Archive

Aviation materials and tecnologes №4, 2015

DOI: 10.18577/2071-9140-2015-0-4-3-8

UDC: 669.715:669.884

Pages: 3-8

Yu.Yu. Klochkova1, G.G. Klochkov1, V.A. Romanenko1, V.I. Popov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Structure and properties of sheets from high-strength aluminum-lithium alloy V-1469

An increase in weight efficiency of perspective aircraft is possible using aluminum-lithium alloys with low density. At present there is a problem of manufacturing of thin sheets from aluminum-lithium alloys by cold coil rolling in view of their low technological plasticity. Perspective high-strength alloy V-1469 developed by VIAM based on Al-Cu-Li system and additionally alloyed by Ag, Sc and Zr, possesses the improved technological plasticity. Industrial technology of coil rolling of thin sheets from V-1469 alloy has been developed. Temperature of hot rolling has been chosen. Effect of thermomechanical treatment on structure and mechanical properties of the sheets has been studied. Results of comprehensive investigation of mechanical, corrosion and operational properties are presented.

Keywords: alloy V-1469, Al–Cu–Li system, alloying, silver, scandium, zirconium, coil rolling, heat treatment, structure, mechanical properties, corrosion resistance

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period to 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Fridljander I.N. Vospominanija o sozdanii aviakosmicheskoj i atomnoj tehniki iz aljuminievyh splavov [Memories of creation of aerospace and nuclear equipment from aluminum alloys]. M.: Nauka. 2005. 275 s.
3. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
4. Grushko O.E., Ovsjannikov B.V., Ovchinnikov V.V. Aljuminievo-litievye splavy: metallur-gija, svarka, metallovedenie [Aluminum-lithium alloys: metallurgy, welding, metallurgical science]. M.: Nauka. 2014. 296 s.
5. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformirue-mye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
6. Belov N.A., Antipov V.V., Kajbyshev R.O., Jeskin D.G. Mezhdunarodnaja konferencija po aljuminievym splavam ICAA12 [International conference on ICAA12 aluminum alloys] //MiTOM. 2011. №9. S. 3–5.
7. Prasad N.E., Gokhale A., Wanhill R.J.H. Aluminium-lithium alloys: processing, properties, and applications. 2013. 608 p.
8. Splav na osnove aljuminija i izdelie, vypolnennoe iz nego [Alloy on the basis of aluminum and the product which has been executed of it]: pat. 2237098 Ros. Federacija; opubl. 24.07.2003.
9. Fridljander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Hohlatova L.B. Aljuminijlitievye splavy [Aluminum lithium alloys] /V sb. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauchn.-tehn. sb. M.: VIAM. 2007. S. 163–171.
10. Klochkova Ju.Ju., Grushko O.E., Lancova L.P., Burljaeva I.P., Ovsjannikov B.V. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo aljuminijlitievogo splava V-1469 [Development in industrial production of semi-finished products from perspective alyuminiylitiyevy alloy V-1469] //Aviacionnye materialy i tehnologii. 2011. №1. S. 8–12.
11. Gumbmann E., de Geuser F., Lefebvre W., Sigli C., Deschamps A. The influence of Mg and Ag on the precipitation kinetics and the formation of the T1 phase in Al–Cu–Li alloys /Proceedings of the 14 ICAA. 2014. P. 945–950.
12. Mukhopadhyay A.K. Compositional characterization of Cu-rich phase particles present in as-cast Al–Cu–Mg–(Li) alloys containing Ag //Metallurgical and materials transactions A. 1999. V. 30. №7. P. 1693–1704.
13. Vajnblat Ju.M. Nepreryvnaja rekristallizacija v gorjachedeformirovannyh aljuminievyh splavah [Continuous recristallization in hot formed aluminum alloys] //Tehnologija legkih splavov. 1995. №5. S. 11–19.
14. Troeger P., Domack M.S., Wagner J.A. Microstructural and Mechanical Property Characterization of Shear Formed Aerospace Aluminum Alloys /NASA. Langly Research Center Hampton. Virginia. 2000.
15. Hales S.J., Hafley R.A. Structure-Property Correlations in Al–Li Alloy Integrally Stiffened Extrusions /NASA, Langly Research Center Hampton. 2001.
16. Skljarov N.M. Put dlinoju v 70 let ot drevesiny do supermaterialov [Way of 70 years from wood to supermaterials]. M.: MISiS–VIAM. 2002. 488 s.
17. Splav na osnove aljuminija i izdelie, vypolnennoe iz nego [Alloy on the basis of aluminum and the product which has been executed of it]: pat. 2278179 Ros. Federacija; opubl. 21.12.2004.
18. Antipov V.V. Tehnologichnyj aljuminijlitievyj splav 1441 i sloistye gibridnye kompozity na ego osnove [Technological aluminum lithium alloy 1441 and layered hybrid composites on its basis] //Metallurg. 2012. №5. S. 36–39.
19. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye aljumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i TU Delft [Layered aluminum glass plastic SIAL-1441 and cooperation with Airbus and TU Delft] //Tsvetnye metally. 2013. №9. S. 50–53.
20. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistyh aljumostekloplastikov na osnove aljuminijlitievogo splava 1441 s ponizhennoj plotnostju [New class layered aluminum glass plastics on the basis of aluminum lithium alloy 1441 with lowered density] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 174–183.
21. Kolobnev N.I., Hohlatova L.B., Oglodkov M.S., Klochkova Ju.Ju. Vysokoprochnye splavy sistemy Al–Cu–Li s povyshennoj vjazkost'ju razrushenija dlja samoletnyh konstrukcij [High-strength alloys of Al–Cu–Li system with the increased fracture toughness for aircraft designs] //Tsvetnye metally. 2013. №9. S. 66–71.
22. Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.A. Promyshlennoe osvoenie vysokoprochnogo splava V-1469 sistemy Al–Cu–Li–Mg [Industrial development of strength alloy V-1469 of Al–Cu–Li–Mg] //Trudy VIAM. 2014. №7. St. 01 (viam-works.ru).
23. Shamraj V.F., Grushko O.E., Jegiz I.V., Borovskih S.N. Kristallograficheskaja tekstura i struktura katanyh listov iz splava Al–Cu–Li [Crystallographic structure and structure of rolled sheets from Al–Cu–Li alloy] //Metally. 2006. №2. S. 94–98.
24. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie aljuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development of aluminum lithium alloys and multistage modes of thermal processing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
25. Kolobnev I.F. Termicheskaja obrabotka aljuminievyh splavov [Thermal processing of aluminum alloys]. M.: Metallurgizdat. 1961. 413 s.
26. Fridljander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Aljuminievo-litievye splavy. Struktura i svojstva[Aluminum lithium alloys]. K.: Naukova dumka. 1992. 192 s.
27. Shamraj V.F., Klochkova Ju.Ju., Lazarev Je.M., Gordeev A.S., Sirotinkin V.P. Ctrukturnye sostojanija listov iz aljuminijlitievogo splava V-1469 [Structural conditions of sheets from aluminum lithium alloy V-1469] //Metally. 2013. №5. S. 77–84.
28. Lukina E.A., Alekseev A.A., Antipov V.V., Zajcev D.V., Klochkova Ju.Ju. Primenenie dia-gramm fazovyh prevrashhenij pri starenii dlja optimizacii rezhimov starenija v Al–Li splavah V-1469, 1441 [Application of charts of phase transformations when aging for optimization of modes of aging in Al–Li alloys V-1469, 1441] //Metally. 2009. №6. S. 60–67.
29. Alekseev, A.A., Lukina E.A., Klochkova Ju.Ju. Kristallicheskaja struktura sverhtonkih plastinchatyh vydelenij [Crystal structure of superthin lamellar selection] //FMM. 2013. T. 114. №6. S. 527–533.
30. Istomin-Kastrovskij V.V., Shamraj V.F., Grushko O.E., Klochkova Ju.Ju., Rjazanceva M.A. Vlijanie dobavok serebra, magnija, cirkonija na starenie splava V-1469 sistemy Al–Cu–Li [Influence of additives of silver, magnesium, zirconium on aging of alloy V-1469 of Al–Cu–Li system] //Metally. 2010. №5. S. 73–78.
31. Aviacionnye materialy [Aviation materials]: Spravochnik v 12-ti tomah. 7-e izd., pererab. i dop. /Pod obshh. red. E.N. Kablova. M.: VIAM. 2009. T. 4. Ch. 1. Kn. 2. 170 s.

DOI: 10.18577/2071-9140-2015-0-4-9-13

UDC: 669.715:669.884

Pages: 9-13

L.B. Khokhlatova1, V.V. Blinkov2, D.I. Kondratyuk2, E.N. Ryabova1, O.K. Kolesenkova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru
[2] Join Stock Company «National Institute of Aviation Technologies», info@niat.ru

Structure and properties of welded joints of sheets from 1424 and V-1461 alloys made by laser welding

The undertaken investigation is focused on mechanical properties and structure of joints of sheets from V-1461-BT1 and 1424-BTG1alloys made by laser welding of 1,5 and 1,8 mm in thickness with processing cladding respectively. The sheets were welded without welding consumables with the use of universal welding complex based on ytterbium optical fiber laser LS-2 produced by «IRE-Polus». Welded joints of sheets from high-strength V-1461 alloy exceed joints of sheets from 1424 alloy in LCF by several times, but concede in respect of strength and bending angle at static bending test.

Keywords: Al–Li alloys, laser beam welding, mechanical properties

Reference List

1. Kolobnev N.I., Hohlatova L.B., Antipov V.V. Perspektivnye aljuminijlitievye splavy dlja samoletnyh konstrukcij [Perspective Aluminum lithium alloys for aircraft designs] //Tehnologija legkih splavov. 2007. №2. S. 35–38.
2. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie aljuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period to 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Hohlatova L.B., Kolobnev N.I., Oglodkov M.S., Mihajlov E.D. Aljuminijlitievye splavy dlja samoletostroenija [Aluminum lithium alloys for aircraft construction] //Metallurg. 2012. №5. S. 31–35.
5. Ditrih D., Brener B. Progress v lazernoj svarke panelej fjuzeljazha [Progress in laser bonding of panels of fuselage] //Aviacionnaja promyshlennost'. 2011. №4. S. 10–20.
6. Ditrih D., Brener B. Primenenie tehnologij lazernoj svarki pri izgotovlenii inte-gral'nyh konstrukcii obshivki fjuzeljazha grazhdanskih krupnogabaritnyh samoletov [Application of technologies of laser bonding when manufacturing integral designs of covering of fuselage of civil large-size aircrafts] //Aviacionnaja promyshlennost'. 2011. №1. S. 1–7.
7. Shiganov I.N., Shahov S.V., Holopov A.A. Lazernaja svarka aljuminievyh splavov [Laser bonding of aluminum alloys] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2012. S. 34–50.
8. Klochkov G.G., Grushko O.E., Popov V.I., Ovchinnikov V.V., Shamraj V.F. Struktura, tehnologicheskie svojstva i svarivaemost listov iz splava V-1341 sistemy Al–Mg–Si [Structure, technological properties and bondability of sheets from alloy V-1341 of Al–Mg–Si system] //Aviacionnye materialy i tehnologii. 2011. №1. S. 3–8.
9. Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.A. Promyshlennoe osvoenie vysokoprochnogo splava V-1469 sistemy Al–Cu–Li–Mg [Industrial development of strength alloy V-1469 of Al–Cu–Li–Mg] //Trudy VIAM. 2014. №7. St. 01 (viam-works.ru).
10. Fridljander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I., Koval Ju.N. Aljumi-nij-litievye splavy. Struktura i svojstva [Aluminum lithium alloys. Structure and properties]. K.: Naukova dumka. 1992.
11. Splav na osnove aljuminija i izdelie, vypolnennoe iz nego [Alloy on the basis of aluminum and the product which has been executed of it]: pat. 2163940 Ros. Federacija; opubl. 10.03.2001.
12. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A. Vlijanie termomehanicheskoj obrabotki na svojstva i strukturu splava sistemy Al–Cu–Mg–Li–Zn [Influence of thermomechanical processing on properties and Al–Cu–Mg–Li–Zn system alloy structure] //Aviacionnye materialy i tehnologii. 2010. №4. S. 7–11.
13. Splav na osnove aljuminija i sposob ego termicheskoj obrabotki [Alloy on the basis of aluminum and way of its thermal processing]: pat. 2133295 Ros. Federacija; opubl. 20.07.1999.
14. Hohlatova L.B., Kolobnev N.I., Antipov V.V., Karimova S.A., Rudakov A.G., Oglod-kov M.S. Vlijanie korrozionnoj sredy na skorost' rosta treshhiny ustalosti v aljuminievyh splavah [Influence of the corrosion environment on the growth rate of crack of fatigue in aluminum alloys] //Aviacionnye materialy i tehnologii. 2011. №1. S. 16–20.
15. Panin V.E., Kablov E.N., Pochivalov Ju.I., Panin S.V., Kolobnev N.I. Vlijanie nano-strukturirovanija poverhnostnogo sloja aljuminijlitievogo splava 1424 na mehanizmy deformacii, tehnologicheskie harakteristiki i ustalostnuju dolgovechnost. Povyshenie plastichnosti i tehnologicheskih harakteristik [Influence of nanostructuring surface layer Aluminum lithium alloy 1424 on deformation mechanisms, technical characteristics and fatigue life. Increase of plasticity and technological] //Fizicheskaja mezomehanika. 2012. T. 15. №6. S. 107–111.
16. PI1.4.1555–2000 «Svarka dugovaja aljuminievyh i magnievyh splavov v srede inert-nyh gazov» [PI1.4.1555-2000 «Welding arc aluminum and magnesium alloys in the environment of inert gases»].

