9. Prodan E.A., Prodan L.I., Ermolenko N.F. Tripolifosfaty i ih primenenie [Three polyphosphate and their application]. Minsk: Nauka i tehnika, 1969. 536 S.
10. Inorganic Coating And Bonding Composition: pat. 3248251 US; publ. 26.04.66.
11. Coated Part, Coating Therefor and Method of Forming Same: pat. 4564555 US; publ. 14.01.86.
12. Coating Composition Containing Undissolved Hexavalent Chromium Salt: pat. 4889558 US; publ. 26.12.89.
13. Coating Compositions Containing Unreacted Hexavalent Chromium, a Method of Applying and an Article: pat. 4975330 US; publ. 04.12.90.
14. Flake Materials in Coating Compositions: pat. 5066540 US; publ. 19.11.91.
15. Phosphate Bonding Composition: pat. 5968240 US; publ. 19.10.99.
16. Environmentally Friendly Coating Compositions, Bonding Solution, And Coated Parts: pat. 5652064 US; publ. 29.07.97.
17. Phosphate Bonded Aluminum Coatings: pat. 6074464 US; publ. 13.01.00.
18. Sposob naneseniya zashhitnyh pokrytij: pat. 1560621 Ros. Federaciya [Way of drawing protecting covers: pat. 1560621 Rus. Federation]; opubl. 30.04.90.
19. Sostav dlya naneseniya zashhitnogo pokrytiya na detali, izgotovlennye iz zharoprochnyh nikelevyh splavov: pat. 1773078 Ros. Federaciya [Structure for drawing protecting cover on the details made of heat resisting nickel alloys: pat 1773078 Rus. Federation]; opubl. 10.11.00.
20. Sposob naneseniya zashhitnogo pokrytiya na detali: pat. 2036978 Ros. Federaciya [Way of drawing protecting cover on detail: pat 2036978 Rus. Federation]; opubl. 09.06.95.
21. Sostav dlya polucheniya pokrytiya: pat. 2349681 Ros. Federaciya [Structure for receiving covering: pat. 2349681 Rus. Federation]; opubl. 20.03.09.
22. Demin S.A., Gubenkova O.A., Karimova S.A., Vinogradov S.S. Termostojkoe kompozicionnoe pokrytie na osnove fosfatov dlya zashhity vysokoprochnyh stalej ot korrozii [Heat-resistant composition covering on the basis of phosphates for protection high-strength steel from corrosion] // Stal. 2013. №6. S. 77–79.
23. Sostav dlya polucheniya zashhitnogo pokrytiya na stalnyh detalyah: pat. 2480534 Ros. Federaciya [Structure for receiving protecting cover on steel details: pat. 2480534 Rus. Federation]; opubl. 27.04.13.
24. Sposob naneseniya zashhitnogo pokrytiya na stalnye detali: pat. 2510716 Ros. Federaciya [Way of drawing protecting cover on steel details: pat. 2510716 Rus. Federation]; opubl. 10.04.14.
25. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. C. 36–46.
26. Kablov E.N., Starcev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (review)] // Korroziya: materialy, zashhita. 2013. №12. C. 6–18.
27. GOST 9.005–72. Dopustimye i nedopustimye kontakty metallov. Obshhie trebovaniya [GOST 9.005-72. Admissible and inadmissible contacts of metals. General requirements]. M.: Izd-vo standartov, 1972. S. 7–10.
28. Vinogradov S.S., Demin S.A., Balahonov S.V., Kirillova O.G. Neorganicheskie kompozicionnye pokrytiya – perspektivnoe napravlenie v oblasti zashhity ot korrozii uglerodistyh stalej [Inorganic composite coatings – a perspective direction in the field of anticorrosive protection of carbon steels] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 76–87. DOI: 10.18577/2071-9140-2016-0-2-76-87.
29. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Perspektivnye pokrytiya dlya zashhity ot korrozii uglerodistyh stalej [Perspective coverings for corrosion protection of carbon steels] // Stal. 2016. №6. S. 70–81.

