Archive

Aviation materials and tecnologes №S6, 2014

DOI: 10.18577/2071-9140-2014-0-s6-5-10

UDC: 669.018.95

Pages: 5-10

A.A. Berlin1, A.S. Shteinberg1, E.I. Krasnov2, A.A. Shavnev2, S.B. Lomov2, B.M. Serpova2

[1] FEDERAL STATE INSTITUTION OF SCIENCE INSTITUTE OF CHEMICAL PHYSICS N.N. SEMENOV OF THE RUSSIAN ACADEMY OF SCIENCES,
[2] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,

Experimental study of receipt of layer composite materials by the method of electro-thermal explosion. Аssessment of residual stresses

Described the study of the synthesis of layered metal composite material systems Ti-TiAl
3 obtained by the method of electro-thermal explosion. Research conducted at the facility electrothermal analyzer (ETA-100) belongs to the class of devices of thermal analysis (DTA, DSC and TGA), used to study mechanisms of physical-chemical transformations in condensed systems. For example, two systems layered composite materials: titanium-titanium diboride and titanium-titanium carbide shows the influence of residual stresses arising during cooling of the material in the process of synthesis and properties of layered materials, quantitative assessment of the impact of cooling from the temperature of the melting of titanium to room temperature.

Keywords: layered composite material, titanium, aluminium, titanium diboride, titanium carbide, intermetallide, electrothermal analyzer, synthesis, residual stresses

Reference List

1. Kablov E.N., Evgenov A.G., Ryl'nikov V.S., Afanas'ev-Hodykin A.N. Issledovanie melkodispersnyh poroshkov pripoev dlja diffuzionnoj vakuumnoj pajki, poluchennyh metodom atomizacii rasplava [Research of finely divided powders of solders for the diffusion vacuum soldering, received by atomizatsiya method rasplava] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 79–88.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promysh-lennosti [Welding and the soldering in the aerospace industry] /V sb. materialov Vserossijskoj nauch.-praktich. konf. «Svarka i bezopasnost'». T. 1. Jakutsk: Ofset. 2012. S. 21–30.
4. Klochkov G.G., Grushko O.E., Popov V.I., Ovchinnikov V.V., Shamraj V.F. Struktura, tehnologicheskie svojstva i svarivaemost' listov iz splava V-1341 sistemy Al–Mg–Si [Structure, technological properties and bondability of sheets from alloy V-1341 of Al–Mg–Si system] //Aviacionnye materialy i tehnologii. 2011. №1. S. 3–8.
5. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye ma-terialy dlja perspektivnogo dvigatelja OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
6. Kovtunov A.I., Mjamin S.V. Issledovanie tehnologicheskih i mehanicheskih svojstv sloistyh titanoaljuminievyh kompozicionnyh materialov, poluchennyh zhidkofaznym sposobom [Research of technological and mechanical properties of the layered titanoalyuminiyevy composite materials received in the liquid-phase way] //Aviacionnye materialy i tehnologii. 2013. №1. S. 9–12.
7. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A. Vlijanie termomehanicheskoj obrabotki na svojstva i strukturu splava sistemy Al–Cu–Mg–Li–Zn [Influence of thermomechanical processing on properties and Al–Cu–Mg–Li–Zn system alloy structure] //Aviacionnye materialy i tehnologii. 2010. №4. S. 7–11.
8. Chirkov E.F. Temp razuprochnenija pri nagrevah – kriterij ocenki zharoprochnosti kon-strukcionnyh splavov sistem Al–Cu–Mg i Al–Cu [Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al–Cu–Mg and Al–Cu systems] //Trudy VIAM. 2013. №2. St. 02 (viam-works.ru).
9. Horev A.I. Fundamental'nye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravlenija ih razvitija [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM. 2013. №2. St. 04 (viam-works.ru).
10. Lukin V.I., Ioda E.N., Bazeskin A.V. i dr. Povyshenie nadezhnosti svarnyh soedinenij iz vysokoprochnogo aljuminievo-litievogo splava V-1461 [Increase of reliability of welded connections from high-strength aluminum-lithium alloy V-1461] //Svarochnoe proizvodstvo. 2010. №11. S. 14–17.
11. Svojstva tugoplavkih soedinenij [Properties of high-melting connections]: Spravochnik /Pod red. G.V. Samsonova. K.: Naukova dumka. 1988. S. 32–33.
12. Petrovic M., Veljic D., Rakin M., Radovic N., Sedmak A., Bajic N. Friction-stir welding of high-strength aluminium alloys and a numerical simulation of plunge stage //Materials in technology. 2012. V. 46. №3. P. 215–221.
13. Lukin V.I., Ryl'nikov V.S., Afanas'ev-Hodykin A.N., Orehov N.G. Osobennosti pajki monokristallicheskogo splava ZhS32 [Features of the soldering of ZhS32 single-crystal alloy] //Svarochnoe proizvodstvo. 2011. №5. S. 19–22.
14. Lukin V.I., Ioda E.N., Bazeskin A.V. i dr. Osobennosti formirovanija svarnogo soedinenija pri svarke treniem s peremeshivaniem aljuminievogo splava V-1469 [Features of forming of welded connection at friction bonding with V-1469 aluminum alloy hashing] //Svarochnoe proizvodstvo. 2012. №6. S. 30–36.
15. Svojstva jelementov [Properties of elements]: Spravochnik /Pod red. G.V. Samsonova. K.: Naukova dumka. 1985. 43 s.
16. Krasnov E.I., Shtejnberg A.S., Shavnev A.A., Berezovskij V.V. Issledovanie sloistogo metallicheskogo kompozicionnogo materiala sistemy Ti–TiAl3 [Research of layered metal composite material of Ti–TiAl3 system] //Aviacionnye materialy i tehnologii. 2013. №3. S. 16–19.