DOI: 10.18577/2071-9140-2015-0-4-14-20

UDC: 669.14.046.516

Pages: 14-20

S.A. Krylov1, E.S. Markova1, A.I. Shcherbakov1, N.A. Yakusheva1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Metallurgical features of smelting process of high-strength maraging steel VKS180-ID microalloyed by REM

One of the most promising high-strength steel for the production of high-loaded parts of landing gear, airframe and engine is steel VKS-180. However for achievement of high properties, including on large-size semi-finished products it is necessary to apply a multi-stage high-temperature heat treatment. The object of the study was deve-lopment of melting technology of steel VKS-180, which allows providing the decrease in carbon content, nitrogen, oxygen in steel (carbon - to 0,005%, nitrogen - to 0,003%, oxygen - to 0,004%) for the subsequent optimization of heat treatment process. Metallurgical features of melting of high-strength maraging steel VKS-180-ID in a vacuum induction (VI) furnace with remelting in a vacuum arc (VA) furnace using the chosen system of microalloying on the basis of REM and introduction of nickel oxide has been investigated.

Keywords: high-strength steel, maraging steel, melting, remelting, microalloying by REM, nickel oxide, deoxidation, gases, impurities, homogenization, forging, rolling, annealing, heat treatment, tensile strength, impact strength, ductility, nonmetallic inclusions, carbides, carbonitrides, grain size

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period to 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlja vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 13–19.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization] //Metally Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
6. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [The priority directions of development of production technologies of heat resisting materials for aviation engine building] //Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
7. Salahova R.K. Korrozionnaja stojkost' stali 30HGSA s «trehvalentnym» hromovym pokrytiem v estestvennyh i iskusstvennyh sredah [Corrosion resistance of steel 30ХГСА with «trivalent» chrome plating in natural and artificial environments] //Aviacionnye materialy i tehnologii. 2012. №2. S. 59–66.
8. Shalin R.E., Shherbakov A.I., Lomberg B.S., Kachanov E.B. Jelektronno-luchevoj pereplav – progressivnyj metod poluchenija vysokokachestvennyh stalej i zharoprochnyh splavov [Electron beam pereplav – progressive method of receiving high-quality staly and hot strength alloys] /V sb. Aviacionnye materialy. M.: VIAM. 1978. №3. S. 46–59.
9. Lomberg B.S., Pokrovskij A.A., Topilin V.V., Shherbakov A.I. Vlijanie sposoba pereplava na kachestvo martensitostarejushhej vysokoprochnoj stali [Influence of way pereplava on quality of maraging high-strength steel] //Stal. 1973. №8. S. 725.
10. Shherbakov A.I., Lomberg B.S., Oborenkova A.S. Nekotorye zakonomernosti kristallizacii pri JeLP i VDP [Some patterns of crystallization at ELP and VDP] //Specialnaja jelektrometallurgija. 1978. №22. S. 22–40.
11. Petrakov A.F., Revjakina O.K., Shherbakov A.I., Markova E.S. Vlijanie dobavok cerija, mag-nija i ittrija na fiziko-mehanicheskie i tehnologicheskie svojstva stalej sistemy Fe–Ni–Co–Mo–Ti [Influence of additives of cerium, magnesium and yttrium on physicomechanical and technological properties of steel system Fe–Ni–Co–Mo–Ti] /V sb. Voprosy aviacionnoj nauki i tehniki. Ser. Aviacionnye materialy. M.: VIAM. 1986. S. 40–43.
12. Krivonogov G.S., Kablov E.N. Granicy zeren i ih rol' v ohrupchivanii vysokoprochnyh korrozionnostojkih stalej [Borders of grains and their role in okhrupchivaniye high-strength corrosion-resistant the staly] //Metally. 2002. №1. S. 35–45.
13. Savvina N.A., Kosarina E.I., Miroshin K.G., Stepanov A.V. Teoreticheskij raschet i prakticheskie sposoby opredelenija verojatnosti obnaruzhenija defektov v aviacionnyh materialah /V sb. Aviacionnye materialy i tehnologii [Theoretical calculation and practical ways of definition of probability of detection of defects in aviation materials]. M.: VIAM. 2005. №1. S. 16–22.
14. Djubanov V.G., Lomberg B.S., Gerasimov T.N. i dr. Issledovanie vozmozhnosti obezuglerozhivanija stali, raskislennoj titanom i aljuminiem v vakuume [Research of possibility of decarbonization became, deoxidizered by titanium and aluminum in vacuum] /V sb. trudov konf. «Sovremennye problemy jelektrometallurgii stali». Cheljabinsk. 1971. S. 53–56.
15. Bratuhin A.G., Demchenko O.F., Dolzhenkov N.N., Krivonogov G.S. Vysokoprochnye korrozionnostojkie stali sovremennoj aviacii [High-strength corrosion-resistant became modern aircraft]. M.: MAI. 2006. S. 112–121, 130–143.
16. Krivonogov G.S., Kablov E.N. Matematicheskaja model' strukturnoj diagrammy malouglerodistyh korrozionnostojkih stalej i ee primenenie pri razrabotke novyh materialov [Mathematical model of the structural chart low-carbon corrosion-resistant steel and its application when developing new materials] //Metally. 2001. №5. S. 42–48.
17. Revjakina O.K. Sklonnost' k teplovomu ohrupchivaniju nerzhavejushhih martensitostareju-shhih stalej [Tendency to thermal embrittlement corrosion-proof maraging steel] //MiTOM. 1981. №4. S. 36–39.
18. Erasov V.S., Grinevich A.V., Senik V.Ja. i dr. Raschetnye znachenija harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
19. Vylezhnev V.P., Kokovjakina S.A., Simonov Ju.N., Suhih A.A. Povyshenie harakteristik nadezhnosti martensitostarejushhej stali 03N18K9M5T putem sozdanija struktury tipa «nanotripleks» [Increase of characteristics of reliability of maraging steel 03Н18К9М5Т by creation of structure of the nanotriplex type] //MiTOM. 2010. №11. S. 36–39.
20. Markova E.S., Pokrovskaja N.G., Shal'kevich A.B., Gromov V.I. Martensitostarejushhie stali ‒ novye perspektivnye materialy dlja valov GTD [Maraging became ‒ new perspective materials for GTE shaft] //Aviacionnye materialy i tehnologii. 2012. №S. S. 81–84.
21. Pokrovskaja N.G., Markova E.S., Shal'kevich A.B. Vysokoprochnye konstrukcionnye martensitostarejushhie stali v aviastroenii [High-strength constructional maraging became in aircraft industry] //Aviacionnaja promyshlennost. 2014. №1. S. 24–28.
22. Markova E.S., Jakusheva N.A., Pokrovskaja N.G., Shalkevich A.B. Tehnologicheskie osobennosti proizvodstva martensitostarejushhej stali VKS-180 [Technological features of the production of maraging steel VKS-180] //Trudy VIAM. 2013. №7. St. 01 (viam-works.ru).
23. Tonysheva O.A., Voznesenskaja I.M., Eliseev Je.A., Shalkevich A.B. Novaja vysokoprochnaja jekonomnolegirovannaja azotsoderzhashhaja stal povyshennoj nadezhnosti [The new high-strength containing steel of increased reliability economically alloyed nitrogen] //Aviacionnye ma-terialy i tehnologii. 2012. №S. S. 84–88.

DOI: 10.18577/2071-9140-2015-0-4-21-24

UDC: 669.245:621.78

Pages: 21-24

S.V. Ovsepyan1, M.V. Akhmedzyanov1, I.S. Mazalov1, O.I. Rastorgueva1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Alloying by carbon of superalloy of the Ni-Co-Cr-W-Ti system strengthened by thermo-chemical treatment

Influence of alloying by carbon on phase structure and properties of heat-resistant Ni-based superalloy of a new class of Ni-Co-Cr-W-Ti system strengthened by special chemical and thermal treatment is investigated. It is established that carbides, forming at high-temperature nitriding, restrain growth of grains and reduce the speed of nitrogen diffusion, form thermostable carboborides strengthening an alloy. The additive of carbon leads to increase in heat resistance and long-term strength.

Keywords: nitriding, nitrides, structure, thermo-chemical treatment, heat resistant Ni-based superalloy, alloying

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period to 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravlenija razvitija konstrukcionnyh materialov i tehnologij ih pererabotki dlja aviacionnyh dvigate-lej nastojashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] //Avtomaticheskaja svarka. 2013. №10. S. 23–32.
3. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
4. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [The priority directions of development of production technologies of heat resisting materials for aviation engine building] //Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharo-prochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
7. Lin J., Balint D., Pietrzyk M. Microstructure evolution in metal forming processes. Cambridge: Woodhead Publishing Limited. 2012. 402 p.
8. Lee M. Pike 100 + years of wrought alloy development at Haynes International /In: 8-th International symposium on Superalloy 718 and derivatives. TMS. 2014. P. 15–30.
9. Locq D., Caron P. On some advanced nickel-based superalloys for disk applications //Aerospace Lab. 2011. №3 (Aerospacelab-journal.com).
10. Lomberg B.S., Jakovlev E.D. Novyj zharoprochnyj material dlja jadernoj jenergetiki [New heat resisting material for nuclear power] //Aviacionnye materialy i tehnologii. 2012. №2. C. 18–19.
11. Reed R.C. The Superаlloys. Fundamentals and Applications. 2008. 388 р.
12. Sims Ch.T., Stoloff N.S., Hagel U.K. Supersplavy 2. Zharoprochnye materialy dlja ajerokosmicheskih i promyshlennyh jenergoustanovok [Superalloys 2. Heat resisting materials for space and industrial power installations]: Per. s angl. V 2-h kn. M.: Metal-lurgija. 1995. 768 s.
13. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej no-vogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
14. Latyshev V.B. Zharoprochnye deformiruemye svarivaemye splavy dlja kamer sgoranija [Heat resisting deformable welded alloys for combustion tubes] /V kn. Aviacionnye materialy na rubezhe XX–XXI vekov: Nauch.-tehnich. sb. M.: VIAM. 1994. S. 273–278.
15. Ahmedzjanov M.V., Skugorev A.V., Ovsepjan S.V., Mazalov I.S. Razrabotka resursosbe-regajushhej tehnologii poluchenija holodnokatanogo lista iz vysokozharoprochnogo sva-rivaemogo splava VZh171 [Development of resource-saving technology of receiving cold-rolled sheet from high-heat resisting welded alloy VZh171] //Proizvodstvo prokata. 2015. №1. S. 14–17.
16. Bykov Ju.G., Ovsepjan S.V., Mazalov I.S., Romashov A.S. Primenenie novogo zharo-prochnogo splava VZh171 v konstrukcii perspektivnogo dvigatelja [Application of new VZh171 hot strength alloy in design of the perspective engine] //Vestnik dvigatelestroenija. 2012. №2. S. 246–249.
17. Cobalt-Chromium-Iron-Nickel alloys amenable to nitride strengthening: pat. 8075839 US; publ. 13.12.2011.
18. Petrova L.G., Chudina O.V. Primenenie metodologii upravlenija strukturoobrazova-niem dlja razrabotki uprochnjajushhih tehnologij [Application of methodology of management by structurization for development of strengthening technologies] //MiTOM. 2010. №5. S. 31–41.
19. Fahrmann M., Srivastava S.K. Nitridation of HAYNES® NS-163® Alloy: Thermodynamics and Kinetics //JOM. 2012. V. 64. №2. Р. 280–287.
20. Ovsepjan S.V., Lukina E.A., Filonova E.V., Mazalov I.S. Formirovanie uprochnjajushhej fazy v processe vysokotemperaturnogo azotirovanija svarivaemogo zharoprochnogo deformiruemogo splava na osnove sistemy Ni–Co–Cr [Formation of the Strengthening Phase during the High-Temperature Nitriding of Ni–Co–Cr Weldable Wrought Superalloy] //Aviacionnye materialy i tehnologii. 2013. №1. S. 3–8.
21. Kindlimann L.E., Ansell G.S. Kinetics of the internal nitridation of austenitic Fe–Cr–Ni–Ti alloys //Metal. Trans. Jan. 1970. V. 1. №1. P. 163–170.