DOI: 10.18577/2071-9140-2016-0-S2-39-48

UDC: 620.193

Pages: 39-48

M.A. Fomina1, A.E. Kutyrev1, Yu.Yu. Klochkova1, S.V. Sbitneva1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Research of corrosion characteristics of high-strength alloy of Al-Cu-Li system depending on various modes of heat treatment

The corrosion behavior of sheets of the new V-1480 high-strength alloy of Al-Cu-Li system is investigated by accelerated methods. Tendency to intergranular and exfoliation corrosion depending on modes of thermal processing and degree of residual deformation is defined by stretcher straightening. The alloy is investigated by electrochemical method in 3% NaCl solution. Potentials of corrosion, breakdown and repassivation are determined. The study of the samples structure processed by diffraction methods of transmission electron microscopy after heat treatment in various modes is conducted. Influence of heat treatment modes on level of the alloy V-1480 sheets corrosion properties is shown. It is established that the underaging mode negatively effects the resistance of aluminum alloy to local types of corrosion. Correlation dependence of potentials of alloy corrosion and breakdown and aging modes is received. The work is performed within the frames of the complex scientific direction 8.1. «High-strength welded aluminum and aluminum-lithium alloys of the lowered density with the increased fracture toughness» («The strategic directions of development of materials and technologies for processing them for the period till 2030»)

Keywords: aluminum-lithium alloys, corrosion resistance, structure, phase, heat treatment, electrochemical researches