DOI: 10.18577/2071-9140-2014-0-s6-11-16

UDC: 621.365.5

Pages: 11-16

O.Y. Sorokin1, S.S. Solntsev1, S.A. Evdokimov1, I.V. Osin1

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,

Hybrid spark plasma sintering method: principle, posiibilities, future prospects

The key principles and possibilities of a hybrid spark-plasma sintering method are highlighted. It was shown that the use of the hybrid spark-plasma sintering method comprising both conventional FAST/SPS, and induction heating by an induction coil can lead to the substantial decrease of the temperature across the sized samples. The main advantages of the hybrid FAST/SPS method versus the conventional hot pressing technique are listed. It was shown that a wide range of various materials can be manufactured by means of this method - high-temperature, composite, nanostructured and functionally graded ones.

Keywords: hybrid spark-plasma sintering, FAST/SPS, composite, ceramics, matrix

Reference List

1. Grigor'ev E.G. Osobennosti processov uplotnenija poroshkovyh materialov pri jelektroimpul'snoj konsolidacii [Features of processes of consolidation of powder materials at electropulse consolidation] /V sb. tezisov dokladov III nauchnogo seminara «Perspektivnye tehnologii konsolidacii materialov s primeneniem jelektromagnitnyh polej». M.: NIJaU MIFI. 2014. S. 8–9.
2. Kessel H.U., Hennicke J. Aspects concerning the super-fast sintering of powder metallic and ceramic materials //Interceram High-Performance Ceramic. 2007. V. 56. №3. P. 164–166.
3. Kessel H.U. Sintered materials on the way to production by means of modern SPS technologies //Beichte der Deutschen Keramischen Geselschaft. 2009. V. 86. №10. P. 145–152.
4. Kessel H.U., Hennicke J. Field Assisted Sintering Technology («FAST») for the consolidation of innovative materials //Beichte der Deutschen Keramischen Geselschaft. 2004. V. 81. №11. P. 14–16.
5. Tarasov B.A., Shornikov D.P., Jurlova M.S. Zakonomernosti plazmenno-iskrovogo spekanija vysokodispersnyh poroshkov nitrida titana [Patterns of plasma and spark agglomeration of high-disperse powders of titanium nitride] //Vektor nauki TGU. 2013. №13. C. 91–94.
6. Boldin M.S. Fizicheskie osnovy tehnologii jelektroimpul'snogo plazmennogo spekanija [Physical bases of technology of electropulse plasma agglomeration]: Uchebno-metodich. posobie. Nizhnij Novgorod: Nizhegorod. Gos. un-t. 2012. 59 s.
7. Tokita M. Spark plasma sintering (SPS) method, systems and applications /In: Handbook of Advanced Ceramics. Chapter 11.2.3. 2013. P. 1149–1177.
8. Hasanov O.L., Dvilis Je.S., Hasanov A.O. Opredelenie optimal'nyh rezhimov izgotovlenija vysokoplotnoj keramiki iz poroshka karbida bora metodom spekanija v plazme iskrovogo razrjada [Definition of optimum modes of manufacturing of high density ceramics from boron carbide powder agglomeration method in plasma of spark discharge] //Izvestija Tomskogo politehnicheskogo universiteta. 2012. T. 320. №2. S. 58–62.
9. Gajamov A.M., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Vybor zharostojkogo pokrytija dlja zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Choice of heat resisting covering for heat resisting nickel reny-ruteniysoderzhashchy alloy of the VZhM4 brand] //Trudy VIAM. 2014. №1. St. 01 (viam-works.ru).
10. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] //Trudy VIAM. 2013. №2. St. 06 (viam-works.ru).
11. Sposob nanesenija pokrytija dlja zashhity ot vysokotemperaturnogo okislenija poverhnosti vnutrennej polosti ohlazhdaemyh lopatok turbin iz bezuglerodistyh zharoprochnyh splavov na osnove nikelja [Coating application method for protection against high-temperature oxidation of surface of internal cavity of cooled blades of turbines from carbon-free hot strength alloys on the basis of nickel]: pat. 2471887 Ros. Federacija; opubl. 17.10.2011.
12. Litvinov V.B. Predlozhenie po primeneniju keramicheskih bronevyh materialov dlja zashhity jekipazha i tehniki [The offer on application of ceramic armored materials for protection of crew and equipment] /V sb. tezisov dokladov IV Mezhdunarodnoj nauch.-praktich. konf. «KeramSib–2012». M. 2012. SD-disk.
13. Zhang F., Ahmed F., Holzhuter G., Burkel E. Growth of diamond from fullerene C60 by spark plasma sintering //Journal of Crystal Growth. 2012. №340. P. 1156–1161.
14. Perevislov S.N., Nesmelov D.D., Tomkovich M.V. Poluchenie materialov na osnove SiC i Si3N4 metodom vysokoimpul'snogo plazmennogo spekanija [Receiving materials on the basis of SiC and Si3N4 method of high-pulse plasma agglomeration] //Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2013. №2. S. 107–114.
15. Sevast'janov V.G., Simonenko E.P., Gordeev A.N. i dr. Poluchenie sverhvysokotempera-turnyh kompozicionnyh materialov HfB2–SiC i issledovanie ih povedenija pod vozdej-stviem potoka dissociirovannogo vozduha [Receiving superhigh-temperature HfB2–SiC composite materials and research of their behavior under the influence of flow of the dissociated air] //Zhurnal neorganicheskoj himii. 2013. T. 58. №11. C. 1419–1426.
16. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
17. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–385.
18. Sorokin O.Ju., Grashhenkov D.V., Solncev S.St., Evdokimov S.A. Keramicheskie kompozi-cionnye materialy s vysokoj okislitel'noj stojkost'ju dlja perspektivnyh letatel'nyh apparatov (obzor) [Ceramic composite materials with high oxidizing firmness for perspective flight vehicles (review)] //Trudy VIAM. 2014. №6. St. 08 (viam-works.ru).
19. Solncev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklokeramicheskie pokrytija i kompozicionnye materialy [High-temperature steklokeramichesky coverings and composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 359–368.
20. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.