DOI: 10.18577/2071-9140-2015-0-4-25-28

UDC: 669.018.44:669.245

Pages: 25-28

D.E. Kablov1, M.S. Belyaev1, V.V. Sidorov1, P.G. Min1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

The influence of sulfur and phosphorus impurities on low cycle fatigue of single crystals of ZhS36-VI alloy

The influence of sulfur and phosphorus impurities on low cycle fatigue of single crystals of ZhS36-VI alloy was investigated. The harmful sulfur and phosphorus influence on middle quantity of cycles to failure was established. Introduction of lanthanum, as additive, allowed neutralizing the harmful sulfur and phosphorus influence and lowering sulfur contents in the alloy thereby increasing middle quantity of cycles to failure.

Keywords: single crystal, sulfur, phosphorus, superalloy, low cycle fatigue, lanthanum

Reference List

1. Kablov D.E., Sidorov V.V., Min P.G. Vlijanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka jeffektivnyh sposobov ego rafinirovanija [Influence of impurity of nitrogen on structure of monocrystals of heat resisting ZhS30-VI nickel alloy and development of effective ways of its refinement] //Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
2. Kablov D.E., Chabina E.B., Sidorov V.V., Min P.G. Issledovanie vlijanija azota na strukturu i svojstva monokristallov iz litejnogo zharoprochnogo splava ZhS30-VI [Research of influence of nitrogen on structure and properties of monocrystals from foundry ZhS30-VI hot strength alloy] //MiTOM. 2013. №8. S. 3–7.
3. Kablov D.E., Sidorov V.V., Min P.G. Zakonomernosti povedenija azota pri poluchenii monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i ego vlijanie na jekspluatacionnye svojstva [Patterns of behavior of nitrogen when receiving monocrystals of heat resisting ZhS30-VI nickel alloy and its influence on operational properties] //MiTOM. 2014. №1. S. 8–12.
4. Sidorov V.V., Min P.G., Burcev V.T., Kablov D.E., Vadeev V.E. Komp'juternoe modeli-rovanie i jeksperimental'noe issledovanie reakcij rafinirovanija v vakuume slozhnolegirovannyh renijsoderzhashhih nikelevyh rasplavov ot primesej sery i kremnija [Computer modeling and pilot study of reactions of refinement in vacuum complex-alloyed reniysoderzhashchy nickel rasplavov from sulfur and silicon impurity] //Vestnik RFFI. 2015. №1 (85). S. 32–36.
5. Min P.G., Gorjunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i jeffektivnye resursosberegajushhie tehnologii ih izgotovlenija [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] //Tehnologija metallov. 2014. №8. S. 12–23.
6. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A., Kablov D.E. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed crystallization of blades of GTD from heat resisting and intermetallidny alloys with single-crystal structure] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. № SP. S. 20–25.
7. Kablov E.N., Bondarenko Ju.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v uslovijah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
8. Birger I.A., Balashov B.F., Dul'nev R.A. i dr. Konstrukcionnaja prochnost' materialov i detalej gazoturbinnyh dvigatelej [Constructional durability of materials and details of gas turbine engines]. M.: Mashinostroenie. 1981. 222 s.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
10. Schijve J. Fatique of structures and materials. Berlin Heidelberg: Springer-Verlag. 2009. 185 s.
11. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh mate-rialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S.34–38.
12. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [The priority directions of development of production technologies of heat resisting materials for aviation engine building] //Problemy chernoj metallurgii i materialovedenie. 2013. №3. S. 47–54.
13. Sposob poluchenija izdelija iz deformiruemogo zharoprochnogo nikelevogo splava [Way of receiving product from deformable heat resisting nickel alloy]: pat. 2387733 Ros. Federacija; opubl. 31.03.2009.
14. Stepnov M.N., Shavrin A.V. Statisticheskie metody obrabotki rezultatov mehanicheskih ispytanij [Statistical methods of processing of results of mechanical tests]: Spravochnik. M.: Mashinostroenie. 2005. 400 s.
15. Troshhenko V.T., Sosnovskij L.A. Soprotivlenie ustalosti metallov i splavov [Resistance of fatigue of metals and alloys]: Spravochnik. Ch. 1. K.: Naukova dumka. 1987. 510 s.
16. Mehanik E.A., Min P.G., Gundobin N.V., Rastegaeva G.Ju. Opredelenie massovoj doli sery v zharoprochnyh nikelevyh splavah i staljah v diapazone koncentracij ot 0,0001 do 0,0009% (po masse) [Definition of mass fraction of sulfur in heat resisting nickel alloys and stalyakh in the range of concentration from 0,0001 to 0,0009% (on weight)] //Trudy VIAM. 2014. №9. St. 12. (viam-works.ru).
17. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTD from hot strength alloys with single-crystal and composition structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
18. Kablov E.N., Logunov A.V., Sidorov V.V. Mikrolegirovanie RZM – sovremennaja tehnologija povyshenija svojstv litejnyh zharoprochnyh nikelevyh splavov [RZM microalloying – modern technology of increase of properties of cast heat resisting nickel alloys] //Perspektivnye materialy. 2001. №1. S. 23–24.
19. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast' 2) [Refinement complex-alloyed nickel rasplava from sulfur impurity when melting in the vacuum induction furnace (part 2)] //Jelektrometallurgija. 2014. №5. S. 26–30.
20. Samsonov G.V., Vinickij I.M. Tugoplavkie soedinenija [High-melting connections]. M.: Metallurgija. 1976. 240 s.
21. Filippov K.S., Burcev V.T., Sidorov V.V., Rigin V.E. Issledovanie poverhnostnogo natjazhenija i plotnosti rasplava nikelja, soderzhashhego primesi sery, fosfora i azota [Research of surface tension and density rasplava the nickel containing impurity of sulfur, phosphorus and nitrogen] //Fizika i himija obrabotki materialov. 2013. №1. S. 52–56.

DOI: 10.18577/2071-9140-2015-0-4-29-37

UDC: 669.018.29

Pages: 29-37

E.N. Azarovsky1, S. A. Muboyadzhyan1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Surface modification of parts from structural steel in vacuum-arc titanium plasma. Part III

In this paper we consider the process of ion modifying of the surface of samples from compressor steel EI961 and EP866 in the titanium plasma by high-current vacuum-arc discharge (VAD) of ion-plasma unit (IPU) MAP-3 at constant vacuum arc current, identical processing time intervals and given parameters of bias voltage. The dependence of the temperature of the samples in deposition chamber of MAP-3 and the rate of specific weight change of the samples on bias voltage is obtained. Elemental composition of the samples after ion treatment is studied. It is shown that at VAD current of 300 A and bias voltage of 600 V the temperature of the samples from compressor steels does not exceed 600°C, as well as inversion voltage that determines transition from the condensation process to the process of ion etching is ~380 V for steel EP866 and is ~600 V for steel EI961.

Keywords: steel, vacuum arc, plasma, ion modification, thermally stimulated ion diffusion, ion etching, microstructure, electron microscopy

Reference List

1. Mubojadzhjan S.A. Ionno-plazmennye processy poluchenija diffuzionnyh aljuminidnyh pokrytij [Ion-plasma processes of receiving diffusion alyuminide coatings] //Metally. 2010. №2. S. 5–15.
2. Muboyadzhyan S.A., Kablov E.N. Vacuum-plasma technique of protective coatings production of complex alloys //Metal Science and Heat Treament. 1995. №2. Р. 15–18.
3. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES //Russian metallurgy (Metally). 2012. V. 2012. №1. P. 1–7.
4. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok tur-biny vysokogo davlenija perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
5. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Pomelov Ja.A. Ionno-plazmennye za-shhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Konversija v mashinostroenii. 1999. №2. S. 42–47.
6. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye za-shhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Metally. 2007. №5. S. 23–34.
7. Mubojadzhjan S.A., Aleksandrov D.A., Gorlov D.S. i dr. Zashhitnye i uprochnjajushhie ionno-plazmennye pokrytija dlja lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
8. Mubojadzhjan S.A. Perspektivnye pokrytija dlja detalej aviadvigatelej [Perspective coverings for details of aircraft engines] //Voennyj parad. 2009. №1(91). S. 33–34.
9. Kablov E.N., Mubojadzhjan S.A. Teplozashhitnye pokrytija dlja lopatok  turbiny vysoko-go davlenija perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTE] //Metally. 2012. №1. S. 5–13.
10. Mubojadzhjan S.A., Galojan A.G. Kompleksnye termodiffuzionnye zharostojkie pokry-tija dlja bezuglerodistyh zharoprochnyh splavov na nikelevoj osnove [Complex thermodiffusion heat resisting coatings for carbon-free hot strength alloys on nickel basis] //Aviacionnye materialy i tehnologii. 2012. №3. S. 25–30.
11. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Matveev P.V. Vysokotemperatur-nye zharostojkie pokrytija i zharostojkie sloi dlja teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Budinovskij S.A., Kablov E.N., Mubojadzhjan S.A. Primenenie analiticheskoj modeli opredelenija uprugih naprjazhenij v mnogoslojnoj sisteme pri reshenii zadach po sozdaniju vysokotemperaturnyh zharostojkih pokrytij dlja rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] //Vestnik MGTU im. N.Je. Baumana. 2011. №SP2. S. 26–37.
13. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] //Kryl'ja Ro-diny. 2010. №4. S. 31–33.
14. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
15. Kablov E.N., Mubojadzhjan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 149–163.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period to 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
17. Lahtin Ju.M., Arzamasov B.N. Himiko-termicheskaja obrabotka metallov [Chemical and thermal processing of metals]. M.: Metal-lurgija. 1984. S. 50–189.
18. Modificirovanie i legirovanie poverhnosti lazernymi, ionnymi i jelektronnymi puchkami [Modifying and surface alloying laser, ionic and electronic bunches] /Pod red. D.M. Pouta i dr. M.: Mashinostroenie. 1987. 424 s.
19. Mubojadzhjan S.A. Modificirovanie metallicheskoj poverhnosti v plazme vakuumno-dugovogo razrjada metodom termostimulirovannoj ionnoj diffuzii [Modifying of metallic surface in vacuum arc discharge plasma method of termostimulirovanny ionic diffusion] //Metally. 2008. №6. S. 1–13.
20. Azarovskij E.N., Mubojadzhjan S.A. Modificirovanie poverhnosti detalej iz konstrukcionnyh stalej v vakuumno-dugovoj plazme titana. Ch. I. [Modifying of surface of details from constructional staly in vacuum and arc plasma of titanium. P. I] //Aviacionnye materialy i tehnologii. 2013. №3. S. 20–25.
21. Azarovskij E.N., Mubojadzhjan S.A. Modificirovanie poverhnosti detalej iz konstrukcionnyh stalej v vakuumno-dugovoj plazme titana. Ch. II. [Modifying of surface of details from constructional staly in vacuum and arc plasma of titanium. P. II] //Aviacionnye materialy i tehnologii. 2014. №1. S. 3–11.
22. Muboyadzhyan S.A., Azarovskii E.N. New Process of Ion Surface Modification of Compressor Steel in the Vacuum Arc Plasma of Titanium //Russian metallurgy (Metally). 2013. №6. P. 33–74.
23. Shulaev V.M., Taran V.S., Timoshenko A.I., Gasilin V.V. Issledovanie jeffektov modifikacii poverhnosti metallicheskih podlozhek, podvergnutyh ionno-plazmennoj obrabotke [Research of effects of updating of surface of the metal substrates subjected to ion-plasma processing] //Voprosy atomnoj nauki i tehniki. Ser. Vakuum. Chistye materialy, sverhprovodniki. 2011. T. 19. S. 184–192.
24. Andreev A.A. Vakuumno-dugovoe modificirovanie poverhnosti stal'nyh izdelij [Vacuum and arc modifying of surface of steel products] //FIP. 2007. T. 5. №3–4. S. 140–148.
25. Mubojadzhjan S.A. Osobennosti osazhdenija iz dvuhfaznogo potoka mnogokomponentnoj plazmy vakuumno-dugovogo razrjada, soderzhashhego mikrokapli isparjaemogo materiala [Features of sedimentation from diphasic flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] //Metally. 2008. №2. S. 20–34.
26. Mubojadzhjan S.A., Lucenko A.N., Aleksandrov D.A., Gorlov D.S. Issledovanie vozmozhno-sti povyshenija sluzhebnyh harakteristik lopatok kompressora GTD metodom ionnogo modificirovanija poverhnosti [Research of possibility of increase of office characteristics of compressor blades of GTE by method of ionic modifying of surface] //Trudy VIAM. 2013. №1. St. 02 (viam-works.ru).

DOI: 10.18577/2071-9140-2015-0-4-38-52

UDC: 620.193

Pages: 38-52

E.N. Kablov1, O.V. Startsev1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)

The review of the researches in the field of corrosion and ageing of materials was performed based on the proceedings of the II All-Russian scientific conference «Basic and applied research in the field of corrosion and ageing of materials in natural environments: problems and solutions». The review contains examples of modeling and prediction of the polymer composites stability in the natural environments, corrosion properties of aluminum alloys and parts of gas turbine engines, the efficiency of protective coatings, testing methods of building materials and objects of infrastructure. The most important issues of corrosion and climatic testing were reviewed and systematized.