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
3. Khokhlatova L.B., Kolobnev N.I., Antipov V.V. i dr. Vliyanie korrozionnoj sredy na skorost\' rosta treshhiny ustalosti v alyuminievyh splavah [Influence of the corrosion environment on the growth rate of crack of fatigue in aluminum alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 05. Available at: http://www.viam-works.ru (accessed: June 08, 2016).
4. Ryabov D.K., Kolobnev N.I. Izmenenie mehanicheskih svojstv splava 1913 pri dvuhstupenchatom iskusstvennom starenii [Change of mechanical properties of alloy 1913 at two-level artificial aging] // Aviacionnye materialy i tehnologii. 2013. №4. S. 3–7.
5. Klochkov G.G., Grushko O.E., Klochkova Yu.Yu., Romanenko V.A. Promyshlennoe osvoenie vysokoprochnogo splava V-1469 sistemy Al–Cu–Li–Mg [Industrial development of strength alloy V-1469 of Al–Cu–Li–Mg] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №7. St. 01. Available at: http://viam-works.ru (accessed: July 15, 2016). DOI: 10.18577/2307-6046-2014-0-7-1-1.
6. Kablov E.N., Petrova A.P., Narskij A.R. G.V. Akimov – sozdatel otechestvennoj nauki o korrozii [Akimov – the creator of domestic science about corrosion] // Istoriya nauki i tehniki. 2009. №11. S. 12–15.
7. Makhsidov V.V., Kolobnev N.I., Karimova S.A., Sbitneva S.V. Vzaimosvyaz struktury i korrozionnoj stojkosti v splave 1370 sistemy Al–Mg–Si–Cu–Zn [Interrelation of structure and corrosion resistance in alloy of the 1370th Al-Mg-Si-Cu-Zn system] // Aviacionnye materialy i tehnologii. 2012. №1. S. 8–13.
8. Fomina M.A., Karimova S.A. Issledovanie korrozionnyh svojstv listov splava V-1461-T1 primenitel\'no k vseklimaticheskim usloviyam ekspluatacii aviacionnoj tehniki [Study of corrosion properties of  V-1461-T1 aluminum alloy sheets in all-climatic conditions of aerotechnics operation ] // Aviacionnye materialy i tehnologii. 2014. №4. S. 18–22. DOI: 10.18577/2071-9140-2014-0-4-18-22.
9. Panchenko Yu.M., Strekalov P.V., Chesnokov D.V., Zhirnov A.D., Zhilikov V.P., Karimova S.A., Tararaeva T.I. Zavisimost korrozionnoy stoykosti splava D16 ot zasolennosti i meteoparametrov primorskoy atmosfery [Dependence of corrosion resistance of alloy D16 on salinity and meteoparameters of the seaside atmosphere] // Aviacionnye materialy i tehnologii. 2010. №3. S. 8–14.
10. Mahsidov V.V., Kolobnev N.I., Kochubej A.Ya., Fomina M.A. i dr. Vliyanie nizkotemperaturnoj termomehanicheskoj obrabotki na strukturu, mehanicheskie, ustalostnye i korrozionnye harakteristiki listov splava sistemy Al–Mg–Si–Cu–Zn [Influence of low-temperature thermomechanical processing on structure, mechanical, fatigue and corrosion characteristics of sheets of alloy of Al-Mg-Si-Cu-Zn system] // Metallovedenie i termicheskaya obrabotka metallov. 2014. №8 (710). S. 16–20.
11. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Vliyanie termicheskoj obrabotki na harakteristiki svarnyh soedinenij vysokoprochnyh alyuminijlitievyh splavov [Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 06. Available at: http://www.viam-works.ru (accessed: July 11, 2016). DOI: 10.18577/2307-6046-2015-0-4-6-6.
12. Kablov E.N., Karimova S.A., Semenova L.V. Korrozionnaya aktivnost ugleplastikov i zashhita metallicheskih silovyh konstrukcij v kontakte s ugleplastikom [Corrosion activity ugleplastikov and protection of metal load bearing structures in contact with the carbon plastic] // Korroziya: materialy i zashhita. 2011. №12. S. 1–7.
13. Karimova S.A., Kutyrev A.E., Pavlovskaya T.G., Zaharov K.E. Nizkotemperaturnoe uplotnenie anodno-oksidnyh pokrytij na detalyah iz alyuminievyh splavov [Low temperature sealing of anodic oxide coatings on parts of aluminum alloys] // Aviacionnye materialy i tehnologii. 2014. №4. S. 9–17. DOI: 10.18577/2071-9140-2014-0-4-9-17.
14. Kuznetsova V.A., Deev I.S., Semenova L.V. Vliyanie modifikacii epoksidnyh plenkoobrazuyushhih kompozicij na ih fazovuyu mikrostrukturu i adgeziyu k alyuminievomu splavu [Influence of modification of epoxy film-forming compositions on their phase microstructure and adgesion to aluminium alloy] // Aviacionnye materialy i tehnologii. 2016. №1. S. 72–78. DOI: 10.18577/2071-9140-2016-0-1-72-78.
15. Hohlatova L.B., Oglodkov M.S., Ponomarev E.K. Vliyanie rezhimov stareniya na korrozionnuyu stojkost listov iz splava V-1461 sistemy Al–Li–Cu–Zn–Mg [Influence of modes of aging on corrosion resistance of sheets from alloy V-1461 of Al-Li-Cu-Zn-Mg system] // Metallurgiya mashinostroeniya. 2012. №3. S. 22–26.
16. Connolly B.J., Scully J.R. Corrosion cracking susceptibility in Al–Li–Cu Alloys 2090 and 2096 as a function of isothermal aging time // Scripta Materialia. 2000. V. 42. P. 1039–1045.
17. GOST 9.912–89. Edinaya sistema zashhity ot korrozii i stareniya. Stali i splavy korrozionnostojkie. Metody uskorennyh ispytanij na stojkost\' k pittingovoj korrozii [GOST 9.912–89. Uniform system of corrosion protection and aging. There were also alloys corrosion-resistant. Methods of accelerated tests on resistance to pitting corrosion]. M.: Izd-vo standartov, 1989. 5 s.
18. Frejman L.I., Makarov V.A., Bryksin I.E. Potenciostaticheskie metody v korrozionnyh issledovaniyah i elektrohimicheskoj zashhite [Potentciostatic methods in corrosion researches and electrochemical protection]. L.: Himiya, 1972. 240 s.
19. Cavanaugh M.K., Buchheit R.G., Birbilis N. Modeling the environmental dependence of pit growth using neural network approaches // Corrosion Science. 2000. V. 52. P. 3070–3077.
20. Li Jin-feng, Zheng Zi-qiao, Ren Wen-da, Chen Wen-jing, Zhao Xu-shan, Li Shi-chen. Simulation on function mechanism of T1(Al2CuLi) precipitate in localized corrosion of Al–Cu–Li alloys // Transactions of Nonferrous Metals Society of China. 2006. V. 16. P. 1268–1273.
21. Jiang Na, Li Jin-feng, Zheng Zi-qiao, Wei Xiu-yu, Li Yan-fen. Effect оf aging on mechanical properties and localized corrosion behaviors of Al–Cu–Li alloy // Transactions of Nonferrous Metals Society of China. 2005. V. 15. P. 23–29.
22. Sinyavskij V.S., Valkov V.D., Budov G.M. Korroziya i zashhita alyuminievyh splavov [Corrosion and protection of aluminum alloys]. M.: Metallurgiya, 1979. 224 s. 