Keywords: aviation materials, climatic testing, corrosion, ageing, microbiologically-influenced corrosion, protective coatings, modeling

Reference List

1. Zhirnov A.D., Strekalov P.V., Karimova S.A., Zhilikov V.P., Tararaeva T.I., Mishhenkov E.N. Sezonnaja dinamika processa korrozii metallov na beregovoj zone Chernogo morja [Seasonal dynamics of process of corrosion of metals on coastal zone of Black Sea] //Korrozija: materialy, zashhita. 2007. №8. S. 23–30.
2. Corvo F. et al. Outdoor-indoor corrosion of metals in tropical coastal atmospheres //Corros. Sci. 2008. V. 50. №1. P. 220–230.
3. Watanabe M., Higashi Y., Tanaka T. Differences between corrosion products formed on copper exposed in Tokyo in summer and winter //Corros. Sci. 2003. V. 45. №7. P. 1439–1453.
4. Odnevall Wallinder I., Leygraf C. Seasonal variations in corrosion rate and runoff rate of copper roofs in an urban and a rural atmospheric environment //Corros. Sci. 2001. V. 43. №12. P. 2379–2396.
5. El Din A.M.S., El-Dahshan M.E., El Din A.M.T. Bio-film formation on stainless steels. Part 2. The role of seasonal changes, seawater composition and surface roughness //Desalination. 2003. V. 154. №3. P. 267–276.
6. Puxbaum H., Gregori M. Seasonal and annual deposition rates of sulphur, nitrogen and chloride species to an oak forest in north-eastern Austria //Atmos. Environ. 1998. V. 32. №20. P. 3557–3568.
7. Kablov E.N., Starcev O.V., Medvedev I.M., Panin S.V. Korrozionnaja agressivnost' primorskoj atmosfery. Ch. 1. Faktory vlijanija (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (review)] //Korrozija: materialy, zashhita. 2013. №12. S. 6–18.
8. Morcillo M. et al. Salinity in marine atmospheric corrosion: its dependence on the wind regime existing in the site //Corros. Sci. 2000. V. 42. №1. P. 91–104.
9. Meira G.R. et al. Salinity of marine aerosols in a Brazilian coastal area – Influence of wind regime //Atmos. Environ. 2007. V. 41. №38. P. 8431–8441.
10. Medvedev I.M., Starcev O.V. Issledovanie sezonnoj nejekvivalentnosti korrozionnoj agressivnosti atmosfery s ispolzovaniem mikromehanicheskih svojstv stali St3 [Research of seasonal nonequivalence of corrosion aggression of the atmosphere with use of micromechanical properties of St3 steel] //Korrozija: materialy, zashhita. 2014. №5. S. 1–4.
11. Islam M.A., Farhat Z.N. The synergistic effect between erosion and corrosion of API pipeline in CO2 and saline medium //Tribol. Int. Elsevier. 2012. P. 1–9.
12. Rajahram S.S., Harvey T.J., Wood R.J.K. Evaluation of a semi-empirical model in predicting erosion–corrosion //Wear. 2009. V. 267. №11. P. 1883–1893.
13. Kermanidis A.T., Petroyiannis P.V., Pantelakis S.G. Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy //Theor. Appl. Fract. Mech. 2005. V. 43. №1. P. 121–132.
14. Menan F., Hénaff G. Synergistic action of fatigue and corrosion during crack growth in the 2024 aluminium alloy //Procedia Eng. Elsevier. 2010. V. 2. №1. P. 1441–1450.
15. Zhou R. et al. Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water //J. Nucl. Mater. Elsevier B.V. 2009. V. 395. №1–3. P. 11–22.
16. Brissonneau L. New considerations on the kinetics of mass transfer in sodium fast reactors: An attempt to consider irradiation effects and low temperature corrosion //J. Nucl. Mater. Elsevier B.V. 2012. V. 423. №1–3. P. 67–78.
17. Mahmoud M.G. et al. Influence of ultraviolet light irradiation on corrosion behavior of weathering steel with and without TiO2-coating in 3 mass. % NaCl solution //Scr. Mater. 2005. V. 53. №11. P. 1303–1308.
18. Tang C.H., Cheng F.T., Man H.C. Laser surface alloying of a marine propeller bronze using aluminium powder //Surf. Coatings Technol. 2006. V. 200. №8. P. 2594–2601.
19. Lucenko A.N., Grinevich A.V., Karimova S.A. Prochnostnye harakteristiki materialov planera samoletov v uslovijah vlazhnosti [Strength characteristics of materials of glider of airplanes in the conditions of humidity] //Voprosy materialovedenija. 2013. T. 1. №73. S. 212.
20. Grinevich A.V., Lucenko A.N., Karimova S.A. Dolgovechnost' izdelij i korrozionnaja ustalost' konstrukcionnyh materialov [Durability of products and corrosion fatigue of constructional materials] //Voprosy materialovedenija. 2013. T. 1. №73. S. 220.
21. Laurino А. et al. Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications //Mater. Des. Elsevier Ltd. 2014. V. 53. P. 236–249.
22. Liao M., Renaud G., Bellinger N. Fatigue modeling for aircraft structures containing natural exfoliation corrosion //Int. J. Fatigue. 2007. V. 29. №4. P. 677–686.
23. Burns J.T., Kim S., Gangloff R.P. Effect of corrosion severity on fatigue evolution in Al–Zn–Mg–Cu //Corros. Sci. Elsevier Ltd. 2010. V. 52. №2. P. 498–508.
24. Wasekar N.P., Jyothirmayi А., Sundararajan G. Influence of prior corrosion on the high cycle fatigue behavior of microarc oxidation coated 6061-T6 Aluminum alloy //J. Fatigue. Elsevier Ltd. 2011. V. 33. №9. P. 1268–1276.
25. Chlistovsky R., Heffernan P., Duquesnay D. Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads //J. Fatigue. 2007. V. 29. №9–11. P. 1941–1949.
26. Jones K., Hoeppner D.W. Prior corrosion and fatigue of 2024-T3 aluminum alloy //Corros. Sci. 2006. V. 48. №10. P. 3109–3122.
27. Li X.-D. et al. Effect of prior corrosion state on the fatigue small cracking behaviour of 6151-T6 aluminum alloy //Corros. Sci. Elsevier Ltd. 2012. V. 55. P. 26–33.
28. Jones K. et al. Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy //Corros. Sci. 2008. V. 50. №9. P. 2588–2595.
29. Masaki K., Ochi Y., Matsumura T. Small crack property of austenitic stainless steel with artificial corrosion pit in long life regime of fatigue //J. Fatigue. 2006. V. 28. №11. P. 1603–1610.
30. Weng L. et al. Corrosion fatigue crack growth of AISI 4340 steel //J. Fatigue. Elsevier Ltd. 2013. V. 48. P. 156–164.
31. Sheng-Li L. et al. Influence of exposure to aggressive environment on fatigue behavior of a shot peened high strength aluminum alloy //Mater. Sci. Eng. A. 2013. V. 574. P. 243–252.
32. Okayasu M. et al. Effects of atmospheric corrosion on fatigue properties of a medium carbon steel //J. Mater. Sci. 2008. V. 44. №1. P. 306–315.
33. Sil D., Chakrabarti S. Photocatalytic degradation of PVC–ZnO composite film under tropical sunlight and artificial UV radiation: A comparative study //Sol. Energy. Elsevier Ltd. 2010. V. 84. №3. P. 476–485.
34. Woo R. et al. Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure: Part II residual mechanical properties //Compos. Sci. Technol. 2008. V. 68. №9. P. 2149–2155.
35. Woo R.S.C. et al. Environmental degradation of epoxy–organoclay nanocomposites due to UV exposure. Part I: Photo-degradation //Compos. Sci. Technol. 2007. V. 67. №15–16. P. 3448–3456.
36. Berketis K., Tzetzis D., Hogg P.J. The influence of long term water immersion ageing on impact damage behaviour and residual compression strength of glass fibre reinforced polymer (GFRP) //Mater. Des. 2008. V. 29. №7. P. 1300–1310.
37. Parker B M. The strength of bonded carbon fibre composite joints exposed to high humidity // International  Journal of Adhesion and Adhesives. 1990. V. 1. №3. P. 187–191.
38. Srubar W.V., Billington S.L. A micromechanical model for moisture-induced deterioration in fully biorenewable wood–plastic composites //Compos. Part A. Appl. Sci. Manuf. Elsevier Ltd. 2013. V. 50. P. 81–92.
39. Van den Oever M.J., Beck B., Müssig J. Agrofibre reinforced poly(lactic acid) composites: Effect of moisture on degradation and mechanical properties //Compos. Part A. Appl. Sci. Manuf. Elsevier Ltd. 2010. V. 41. №11. P. 1628–1635.
40. Thoppul S.D., Finegan J., Gibson R.F. Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review //Compos. Sci. Technol. Elsevier Ltd. 2009. V. 69. №3–4. P. 301–329.
41. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. I. Mehanizmy starenija [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] //Deformacija i razrushenie materialov. 2010. №11. S. 19–27.
42. Singh A., Singh R. Effect of Mechanical Loading and Environmental Degradation on Carbon Fibre Reinforced Composites //SEM Annual Conference & Exposition on Experimental and Applied Mechanics. 2006. P. 11–19.
43. Nakamura T., Singh R.P., Vaddadi P. Effects of Environmental Degradation on Flexural Failure Strength of Fiber Reinforced Composites //Exp. Mech. 2006. V. 46. №2. P. 257–268.
44. Azuma Y. et al. Outdoor and accelerated weathering tests for polypropylene and polypropylene/talc composites: A comparative study of their weathering behavior //Polym. Degrad. Stab. Elsevier Ltd. 2009. V. 94. №12. P. 2267–2274.
45. Zhao W., Singh R.P., Korach C.S. Effects of environmental degradation on near-fiber nanomechanical properties of carbon fiber epoxy composites //Compos. Part A. Appl. Sci. Manuf. Elsevier Ltd. 2009. V. 40. №5. P. 675–678.
46. Parvatareddy H. et al. Environmental aging of high-performance polymeric composites: Effects on durability //Compos. Sci. Technol. 1995. V. 53. №4. P. 399–409.
47. Revuelta D. et al. A new approach to fatigue analysis in composites based on residual strength degradation //Compos. Struct. 2000. V. 48. №1–3. P. 183–186.
48. Nofar M., Hoa S.V., Pugh M.D. Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks //Compos. Sci. Technol. Elsevier Ltd. 2009. V. 69. №10. P. 1599–1606.
49. Berketis K., Tzetzis D. The compression-after-impact strength of woven and non-crimp fabric reinforced composites subjected to long-term water immersion ageing //J. Mater. Sci. 2010. V. 45. №20. P. 5611–5623.
50. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
51. Antipov V.V. Strategija razvitija titanovyh, magnievyh, berillievyh i aljuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
52. Kurs M.G., Karimova S.A., Mahsidov V.V. Sravnenie korrozionnoj stojkosti deformiruemyh aljuminievyh splavov po rezul'tatam naturnyh i naturno-uskorennyh ispytanij pod navesom [Comparison of corrosion resistance of deformable aluminum alloys by results of natural and natural accelerated tests under canopy] //Voprosy materialovedenija. 2013. T. 1. №73. S. 182–190.
53. Starcev O.V., Medvedev I.M., Poljakov V.V., Beljaev I.A. Ocenka korrozionnyh porazhenij aljuminievogo splava metodami fraktal'nogo analiza i mikrotverdosti [Assessment of corrosion defeats of aluminum alloy methods of the fractal analysis and microhardness] //Korrozija: materialy, zashhita. 2014. №6. S. 43–48.
54. Panin S.V., Starcev O.V., Krotov A.S., Medvedev I.M., Frolov A.S. Korrozija i starenie poverhnosti konstrukcionnyh materialov po dannym 3D mikroskopii [Corrosion and aging of structural materials surface studied by 3D microscopy] //Trudy VIAM. 2014. №12. St. 12 (viam-works.ru).
55. Grandilevskaja I.G., Tihomirova E.A., Rybnikov A.I., Sheljapina N.M. K voprosu o vybore materiala dlja rabochih i soplovyh lopatok turbiny perspektivnogo GTD na osnovanii kriterija korrozionnoj stojkosti [To question of material choice for working and nozzle turbine blades of perspective GTD on the basis of criterion of corrosion resistance] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
56. Kurs M.G. Obobshhennyj kojefficient korrozionnoj stojkosti deformiruemyh aljuminievyh splavov [The generalized factor of corrosion resistance of deformable aluminum alloys] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
57. Bojarshinov M.V. Aktualnye voprosy po razvitiju metodologii ocenki resursa detalej GTD s uchetom korrozionnyh povrezhdenij, vyzvannyh jekspluatacionnymi i klimaticheskimi faktorami [Topical issues on development of methodology of assessment of resource of details of GTE taking into account the corrosion damages caused by operational and climatic factors] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
58. Starcev V.O., Panin S.V., Grinev M.A. Kontrol i prognozirovanie vlagosoderzhanija konstruktivno-podobnyh jelementov motogondoly aviadvigatelja v naturnyh klimaticheskih uslovijah [Control and forecasting of moisture content of constructive and similar elements of motor-gondola of aircraft engine in the natural climatic] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
59. Panin S.V. Issledovanie relefa poverhnosti i vlagoperenosa v PKM, podvergnutyh klimaticheskomu stareniju [Research of relief of surface and moisture transport in PKM subjected to climatic aging] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
60. Sposob termomehanicheskoj obrabotki titanovyh splavov [Way of thermomechanical processing of titanium alloys]: pat. 2369662 Ros. Federacija; opubl. 28.11.2007.
61. Kablov E.N., Starcev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of International experience of corrosion and corrosion protection] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87.
62. Brjuhanov A.L. Issledovanie mikrobnogo raznoobrazija v bioobrastanijah, porazhajushhih razlichnye materialy [Research of microbic variety in the bioovergrowings striking different materials] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
63. Berlin A.A. Biorazlagaemye polimernye materialy [Biodegradable polymeric materials] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
64. Mezhnev D.A., Afanaseva N.S., Mirkin I.I., Brondz L.D. Razrabotka metodov i sredstv protivokorrozionnoj zashhity vozdushnyh sudov PAO «Tupolev» na osnove sistemy monitoringa i analiza korrozionnyh povrezhdenij planera v jekspluatacii i pri remonte [Development of methods and means of anticorrosive protection of the PJS «Tupolev» air vehicles on the basis of system of monitoring and the analysis of corrosion damages of glider in operation and at repair] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
65. Nizina T.A., Seljaev V.P., Nizin D.R., Artamonov D.A.  Klimaticheskaja stojkost kompozicionnyh stroitelnyh materialov v naturnyh uslovijah jekspluatacii [Climatic firmness of composite construction materials in natural operating conditions] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
66. Mahonkov A.Ju. Vlijanie zashhitnyh pokrytij na svojstva drevesiny pri jeksponirovanii v naturnyh klimaticheskih uslovijah [Influence of protecting covers on properties of wood when exhibiting in natural weather conditions] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
67. Tuev V.I., Ljukshin B.A., Ivanov A.A. Keramicheskie antikorrozijnye pokrytija na osnove napolnennyh aljumosilikatov [Ceramic corrosion-resistant coatings on the basis of filled aluminosilicate] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
68. Dyblenko Ju.M., Smyslov A.M., Tamindarov D.R., Zhivushkin A.A. Povyshenie soprotivlenija vysokotemperaturnoj gazovoj korrozii lopatok kompressora putem kombinirovannogo modificirovanija ih poverhnosti [Increase of resistance of high-temperature gas corrosion of compressor blades by the combined modifying of their surface] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
69. Lebedev M.P. Osobennosti vozdejstvija jekstremal'no nizkih klimaticheskih temperatur na jelementy slozhnyh tehnicheskih sistem [Features of influence of extremely low climatic temperatures on elements of complex technical systems] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
70. Zjuzina O.V., Kostyrja G.Z., Konih G.S. Issledovanija po ocenke processa razvitija shhelochnoj korrozii betona pri primenenii potencial'no reakcionnosposobnyh zapolnitelej Dal'nevostochnogo i Severo-Kavkazskogo regionov [Researches on assessment of development of alkaline corrosion of concrete at application of potentially reactive fillers of Far East and North Caucasian regions] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).
71. Aseev A.L. Nanostrukturirovannye materialy dlja special'nyh primenenij: rezultaty rabot institutov Sibirskogo otdelenija RAN [The nanostructured materials for special applications: results of works of institutes of the Siberian Brunch of the Russian Academy of Sciences] /V sb. trudov II Vserossijskoj nauch.-tehnich. konf. «Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah: problemy i perspektivy». Gelendzhik. 2015 (conf.viam.ru).

DOI: 10.18577/2071-9140-2015-0-4-53-60

UDC: 621.357.74

Pages: 53-60

S.S. Vinogradov1, A.A. Nikiforov1, S.V. Balakhonov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Cadmium replacement. Part 1. Improving of protective property of zinc coatings: thermo-immersed and modified coatings

The comparative accelerated corrosion tests of modified and thermo-immersed zink and cadmium coatings, as well as adhesion and mechanical tests of properties of 30KhGSA and 30KhGSN2A steels has been carried out. Modified coatings were shown to have comparable protective properties with cadmium coatings in salt spray environment during 2060 hours test. The investigated coatings possess satisfactory adhesion to steel substrate that is approximately equal to laquer and paint coating. The technology of putting of the thermo-immersed and modified coatings does not affect on tendency of steels (including high-strength) to slow-brittle-destruction. The modified coating decreases short-term durability of the steel according to slow-brittle-destruction test after 48 hours immersion in salt spray chamber. In addition, the modified coating negatively influences on low-cyclic fatigue of the steels. Therefore, the modified coatings can be recommended for anti-corrosion protection of steels with strength less than 1350 MPa.

Keywords: thermo-immersed, modified, cadmium coatings, protection property, adhesion, mechanical properties of 30ХHGSA and 30HGSN2А steels

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period to 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Markova E.S., Pokrovskaja N.G., Shal'kevich A.B., Gromov V.I. Martensitostarejushhie stali ‒ novye perspektivnye materialy dlja valov GTD [Maraging became ‒ new perspective materials for GTE shaft] //Aviacionnye materialy i tehnologii. 2012. №S. S. 81–84.
4. Ivanov E.V. Sozdanie iznosostojkih i antifrikcionnyh materialov i pokrytij dlja kosmicheskogo korablja «Buran» [Creation of wearproof and antifriction materials and coverings for the «Buran» spacecraft] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 142–151.
5. Tonysheva O.A., Voznesenskaja N.M., Shalkevich A.B., Petrakov A.F. Issledovanie vlijanija vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali pere-hodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] //Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
6. Tonysheva O.A., Voznesenskaja I.M., Eliseev Je.A., Shalkevich A.B. Novaja vysokoprochnaja jekonomnolegirovannaja azotsoderzhashhaja stal' povyshennoj nadezhnosti [The new high-strength containing steel of increased reliability economically alloyed nitrogen] //Aviacionnye ma-terialy i tehnologii. 2012. №S. S. 84–88.
7. Vinogradov S.S. Jekologicheski bezopasnoe galvanicheskoe proizvodstvo [Ecologically safe galvanic production] /Pod red. prof. V.N. Kudrjavceva. 2-e izd., pererab. i dop. M.: Globus. 2002. 352 s.
8. Kablov E.N. Korrozija ili zhizn [Corrosion or life] //Nauka i zhizn. 2012. №11. S. 16–21.
9. Karimova S.A., Pavlovskaja T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v uslovijah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] //Trudy VIAM. 2013. №4. St. 02 (viam-works.ru).
10. Vjacheslavov P.M. Jelektroliticheskoe osazhdenie splavov [Electrolytic deposition of alloys]. L.: Mashinostroenie. 1986. 112 s.
11. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Ju.M. Centry dlja klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PKM] //Aviacionnaja promyshlennost. 2009. №4. S. 36–46.
12. Kablov E.N., Starcev O.V., Medvedev I.M., Panin S.V. Korrozionnaja agressivnost' primorskoj atmosfery. Ch. 1. Faktory vlijanija (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (overview)] //Korrozija: materialy, zashhita. 2013. №12. S. 6–18.
13. Proskurkin E.V., Suhomlin D.A. Analiz cinkovyh pokrytij na osnove ih strukturnyh i jelektrohimicheskih svojstv [The analysis of zinc coatings on the basis of their structural and electrochemical properties] //Korrozija: materialy, zashhita. 2013. №10. S. 30–38.
14. Taranceva K.R., Nikolotov A.D. Jelektroosazhdenie splava olovo-cink iz stabilizirovan-nogo pirofosfatnogo jelektrolita kak alternativa kadmievomu pokrytiju [Electro sedimentation of alloy tin-zinc from the stabilized feast of phosphatic electrolit as alternative to cadmic covering] //Korrozija: materialy, zashhita. 2014. №3. S. 27–30.
15. Celujkin V.N., Koreshkova A.A. O korrozionnyh svojstvah kompozicionnyh pokrytij cink–uglerodnye nanotrubki [About corrosion properties of composition coverings zinc–carbon nanotubes] //Korrozija: materialy, zashhita. 2014. №3. S. 31–34.
16. Neue Horisonte fur den Korrosionsschutz durch Zinklamellen-Technologie //Galvanotechnik. 2011. V. 102. №9. P. 1996–1997.
17. Arhipov V.E., Dubravina A.A., Londarskij A.F., Moskvitin G.V., Pugachev M.S., Hrushhev M.M. Korrozionnye svojstvapokrytij, nanesennyh gazodinamicheskim napyleniem [Corrosion properties of the coverings, put gas dynamic dusting] //Korrozija: materialy, zashhita. 2014. №4. S. 33–38.
18. Beloglazov S.M. Navodorozhivanie stali pri jelektrohimicheskih processah [Steel hydrogen saturation at electrochemical processes]. L.: Izd-vo Leningr. un-ta. 1975. 412 s.
19. Orlov M.R., Ospennikova O.G., Gromov V.I. Razvitie mehanizmov vodorodnoj i bejnit-noj hrupkosti konstrukcionnoj stali v processe jekspluatacii krupnogabaritnyh konstrukcij [Development of mechanisms of hydrogen and bainitic embrittlement of structural steel in use large-size designs] //Aviacionnye materialy i tehnologii. 2012. №S. S. 88–93.
20. Nikiforov A.A., Ul'janov I.V. Vlijanie tehnologii nanesenija zashhitnyh gal'vanicheskih pokrytij na mehanicheskie svojstva stalej srednej prochnosti tipa 30HGSA [Influence of technology of drawing protective galvanic coverings on mechanical properties of steel average durability of type 30HGSA] /V sb. statej I Mezhdunarodnoj konf. «Deformacija i razrushenie materialov». M.: IMET. 2006. T. 1. S. 405–407.
21. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju jekspertizy materialov [Methodical approach to carrying out examination of materials] //Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
22. Erasov V.S., Bajramukov R.R. Rol faktora vremeni pri provedenii mehanicheskih ispytanij, obrabotke dannyh i predstavlenii rezultatov [Role of factor of time at carrying out mechanical tests, data processing and representation of results] //Aviacionnye materialy i tehnologii. 2013. №S2. S. 62–67.
23. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzhenija pri ustalostnyh ispytanijah [Rigid cycle of loading at fatigue tests] //Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
24. Erasov V.S., Grinevich A.V., Senik V.Ja. i dr. Raschetnye znachenija harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
25. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
26. Zhegina I.P., Kotelnikova L.V., Grigorenko V.B., Zimina Z.N. Osobennosti razrushenija deformiruemyh nikelevyh splavov i stalej [Features of destruction of deformable nickel alloys and steel] //Aviacionnye materialy i tehnologii. 2012. №S. S. 455–465.
27. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost' aviacionnyh materialov v processe ispytanija na ustalost [Crack firmness of aviation materials in the course of fatigue test] //Trudy VIAM. 2013. №10. St. 06 (viam-works.ru).
28. Sposob nanesenija kombinirovannogo zashhitnogo pokrytija na stalnye detail [Way of drawing the combined protecting cover on steel details]: pat. 2427671 Ros. Federacija; opubl. 27.08.2011.
29. Sposob poluchenija pokrytija dlja zashhity ot korrozii stalnyh detalej [Way of receiving covering for corrosion protection of steel details]: pat. 2177055 Ros. Federacija; opubl. 20.12.2001.
30. Azhogin F.F. Korrozionnoe rastreskivanie i zashhita vysokoprochnyh stalej [Corrosion cracking and protection high-strength steel]. M.: Metallurgija. 1974. 245 s.
31. Romanov V.V. Korrozionnoe rastreskivanie metallov [Corrosion cracking of metals]. M.: Mashgiz. 1960. 186 s.

DOI: 10.18577/2071-9140-2015-0-4-61-66

UDC: 666.1.056:621.793.7

Pages: 61-66

I.A. Kozlov1, V.A. Duyunova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Influence of filling in solution of sodium silicate solute on electrochemical properties of theVML20 alloy plasma electrolytic coating

Magnesium alloys are of the utmost interest for modern aircraft industry thanks to the high-performance capabilities of specific strength, however currently the problem of protecting them from corrosion is not completely solved. The most perspective method of protection of magnesium alloys is plasma electrolytic oxidation. In this work efficiency of increase of protective properties of plasma electrolytic coating on cast magnesium alloy VML20 in a way of filling in a solution of sodium waterglass is investigated. The plasma electrolytic coating filled in solutions with different concentration of sodium waterglass solution was investigated by electrochemical method. Dependence of electrochemical properties of magnesium alloy-coating system from filling solution concentration of was determined.