DOI: 10.18577/2071-9140-2016-0-S2-49-55

UDC: 620.193

Pages: 49-55

D.K. Ryabov1, V.V. Antipov1, E.A. Lukina1, M.A. Fomina1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Corrosion resistance of 1913 alloy sheets in multistage heat treatment and with non-metallic inorganic protective coatings

Corrosion resistance of aluminum alloys is the most significant characteristic for the articles operated in all-climatic conditions. Retention of high strength of structural alloys increasing their corrosion resistance is an important task. For a number of aluminum alloys the heat treatment allows to change these characteristics in a wide interval. In the article results of the 1913 alloy sheets study subjected to various parameters of multistage aging are presented, their mechanical and corrosion properties are estimated and also results of natural tests in the conditions of an open climatic area are shown. The present work was carried out within the complex scientific direction 8.1. «High-strength weldable aluminum and aluminum-lithium alloys with reduced density and high fracture toughness» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: the 1913 alloy, rolling, heat treatment, artificial aging, corrosion resistance

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tehnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
4. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
5. Fridlyander I.N. Alyuminievye deformiruemye konstrukcionnye splavy [Aluminum deformable structural alloys]. M.: Metallurgiya, 1979. 208 s.
6. Chemingui M., Khitouni M., Jozwiak K., Mesmacque G., Kolsi A. Characterization of the mechanical properties changes in an Al–Zn–Mg alloy after a two-step ageing treatment at 70 and 135°C // Materials and Design. 2010. No. 31. Р. 3134–3139.
7. Robinson M.J., Jackson N.C. The influence of grain structure and intergranular corrosion rate on exfoliation and stress corrosion cracking of high strength Al–Cu–Mg alloys // Corrosion Science. 1999. No. 41. Р. 1013–1028.
8. Huang L.P., Chen K.H., Li S., Song M. Influence of high-temperature preprecipitation on local corrosion behaviors of Al–Zn–Mg alloy // Scripta Materialia. 2007. No. 56. Р. 305–308.
9. Kelly D.J. Influence of heat treatment and grain shape on exfoliation corrosion of Al–Li alloy 8090 / D.J. Kelly,  M.J. Robinson // Corrosion. 1993. No. 49. Р. 787–795.
10. Petroyiannis P.V., Kermanidis A.T., Papanikos P., Pantelakis S.G. Corrosion induced hydrogen embrittlement of 2024 and 6013 aluminum alloys // Theoretical and Applied Fracture Mechanics. 2004. No. 41. Р. 173–183.
11. Petroyiannis P.V. Evidence on the corrosion induced hydrogen embrittlement of the 2024 aluminium alloy/ P.V. Petroyiannis, E. Kamoutsi, A.T. Kermanidis, S.G. Pantelakis, V. Bontozoglou, G.N. Haidemenopoulos // Fatigue & Fracture of Engineering Materials & Structures. 2005. No. 28. Р. 565–574.
12. Kamousti H. Corrosion induced hydrogen embrittlement in aluminium alloy 2024 / H. Kamousti, G.N. Haidemenopoulos, V. Bontozoglou, S. Pantelakis // Corrosion Science. 2006. No. 48. Р. 1209–1224.
13. Marlaud T., Malki B., Deschamps A., Baroux B. Electrochemical aspects of exfoliation corrosion of aluminium alloys: the effects of heat treatment // Corrosion Science. 2011. No. 53. Р. 1394–1400.
14. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
15. Ryabov D.K., Kolobnev N.I., Mahsidov V.V., Fomina M.A. O stabil\'nosti peresyshhennogo tverdogo rastvora listov splava 1913 pri zakalke [About stability of super-saturated solid solution of sheets of alloy 1913 when tempering] // Metallurgiya mashinostroeniya. 2012. №3. S. 30–33.
16. Ryabov D., Kolobnev N., Samohvalov S. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg(–Cu) alloy // Materials Science Forum. 2014. Vol. 794–796. P. 241–246.
17. Ryabov D.K., Kolobnev N.I., Samohvalov S.V., Mahsidov V.V. Vliyanie predvaritelnogo estestvennogo stareniya na svojstva splava 1913 v iskusstvenno sostarennom sostoyanii [Influence of preliminary natural aging on properties of alloy 1913 in artificially made old condition] // Aviacionnye materialy i tehnologii. 2013. №2. S. 8–11.
18. Ryabov D.K., Kolobnev N.I. Izmenenie mehanicheskih svojstv splava 1913 pri dvuhstupenchatom iskusstvennom starenii [Change of mechanical properties of alloy 1913 at two-level artificial aging] // Aviacionnye materialy i tehnologii. 2013. №4. S. 3–7.
19. Ryabov D.K., Kolobnev N.I., Samohvalov S.V., Vahromov O.V. Izmenenie mehanicheskih i korrozionnyh svojstv splava 1913 pri iskusstvennom starenii [Change of mechanical and corrosion properties of alloy 1913 at artificial aging] // Voprosy materialovedeniya. 2013. №4 (76). C. 24–29.
20. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: August 01, 2016).
21. Han G.M., Nikiforov A.O., Zaharov V.V., Novikov I.I. Vliyanie soderzhaniya skandiya na strukturu i pokazateli sverhplastichnosti alyuminievyh splavov sistemy Al–Zn–Mg–Sc–Zr [Influence of the content of scandium on structure and indicators of superplasticity of aluminum alloys of Al–Zn–Mg–Sc–Zr system] // Tsvetnye metally. 1993. №11. S. 55–57.