Keywords: microarc oxidation, plasma electrolytic oxidation, anodic oxidation, anode oxide coatings, impregnation, magnesium alloys

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period to 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Ju. Perspektivy primenenija magnievyh i litejnyh aljuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
3. Dujunova V.A., Uridija Z.P. Issledovanie vosplamenjaemosti litejnyh magnievyh splavov sistemy Mg–Zn–Zr [Research of inflammability of cast magnesium alloys of Mg–Zn–Zr system] //Litejshhik Rossii. 2012. №11. S. 21–23.
4. Volkova E.F., Antipov V.V., Morozova G.I. Osobennosti formirovanija struktury i fazovogo sostava deformirovannyh polufabrikatov serijnogo splava MA14 [Features of forming of structure and phase structure of the deformed semi-finished products of serial alloy МА14] //Aviacionnye materialy i tehnologii. 2011. №3. S. 8–15.
5. Caizhen Yao, Zichao Wang, See Leng Tay, Tianping Zhu, Wei Gao. Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy //Journal of Alloys and Compounds. 2014. V. 602. P. 101–107.
6. Wu D., Chen R.S., Ke W. Microstructure and mechanical properties of a sand-cast Mg–Nd–Zn alloy //Materials & Design. 2014. V. 58. P. 324–331.
7. Method for producing a magnesium alloy and a magnesium alloy produced accordingly: pat. 2013034134 WO; publ. 14.03.2013.
8. Magnesium alloy: pat. 2013039805 US; publ. 14.02.2013.
9. Magnesium alloy sheet: pat. 2557188 EP; publ. 13.02.2013.
10. Magnesium alloy: pat. 2745861 CA; publ. 01.08.2013.
11. Muhina I.Ju., Dujunova V.A., Uridija Z.P. Perspektivnye litejnye magnievye splavy [Perspective cast magnesium alloys] //Litejnoe proizvodstvo. 2013. №5. S. 2–5.
12. Muhina I.Ju., Shirokov Ju.G., Lebedev A.A. Osobennosti plavki magnievyh splavov v zashhitnoj atmosfere, soderzhashhej inertnyj gaz [Features of melting of magnesium alloys in the protective atmosphere containing inert gas] //Aviacionnaja promyshlennost. 1984. №4. S. 63–65.
13. Jian W.W., Kang Z.X., Li Y.Y. Effect of hot plastic deformation on microstructure and mechanical property of Mg–Mn–Ce magnesium alloy Trans //Nonferr Met Soc China. 2007. V. 17. P. 1158–1163.
14. Chino Y., Mabuchi M. Influences of grain size on mechanical properties of extruded AZ91mg alloy after different extrusion processes //Adv. Eng. Mater. 2001. V. 3. P. 981–983.
15. Frolov A.V., Muhina I.Ju., Dujunova V.A., Uridija Z.P. Vlijanie tehnologicheskih parametrov plavki na strukturu i svojstva novyh magnievyh splavov [Influence of technological parameters of melting on structure and property of new magnesium alloys] //Metallurgija mashinostroenija. 2014. №2. S. 26–29.
16. Dujunova V.A. Metody zashhity magnievyh splavov v otechestvennom litejnom proiz-vodstve s 1930-h gg. do nastojashhego vremeni [Methods of protection of magnesium alloys in domestic foundry production since the 1930th so far] //Litejshhik Rossii. 2010. №10. S. 35–37.
17. Kablov E.N. Korrozija ili zhizn [Corrosion or life] //Nauka i zhizn. 2012. №11. S. 16–21.
18. Sposob obrabotki poverhnosti magnievyh splavov [Way of surface treatment of magnesium alloys]: pat. 2403326 Ros. Federacija; opubl. 28.10.2009.
19. Karimova S.A., Dujunova V.A., Kozlov I.A. Konversionnoe pokrytie dlja zharoprochnogo litejnogo magnievogo splava ML10 [Conversion coating for heat resisting cast ML10 magnesium alloy] //Litejshhik Rossii. 2012. №2. S. 26–28.
20. Anodizing magnesium: раt. 2901409 US; publ. 1959.
21. Method and bath for electrolytically coating magnesium: pat. 2880148US; publ. 31.03.1959.
22. Buznik V.M. Sverhgidrofobnye materialy na osnove ftorpolimerov [Superwaterproof materials on the basis of fluoropolymers] //Aviation materials and technologies] //Aviacionnye materialy i tehnologii. 2013. №1. S. 29–34.
23. Kozlova A.A., Kondrashov Je.K. Sistemy lakokrasochnyh pokrytij dlja protivokorro-zionnoj zashhity magnievyh splavov [Systems of paint coatings for anticorrosive protection of magnesium alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 44–47.
24. Kozlov I.A., Karimova S.A. Korrozija magnievyh splavov i sovremennye metody ih zashhity [Corrosion of magnesium alloys and modern methods of their protection] //Aviacionnye materialy i tehnologii. 2014. №2. S. 15–20.
25. Karimova S.A., Kozlov I.A., Volkov I.A. Povyshenie zashhitnyh svojstv nemetallicheskih neorganicheskih pokrytij na magnievyh splavah [Increase of protective properties of non-metallic inorganic on magnesium alloys] //Trudy VIAM. 2014. №9. St. 09 (viam-works.ru).
26. Kozlov I.A., Pavlovskaja T.G., Volkov I.A. Vlijanie poljarizujushhego toka na svojstva plazmennogo jelektroliticheskogo pokrytija dlja magnievyh splavov sistemy Mg–Zn–Zr [Influence of polarizing current on properties of plasma electrolytic covering for magnesium alloys of Mg–Zn–Zr system] //Aviacionnye materialy i tehnologii. 2013. №3. S. 7–12.
27. Gnedenkov S.V., Sidorova M.V., Sinebrjuhov S.L., Antipov V.V., Buznik V.M., Volkova E.F., Sergienko V.I. Stroenie i svojstva pokrytij, poluchennyh metodom plazmennogo jelektroliticheskogo oksidirovanija na aviacionnyh magnievyh splavah [Structure and properties of the coverings received by method of plasma electrolytic oxidation on aviation magnesium alloys] //Aviacionnye materialy i tehnologii. 2013. №SP2. S. 36–45.

DOI: 10.18577/2071-9140-2015-0-4-67-71

UDC: 542.42:629.7.023

Pages: 67-71

Y.A. Khokhlov1, V.A. Bogatov1, A.G. Krynin1, O.V. Popkov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Control of reactive deposition of ITO coating on the emission spectrum of the plasma magnetron discharge

The effect of process parameters on the magnetron plasma composition during reactive deposition of the ITO coating has been studied. A method for stabilization of the process parameters based on controlling the oxygen flow involving the monitoring of the indium and oxygen emission spectra lines intensities is proposed.

Keywords: planar magnetron, reactive deposition, optical control, emission spectroscopy, ITO coating

Reference List

1. Kuzmichev A.I. Magnetronnye raspylitelnye sistemy. Kn. 1. Vvedenie v fiziku i tehniku magnetronnogo raspylenija [Magnetron spraying systems. Book 1. Introduction in physics and equipment of magnetron sputtering]. K.: Avers. 2008. 244 s.
2. Komlev A.E., Shapovalov V.I., Shutova N.S. Magnetronnyj razrjad v srede argona i kisloroda pri osazhdenii plenki oksida titana [Magnetronny discharge in the environment of argon and oxygen at titanium oxide film deposition] //ZhTF. 2012. T. 82. №7. S. 134–136.
3. Hohlov Ju.A., Krynin A.G., Bogatov V.A., Kisljakov P.P. Opticheskie konstanty tonkih plenok oksida indija, legirovannogo olovom, osazhdennyh na polijetilentereftalatnuju plenku metodom reaktivnogo magnetronnogo raspylenija (blizhnjaja infrakrasnaja oblast spektra) //Aviacionnye materialy i tehnologii. 2013. №1. S. 24–28.
4. Bogatov V.A., Kondrashov S.V., Hohlov Ju.A. Poluchenie gradientnogo pokrytija oksinit-rida aljuminija metodom reaktivnogo magnetronnogo raspylenija [Receiving gradient covering oxi-nitride aluminum method of reactive magnetron sputtering] //Aviacionnye materialy i tehnologii. 2010. №3. S. 19–21.
5. Kurdesau F., Khripunov G., da Cunha A.F. et al. Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature //Journal of Non-Crystalline Solids. 2006. V. 352. №19–20. P. 1466–1470.
6. Mientus R., Ellmer K. Reactive magnetron sputtering of tin-doped indium oxide (ITO): influence of argon pressure and plasma excitation mode //Surface and Coatings Technology. 2001. V. 142–144. P. 748–754.
7. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
8. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn. 2010. №4. S. 2–7.
9. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] /V kn. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002. M.: MISiS–VIAM. 2002. S. 23–47.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period to 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
11. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
12. Hohlov Ju.A., Krynin A.G., Kisljakov P.P., Jurkov G.Ju. Proektirovanie steklopaketov, jekranirujushhih radiochastotnoe izluchenie [Design of the double-glazed windows shielding radio-frequency radiation] //Zhilishhnoe stroitel'stvo. 2013. №12. S. 34–36.
13. Kisljakov P.P., Hohlov Ju.A., Krynin A.G., Kondrashov S.V. Poluchenie i primenenie polimernoj plenki s prozrachnym jelektroprovodjashhim pokrytiem na osnove oksida indija, legirovannogo olovom [Receiving and application of polymer film with transparent electroconducting coating on the basis of the indium oxide alloyed by tin] //Trudy VIAM. 2013. №11. St. 06 (viam-works.ru).
14. Krynin A.G., Hohlov Ju.A., Bogatov V.A., Kisljakov P.P. Prozrachnye interferencionnye pokrytija dlja funkcionalnyh materialov osteklenija [Transparent interferential coatings for functional materials of glazing] //Trudy VIAM. 2013. №11. St. 05 (viam-works.ru).
15. Bogatov V.A., Kondrashov S.V., Hohlov Ju.A. Mnogofunkcional'nye opticheskie pokrytija i materialy [Multifunction optical coatings and materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 343–348.
16. Bogatov V.A., Hohlov Ju.A. Mnogofunkcional'nye opticheskie pokrytija, poluchaemye metodami plazmennoj tehnologii, i sposoby kontrolja ih optiko-fizicheskih harakteristik /V sb. Aviacionnye materialy i tehnologii. Vyp. «Metody ispytanij i kontrolja kachestva metallicheskih i nemetallicheskih materialov». M.: VIAM. 2001. S. 93–99.
17. Marchenko V.A. Processy na poverhnosti misheni pri reaktivnom raspylenii V v Ar–O2 sredah [Processes on target surface at reactive spraying V environments in Ar–O2] //Izvestija RAN. Serija fizicheskaja. 2009. T. 73. №7. S. 920–923.
18. Hohlov Ju.A., Bogatov V.A., Berezin N.M. Stabilizacija reaktivnogo magnetronnogo osazhdenija magnitnym polem [Stabilization of reactive magnetronny sedimentation by magnetic field] //Fizika i himija obrabotki materialov. 2012. №5. S. 46–50.
19. Hohlov Ju.A., Bogatov V.A, Krynin A.G. Vlijanie raspredelenija magnitnogo polja na svojstva ITO pokrytija, poluchaemogo na polimernoj plenke metodom reaktivnogo magnetronnogo osazhdenija [An influence of the magnetic field distribution on properties of ITO coating deposited on a polymer film by reactive magnetron sputtering method] //Trudy VIAM. 2014. №12. St. 11 (viam-works.ru).
20. Hohlov Ju.A., Berezin N.M., Bogatov V.A, Krynin A.G. Reaktivnoe magnetronnoe osazhde-nie oksida indija, legirovannogo olovom, s kontrolem rabochego davlenija [Reactive magnetronny sedimentation of the indium oxide alloyed by tin, with control of working pressure] //Aviacionnye materialy i tehnologii. 2015 (v pechati).
21. Komlev A.E., Pastushenko Ju.I., Shapovalov V.I. Diagnostika plazmy pri raspylenii tantalovoj misheni [Diagnostics of plasma when spraying tantalic target] //Izvestija SPbGJeTU «LJeTI». 2010. №7. S. 14–20.
22. Burmakov A.P., Kuleshov V.N. Upravljaemoe magnetronnoe osazhdenie plenok oksida tan-tala s jelektretnymi svojstvami [Managed magnetronny sedimentation of films of tantalum oxide with electretny properties] //Vestnik BGU. Ser. 1. 2010. №1. S. 45–48.
23. Burmakov A.P., Kuleshov V.N. Opticheskoe upravlenie reaktivnym magnetronnym osazhdeniem plenochnyh pokrytij [Optical control by reactive magnetronny sedimentation of film coverings] /V sb. materialov IX Mezhdunarodnoj konf. «Vzaimodejstvie izluchenij s tverdym telom». Minsk. 2011. S. 404–406.
24. Goncharov A.A., Evsjukov A.N., Kostin E.G. i dr. Sintez nanokristallicheskih plenok dioksida titana v cilindricheskom gazovom razrjade magnetronnogo tipa i ih opticheskaja harakterizacija [Synthesis of nanocrystalline films of titanium dioxide in the cylindrical gas discharge of magnetron type and their optical characteristic] //ZhTF. 2010. T. 80. №8. S. 127–135.
25. Bogatov V.A., Hohlov Ju.A., Sytyj Ju.V., Zhadova N.S. Vlijanie obrabotki v razrjade s zamknutym drejfom jelektronov na adgezionnye svojstva i prochnost' kleevyh soedinenij polimerov [Influence of processing in discharge with the closed drift of electrons on adhesive properties and durability of glued joints of polymers] //Klei. Germetiki. Tehnologii. 2011. №9. S. 27–31.
26. Krylova T.N. Interferencionnye pokrytija [Interferential coverings]. L.: Mashinostroenie. 1973. 224 s.
27. Krynin A.G., Hohlov Ju.A. Opticheskie harakteristiki termostabilizirovannoj polijetilentereftalatnoj plenki, ispolzuemoj dlja funkcionalnyh materialov osteklenija [Optical characteristics of the thermostabilized polyethylene terephthalatefilm used for functional materials of glazing] //Aviacionnye materialy i tehnologii. 2013. №4. S. 31–34.
28. Tehnologija tonkih plenok [Technology of thin films] /Pod red. L. Majssela, R. Glenga. M.: Sovetskoe radio. 1977. S. 305–344.
29. http://www.nist.gov/pml/data/asd.cfm.

DOI: 10.18577/2071-9140-2015-0-4-72-78

UDC: 678.83

Pages: 72-78

S.I. Voinov1, G.F. Zhelezina1, N.A. Solovieva1, G.A. Yamshchikova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Environmental effects on properties of aramid fiber reinforced plastic manufactured by RTM method

An influence of climatic factors and working fluids on properties of VKO-21 AFRP (aramid fiber reinforced plastic) manufactured by RTM (resin transfer moulding) technology was investigated. It was shown that the VKO-21 AFRP has a high level of properties conservation under the influence of environmental factors (at least 81% of the initial value) and in this regard is not inferior to the conventional structural VKO-19 AFRP manufactured by autoclave molding.

Keywords: AFRP, aramid fiber, RTM, polymer composites

Reference List

1. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Gunjaev G.M., Krivonos V.V., Rumjancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukcijah letatel'nyh apparatov [Polymeric composite materials in designs of flight vehicles] //Konversija v mashinostroenii. 2004. №4 (65). S. 65–69.
4. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Zhelezina G.F. Konstrukcionnye i funkcional'nye organoplastiki novogo pokolenija [Constructional and functional organoplasty of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
6. Zhelezina G.F. Osobennosti razrushenija organoplastikov pri udarnyh vozdejstvijah [Features of destruction organoplastikov at shock influences] //Aviacionnye materialy i tehnologii. 2012. №S. S. 272–277.
7. Shul'deshova P.M., Zhelezina G.F. Vlijanie atmosfernyh uslovij i zapylennosti sredy na svojstva konstrukcionnyh organoplastikov [Influence of atmospheric conditions and environment dust content on properties constructional organoplastikov] //Aviacionnye materialy i tehnologii. 2014. №1. S. 64–68.
8. Zhelezina G.F., Shul'deshova P.M. Konstrukcionnye organoplastiki na osnove plenochnyh kleev [Constructional organoplasty on the basis of film glues] //Klei. Germetiki. Tehnologii. 2014. №2. S. 9–14.
9. Kogan D.I., Chursova L.V., Petrova A.P. Tehnologija izgotovlenija PKM sposobom propitki plenochnym svjazujushhim [PСM manufacturing techniques in the way of impregnation by the film binding] //Klei. Germetiki. Tehnologii. №6. 2011. S. 25–29.
10. Kogan D.I., Chursova L.V., Petrova A.P. Polimernye kompozicionnye materialy, polu-chennye putem propitki plenochnym svjazujushhim [The polymeric composite materials received by impregnation by the film binding] //Vse materialy. Jenciklopedicheskij spravochnik. Kompozicionnye materialy. 2011. №11. S. 2–6.
11. Chursova L.V., Dushin M.I., Hrul'kov A.V., Muhametov R.R. Osobennosti tehnologii izgotovlenija detalej iz kompozicionnyh materialov metodom propitki pod davleniem [Features of manufacturing techniques of details from composite materials impregnation method under pressure] /V sb. tezisov dokladov mezhotraslevoj nauch.-teh. konf. «Kompozicionnye materialy v aviakosmicheskom materialovedenii». M.: VIAM. 2009. S. 17.
12. Hrul'kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanija i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovanija PKM [Researches and development of avtoklavny and bezavtoklavny technologies of formation of PСM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
13. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokolenija [Modern production technologies of polymeric composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
14. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PKM novogo pokolenija [Molten binding for perspective methods of manufacturing of PСM of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
15. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PСM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
16. Babin A.N. Svjazujushhie dlja polimernyh kompozicionnyh materialov novogo pokolenija [Binding for polymeric composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
17. Efimov V.A., Shvedkova A.K., Koren'kova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v labo-ratornyh i naturnyh uslovijah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] //Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
18. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. III. Znachimye faktory starenija [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] //Deformacija i razrushenie materialov. 2011. №1. S. 34–40.
19. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. I. Mehanizmy starenija [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] //Deformacija i razrushenie materialov. 2010. №11. S. 19–27.
20. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.

DOI: 10.18577/2071-9140-2015-0-4-79-85

UDC: 620.192.63

Pages: 79-85

A.V. Stepanov1, E.I. Kosarina1, A.A. Demidov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Computer radiograghy using photostimulated plates

The article presents the results of research into the physical foundations of detection of radiation images in which ionic crystals with the addition of certain impurities, also known as photostimulated phosphors, play an important role. The photostimulated phosphors transform energy of the primary charged particles or x-ray photon into visible or ultraviolet spectrum. Saved energy is released by means of thermal and optical stimulation that leads to the light emission in the visible spectrum. The article gives the information about testing of hardware-software complex for x-ray control of the aircraft. Testing results including such parameters as attainable sensitivity of control, resolution limit, detectability of artificial and natural defects, cost and performance are compared with the corresponding results obtained by radiographic control. The area of possible application of the hardware-software complex for x-ray non-destructive control of aircraft was defined.

Keywords: radiography, radioscopic testing, standard X-ray images, flaws, quality levels, CR-plates

Reference List

1. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
2. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaja N.P. Attestacija standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem jetalona [Certification of standard samples of structure of complex-alloyed alloys using standard] //Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlja perspektivnyh aviacionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTD] //Tehnologija legkih splavov. 2007. №2. S. 6–16.
5. Kosarina E.I., Stepanov A.V. Nerazrushajushhij kontrol' [Non-destructive testing] /Bol'shaja Rossijskaja jenciklopedija. T. 22. M.: Izd-vo BRJe. 2013. S. 487–488.
6. Stepanov A.V., Kosarina E.I., Savvina N.A., Usachev V.E. Makro- i mikroporistost' v splavah na osnove aljuminija i nikelja, obnaruzhenie ee rentgenoskopicheskimi metodami nerazrushajushhego kontrolja [The macro- and microporosity in alloys on the basis of aluminum and nickel, detection by its roentgenoscopic methods of non-destructive testing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 423–430.
7. Korner M., Weber Ch.H. Advances in Digital Radiography: Physical Principles and System Overview //Radio Graphics. 2009. V. 27. P. 675–686.
8. Rowlands J.A. The physics of computed radiography //Phys. Med. Biol. 2002. V. 47. P. 123–166.
9. Fischbach F., Freund T., Pech M. et al. Comparison of indirect CsI/a:Si and direct a:Se digital radiography: an assessment of contrast and detail visualization //Acta Radiol. 2007. V. 44. P. 616–621.
10. Majorov A.A. Cifrovye tehnologii v nerazrushajushhem kontrole [Digital technologies in non-destructive testing] //Sfera Neftegaz. 2009. №9. C. 26–37.
11. Zscherpel U., Ewert U., Bavendiek K.I. Possibilities and Limits of Digital Industrial Radiology: The new high contrast sensitivity technique – Examples and system theoretical analysis. DIR 2007 /In: International Symposium on Digital industrial Radiology and Computed Tomography. Lyon. 2007. P. 3–27.
12. Lozhkova D.S., Stepanov A.V., Kosarina E.I. Komp'juternaja radiografija, rezul'taty prakticheskih issledovanij i vozmozhnost' zameny plenochnyh tehnologij [Computer radiography, results of practical researches and possibility of replacement of film technologies] //Vestnik MJeI. 2011. №3. S. 57–62.
13. Sasanpur M.T., Kosarina E.I. Rekomendacii po vyboru anodnyh naprjazhenij pri rentgenovskom kontrole stal'nyh ob#ektov [Recommendations about choice of anode voltages at x-ray control of steel objects] //Defektoskopija. 2011. №5. S. 48–53.
14. Lozhkova D.S., Stepanov A.V., Kosarina E.I. Komp'juternaja radiografija: rezul'taty prakticheskih issledovanij i vozmozhnost' zameny plenochnyh tehnologij [Computer radiography: results of practical researches and possibility of replacement of film technologies] /V sb. tezisov dokl. XVII Mezhdunarodnoj nauch.-tehnich. konf. «Radiojelektronika, jelektrotehnika i jenergetika». M.: MJeI TU. 2011. S. 468–469.
15. Kosarina E.I., Stepanov A.V., Usachev V.E. Rentgenoskopicheskie ustanovki dlja reshenija nekotoryh zadach promyshlennoj defektoskopii [Roentgenoscopic installations for the solution of some problems of industrial defektoskopiya] /V sb. tezisov dokl. XIX Vserossijskoj nauch.-tehnich. konf. «Sovremennye metody i sredstva nerazrushaju-shhego kontrolja i tehnicheskoj diagnostiki». Samara. 2011. S. 245–246.
16. ISO 17636-2 Non-destructive testing of welds Radiographic. Part 2. X- and gamma ray techniques with digital detectors. 2013. (E). 49 p.
17. ISO 16371-1 Non-destructive testing – Industrial computed radiography with storage phosphor imaging plates. Part 1. Classification of systems. 2011(E). 25 p.
18. ASTM E 2445–05 Standard Practice for Qualification and long-Term Stability of Computed Radiology Systems. 2010. 8 p.
19. Stepanov A.V. Metody rentgenovskogo nerazrushajushhego kontrolja v proizvodstve aviacionnyh dvigatelej [Methods of x-ray non-destructive testing in production of aircraft engines] //Aviacionnye materialy i tehnologii. 2010. №3. S. 28–32.
20. Kosarina E.I., Mihajlova N.A., Demidov A.A., Turbin E.M. Rentgenovskij kontrol' krupnogabaritnyh otlivok slozhnoj formy iz splavov gruppy «silumin» [X-ray control of large-size otlivka of difficult form from silumin group alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 55–58.

DOI: 10.18577/2071-9140-2015-0-4-86-90

UDC: 620.179

Pages: 86-90

V.V. Murashov1, S.I. Trifonova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Quality control of polymer composite materials using ultrasonic time-of-flight velocimetric technique

Features of PCM structures and components tests using ultrasonic time-of-flight velocimetric technique and some - factors limiting the control sensitivity are considered in this paper. It is shown that the difference between the considered technique and the through transmission method is an increase in time of the elastic waves pulse passing through the tested material, which is determined not only by an increase of the passed path, but also by a decrease of the propagation velocity caused by transformation of the wave type.