DOI: 10.18577/2071-9140-2016-0-S2-56-62

UDC: 669.018.95

Pages: 56-62

A.L. Yakovlev1, N.A. Nochovnaya1, S.V. Putyrskiy1, V.A. Krokhina2

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,
[2] Bauman Moscow State Technical University,

Titanium-polymer laminated materials

The article describes a new class of layered composite materials - titanium-polymer materials. The results of current developments, actual issues and application prospects are presented. Active development of the titanium-polymer hybrid laminates is carried out abroad and has some success in this area. Domestic analogues of such materials does not exist currently that confirms the importance of the problem and the need to conduct active research and development in this direction. The work is performed within the framework of complex scientific direction 6.2. «Layered crack resistant, high strength metal-polymer materials» («The strategic directions of development of materials and technologies for processing them for the period till 2030»)

Keywords: composite material, titanium, titanium-polymer hybrid laminate, moulding, surface treatment

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
5. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistyh alyumostekloplastikov na osnove alyuminij-litievogo splava 1441 s ponizhennoj plotnostyu [New class layered aluminum fibreglasses on basis aluminum-lithium alloy 1441 with lowered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–183.
6. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
7. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Perspektivy ispolzovaniya titanovyh splavov v sloistyh kompozicionnyh materialah [Prospects for the use of titanium alloys in laminated composite materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 04. Available at: http://www.viam-works.ru (accessed: April 25, 2016). DOI: 10.18577/2307-6046-2015-0-10-4-4.
8. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. № 1. S. 3–12.
9. Nochovnaya N.A., Panin P.V., Alekseev E.B., Bokov K.A. Ekonomnolegirovannye titanovye splavy dlya sloistyh metallopolimernyh kompozicionnyh materialov [Low-cost alloyed titanium alloys for metal-polymer laminates] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 02. Available at: http://www.viam-works.ru (accessed: April 25, 2016). DOI: 10.18577/2307-6046-2014-0-11-2-2.
10. Yakovlev A.L., Nochovnaya N.A. Vliyanie termicheskoj obrabotki na svojstva listov iz vysokoprochnogo titanovogo splava VT23M [Effect of heat treatment on properties of sheets of high-strength titanium alloy VT23M] // Aviacionnye materialy i tehnologii. 2013. №4. S. 8–13.
11. Horev A.I. Titanovyj splav VT23 i ego sravnenie s luchshimi zarubezhnymi splavami [BT23 titanium alloy and its comparison with the best foreign alloys] // Titan. 2006. №1 (18). S. 47–52.
12. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Metallurgical science of titanium and its alloys]. M.: Metallurgiya, 1992. 352 s.
13. Yakovlev A.L., Nochovnaya N.A., Alekseev E.B. Otechestvennye zharoprochnye listovye titanovye splavy [Domestic heat resisting sheet titanium alloys] // Tehnologiya legkih splavov. 2014. №4. S. 47–51.
14. Yakovlev A.L., Nochovnaya N.A., Filatov A.A., Burhanova A.A., Popova Yu.A. Effektivnost primeneniya titanovogo splava VT23 v novyh izdeliyah «OKB Suhogo» [Efficiency of application of BT23 titanium alloy in new products of «Sukhoi Design Bureau»] // Titan. 2013. №2 (40). C. 39–42.
15. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
16. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: March 29, 2016).
17. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
18. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
19. Lukina N.F., Dementeva L.A., Serezhenkov A.A. i dr. Kleevye prepregi i kompozicionnye materialy na ih osnove [Glue prepregs and composite materials on their basis] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 53–56.
20. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
21. Putyrskij S.V., Plohih A.I., Yakovlev A.L. Issledovanie struktury i svojstv mnogoslojnyh materialov na osnove titanovyh splavov [Research of structure and properties of multi-layer materials on the basis of titanium alloys] // Problemy proizvodstva slitkov i polufabrikatov iz slozhnolegirovannyh i intermetallidnyh titanovyh splavov: sb. dokl. nauch. konf. M.: VIAM, 2015. S. 9.
22. Erasov V.S., Grinevich A.V., Senik V.Ya., Konovalov V.V., Trunin Yu.P., Nesterenko G.I. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
23. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
24. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: January 21, 2016).