Keywords: polymer composite material, ultrasonic velocimetric technique, time-of-flight technique, normal waves, phase velocity, group velocity

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of VIAM Federal State Unitary Enterprise of GNTs Russian Federation on implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
2. Murashov V.V., Rumjancev A.F. Defektoskopija i diagnostika polimernyh kompozicionnyh materialov akusticheskimi metodami [Defektoskopiya and diagnostics of polymeric composite materials by acoustic methods] /V sb. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 342–347.
3. Murashov V.V., Aleksashin V.M. Kontrol' prochnosti zony soedinenija jelementov inte-gral'nyh konstrukcij iz polimernyh kompozitov ul'trazvukovym metodom [Control of durability of zone of connection of elements of integral designs from polymeric composites ultrasonic method] //Klei. Germetiki. Tehnologii. 2014. №7. S. 15–19.
4. Kablov E., Murashov V., Rumyantsev A. Diagnostics of Polymer Composites by Acoustic Methods //Ultrasound. Kaunas: Tecnologija. 2006. №2. Р. 7–10.
5. Murashov V.V. K voprosu opredelenija uprugih i prochnostnyh svojstv polimernyh kompozicionnyh materialov akusticheskim kompleksnym metodom [To question of determination of elastic and strength properties of polymeric composite materials acoustic complex method] //Deformacija i razrushenie materialov. 2014. №11. S. 39–45.
6. Bobrov V.T., Rozlovenko S.G., Murashov V.V. Materials characterization //Testing. Diagnostics. 2010. №2. С. 42–44.
7. Murashov V.V. Opredelenie fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov akusticheskimi metodami [Definition of physicomechanical characteristics and composition of polymeric composite materials acoustic methods] //Aviacionnye materialy i tehnologii. 2012. №S. S. 465–475.
8. Sorokin K.V., Murashov V.V. Intellektual'nye ugleplastiki s integrirovannymi opticheskimi sensorami na osnove volokonnyh brjeggovskih reshetok dlja diagnostiki preddefektnogo sostojanija materiala [Intellectual ugleplastiki with the integrated optical sensors on the basis of fiber Bragg grids for diagnostics of predefective condition of material] /V sb. dokladov XX Vserossijskoj nauch.-tehnich. konf. po nerazrushajushhemu kontrolju i tehnicheskoj diagnostike. M.: Jekspocentr. 2014. S. 339–342 (CD-disk).
9. Sposob opredelenija prochnosti soedinenija detalej integral'nyh konstrukcij iz poli-mernyh kompozicionnyh materialov [Way of determination of durability of connection of details of integral designs from polymeric composite materials]: pat. 2262099 Ros. Federacija; opubl. 10.10.2005 Bjul. №26.
10. Murashov V.V. Glued Joint Strength Diagnostics //Polymer Science. Series D: Glues and Sealing Materials. 2009. V. 2. №1. P. 64–70.
11. Generalov A.S., Murashov V.V., Dalin M.A., Bojchuk A.S. Diagnostika polimernyh kompozitov ul'trazvukovym reverberacionno-skvoznym metodom [Diagnostics of polymeric composites by ultrasonic reverberatsionno-through method] //Aviacionnye materialy i tehnologii. 2012. №1. S. 42–47.
12. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Ju.M. Centry dlja klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PKM] //Aviacionnaja promyshlennost'. 2009. №4. S. 36–46.
13. Petrova A.P., Lukina N.F. Klei dlja mnogorazovoj kosmicheskoj sistemy [Glues for reusable space system] //Trudy VIAM. 2013. №4. St. 04 (viam-works.ru).
14. Lukina N.F., Dement'eva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] //Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
15. Murashov V.V. Types of Production and Operational Defects of the Multilayer Glud Constructions and Polymer Composite Materials Products and Methods to Detect them /In: 5-th European-American Workshop on Reliability of NDT. Berlin. 2013 (CD-диск).
16. Murashov V.V., Rumjancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyjavlenija. Ch. 2. Metody vyjavlenija defektov monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov [Defects of monolithic details and multi-layer designs from polymeric composite materials and methods of their identification. H. 2. Methods of detection of defects of monolithic details and multi-layer designs from polymeric composite materials] //Kontrol'. Diagnostika. 2007. №5. S. 31–36, 41–42.
17. Nagem R.J., Seng J.M., Williams J.H. Residual life predictions of composite aircraft structures via nondestructive testing. Part 1: Prediction methodology and via nondestructive //Materials Evaluation. 2000. V. 58. №9. Р. 1065–1074.
18. Rose J. Achievements and prospects of development of the ultrasonic waveguide method of control //Materials Evaluation. 2010. V. 68. №5. P. 494–500.
19. Nerazrushajushhij kontrol' [Non-destructive testing]: Spravochnik: V 8 t. /Pod obshh. red. V.V. Kljueva. T. 3: Ul'trazvukovoj kontrol'. 2-e izd., ispr. M.: Mashinostroenie. 2006. S. 129–140.
20. Murashov V.V. Attestation of Glued Articles by Acoustic Impedance Method //Polymer Science. Ser. D: Glues and Sealing Materials. 2010. V. 3. №4. P. 267–273.
21. Murashov V.V. Control of Laminated Structures by the Acoustic Free Vibration Method //Polymer Science. Series D: Glues and Sealing Materials. 2012. V. 5. №4. P. 341–345.
22. Murashov V.V., Generalov A.S. Kontrol' mnogoslojnyh kleenyh konstrukcij nizkochastotnymi akusticheskimi metodami [Control of multi-layer kleeny designs by low-frequency acoustic methods] //Aviacionnye materialy i tehnologii. 2014. №2. S. 59–67.
23. Murashov V.V., Kosarina E.I., Generalov A.S. Kontrol' kachestva aviacionnyh detalej iz polimernyh kompozicionnyh materialov i mnogoslojnyh kleenyh konstrukcij [Quality control of aviation details from polymeric composite materials and multi-layer kleeny designs] //Aviacionnye materialy i tehnologii. 2013. №3. S. 65–70.
24. Murashov V.V. Nerazrushajushhij kontrol' zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala mnogorazovogo kosmicheskogo korablja «Buran» [Non-destructive testing of preparations and details from carbon – carbon composite material of the reusable «Buran» spacecraft] //Trudy VIAM. 2013. №4. St. 05 (viam-works.ru).
25. Bakunov A.S., Murashov V.V., Sysoev A.M. Kontrol' lopastej vozdushnogo vinta sredstvami nizkochastotnoj akustiki [Control of blades of air screw by means of low-frequency acoustics] //Kontrol'. Diagnostika. 2012. №6. S. 72–74.
26. Murashov V.V. Nondestructive Testing of Glued Joints //Polymer Science. Series D: Glues and Sealing Materials. 2009. V. 2. №1. P. 58–63.
27. Murashov V.V. Identification of Areas of Absence of Adhesive Bonding between Layers in Multilayer Structures //Polymer Science. Series D. Glues and Sealing Materials. 2014. V. 7. №1. Р. 46–48.
28. Murashov V.V. Control of Multilayer Constructions by Spectral Acoustic-Impedance Defectoscopy //Polymer Science. Series D. Glues and Sealing Materials. 2014. V. 7. №2. Р. 133–135.
29. Murashov V.V. Control of Glued Structures by the Electromagnetic Acoustic Variant of the Impedance Method //Polymer Science. Series D. Glues and Sealing Materials. 2014. V. 7. №2. Р. 136–139.
30. Karabutov A.A., Pelivanov I.M., Podymova N.B., Reznikov A.V. Primenenie ND:YAG-lazera s diodnoj nakachkoj v nerazrushajushhem ul'trazvukovom kontrole grafito-jepoksidnyh kompozitov [Use of the ND:YAG-laser with diode pumping in non-destructive ultrasonic testing of graphite-epoxy composites] //Kontrol'. Diagnostika. 2002. №11. S. 24–29.
31. Sposob opredelenija fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov v konstrukcijah ul'trazvukovym metodom [Way of definition of physicomechanical characteristics and composition of polymeric composite materials in designs ultrasonic method]: pat. 2196982 Ros. Federacija; opubl. 20.01.2003 Bjul. №2.
32. Sposob opredelenija fiziko-mehanicheskih harakteristik polimernyh kompozicionnyh materialov i ustrojstvo dlja ego osushhestvlenija [Way of definition of physicomechanical characteristics of polymeric composite materials and the device for its implementation]: pat. 2214590 Ros. Federacija; opubl. 20.10.2003 Bjul. №29.
33. Viktorov I.A. Fizicheskie osnovy primenenija ul'trazvukovyh voln Rjeleja i Ljemba v tehnike [Physical bases of application of ultrasonic waves of Reley and Lamb in equipment]. M.: Nauka. 1966. S. 84–87.
34. Ermolov I.N., Vopilkin A.H., Badaljan V.G. Raschety v ul'trazvukovoj defektoskopii (kratkij spravochnik) [Calculations in ultrasonic defektoskopiya (the short directory)]. M.: Jeho+. 2000. 108 s.
35. Lange Ju.V., Murashov V.V. Ul'trazvukovoj vremennoj metod nerazrushajushhego kontrolja mnogoslojnyh konstrukcij s ispol'zovaniem normal'nyh voln [Ultrasonic time method of non-destructive testing of multi-layer designs with use of normal waves] //Defektoskopija. 1977. №2. S. 13–18.
36. Murashov V.V. Control of Multilayer Glued Constructions of Polymeric Composite Materials //Polymer Science. Series D. Glues and Sealing Materials. 2012. V. 5. №2. Р. 109–115.
37. Lange Ju.V. Akusticheskie nizkochastotnye metody i sredstva nerazrushajushhego kontrolja mnogoslojnyh konstrukcij [Acoustic low-frequency methods and means of non-destructive testing of multi-layer designs]. M.: Mashinostroenie. 1991. 272 s.

DOI: 10.18577/2071-9140-2015-0-4-91-94

UDC: 620.172.254

Pages: 91-94

V.S. Erasov1, E.I. Oreshko1, A.N. Lutsenko1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials», admin@viam.ru

Damageability of materials in tension testing

Modern design on the principle of «safe damage» allows emergence and development in construction of the damage is not critical size, which during exploitation must be detected, and the design is repaired. Therefore, the registration process damage is an important practical task. The paper presents the process of damage to the sample from the metal material in static tensile and describing this process function damaging ω. Function damage ω varies from 0 - initial state of the sample, up to 1 destroyed or depleted deformation resource sample. The obtained graphs damage. The proposed danger of destruction to evaluate two functions: a function of damage and function speed damageability. As the main parameters that shape these features, the proposed timing and size of the plastic deformation.

Keywords: the principle of «safe injury» test, static stretching, time, elastic deformation, plastic deformation, the critical value of plastic deformation, damage, speed damageability

Reference List

1. Erasov V.S. Fiziko-mehanicheskie harakteristiki kak osnovnye integralnye pokazateli kachestva aviacionnyh konstrukcionnyh materialov [Physicomechanical characteristics as main integral figures of merit of aviation constructional materials]: Metod. posobie. M.: VIAM. 2011. 16 s.
2. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
3. Erasov V.S., Bajramukov R.R. Rol faktora vremeni pri provedenii mehanicheskih ispytanij, obrabotke dannyh i predstavlenii rezultatov [Role of factor of time at carrying out mechanical tests, data processing and representation of results] //Aviacionnye materialy i tehnologii. 2013. №S2. S. 62–67.
4. Erasov V.S., Bajramukov R.R., Nuzhnyj G.A. Opredelenie skorosti plasticheskoj deformacii pri ispytanii na rastyazhenie [Speed sensing of plastic strain at tension test] //Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 80. №5. S. 61–63.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
6. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
7. Panin V.E., Kablov E.N., Pochivalov Yu.I., Panin S.V., Kolobnev N.I. Vliyanie nanostrukturirovaniya poverhnostnogo sloya alyuminij-litievogo splava 1424 na mehanizmy deformacii, tehnologicheskie harakteristiki i ustalostnuyu dolgovechnost. Povyshenie plastichnosti i tehnologicheskih harakteristik [Influence of nanostructuring surface layer aluminum-lithium alloy 1424 on deformation mechanisms, technical characteristics and fatigue life. Increase of plasticity and technical characteristics] //Fizicheskaja mezomehanika. 2012. T. 15. №6. S. 107–111.
8. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
9. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] //Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117.
10. Erasov V.S., Grinevich A.V., Senik V.Ya. i dr. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
11. Mahutov N.A., Moskvitin G.V. Vliyanie uslovij nagruzheniya na nakoplenie povrezhdenij i razrushenie [Influence of conditions of loading on accumulation of damages and destruction] /Mashinostroenie. Jenciklopediya. T. II-I. Fiziko-mehanicheskie svojstva. Ispytaniya metallicheskih materialov. M.: Mashinostroenie. 2010. S. 220–221.
12. Erasov V.S., Nuzhnyj G.A., Grinevich A.V. Ob otsenke povrezhdaemosti metallicheskih materialov metodami mehanicheskih ispytanij [About assessment of damageability of metal materials methods of mechanical tests] //Deformaciya i razrushenie materialov. 2015. №3. S. 42–47.
13. Terentev V.F. Ustalost metallicheskih materialov [Fatigue of metal materials]. M.: Nauka. 2003. S. 37–44
14. Vildeman V.Je., Tretyakov V.P. Ispytaniya materialov s postroeniem polnyh diagramm deformirovaniya [Synergetrics of evolution of metals from partially closed to open dynamic system at cyclic loading] //Problemy mashinostroeniya i nadezhnosti mashin. 2013. №2. S. 93–98.
15. Shanyavskij A.A. Sinergetika evolyucii metallov ot chastichno zamknutoj k otkrytoj dinamicheskoj sisteme pri ciklicheskom nagruzhenii [Synergetrics of evolution of metals from partially closed to open dynamic system at cyclic loading] //Dinamika slozhnyh sistem. 2007. T. 1. №1. S. 90–104.
16. Metallic Materials Properties Development and Standardization (MMPDS-02), United States, Atlantic City: Federal Aviation Administration. 2005. P. 1–36.