DOI: 10.18577/2071-9140-2014-0-s6-17-23

UDC: 669.018.95

Pages: 17-23

V.V. Berezovsky1, A.A. Shavnev1, S.B. Lomov1, Y.A. Kurganova2

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,
[2] Bauman Moscow State Technical University,

RECEIVING AND THE ANALYSIS OF STRUCTURE OF THE DISPERSE STRENGTHENED COMPOSITE MATERIALS OF AL-SIC SYSTEM WITH THE DIFFERENT MAINTENANCE OF THE REINFORCING PHASE

Preparing of dispersion-reinforced Al-SiC with different SiC consist composite by powder metallurgy and mechanical alloying technology is offered. Experimental party of samples for mechanical properties researches is fabricated. Microstructure of fabricated samples is studied. Influence of source components technological treatment on MMC structure is searched. Depending of the mechanical properties from the reinforcement volume is studied.

Keywords: dispersion-reinforced composites, metal matrix composites, Al–SiC

Reference List

1. Aljuminievye splavy [Aluminum alloys] /V kn. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi; Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 143–156.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
4. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM − dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials − for perspective aviation engineering of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
5. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
6. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol' napravlennoj kristallizacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTD] //Trudy VIAM. 2013. №3. St. 01 (viam-works.ru).
7. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] //Kryl'ja Rodiny. 2010. №4. S. 31–33.
8. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlja vysokonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-loaded details of gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. 2011. №SP2. S. 13–19.
9. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlja perspektivnogo dvigatelja OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
10. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] //Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
11. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplo-otvodjashhih osnovanij iz MMK Al–SiC v silovoj jelektronike i preobrazovatel'noj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] //Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
12. Kurganova Ju.A. Razrabotka i primenenie dispersnouprochnennyh aljumomatrichnyh kompozicionnyh materialov v mashinostroenii [Development and application of dispersnouprochnenny alyumomatrichny composite materials in mechanical engineering]: Avtoref. dis. d.t.n. M. 2008. 22 s.
13. Metal Matrix composites (MMCs) from Space to Earth /In: Werkstoffe fur Transport und Verkehr Materials Day, ETH-Zurich, 18.05.2001.
14. The development of aluminum alloy composite brake disk for Shinkansen /In: 4-th Japan international SAMOE Symposium. 1995.
15. Chernyshova T.A., Kobeleva L.I., Bolotova L.K., Kurganova Ju.A., Kalashnikov I.E., Katin I.V. Dispersno-napolnennye kompozicionnye materialy dlja par trenija skol'zhenija [The disperse filled composite materials for couples of sliding friction] //Konstrukcii iz KM. 2007. №3. S. 38–48.
16. Kurganova Ju.A., Gubanova N.V. Issledovanie mehanicheskih svojstv kompozicionnyh materialov na osnove aljuminievyh splavov [Research of mechanical properties of composite materials on the basis of aluminum alloys] /V sb. nauchnyh trudov Vserossijskogo soveshhanija «Progressivnye tehnologii i oborudovanie pri obrabotke materialov davleniem». Ul'janovsk. 2007. S. 52–55.
17. Kurganova Ju.A., Bajkalov K.O. Izmenenie svojstv lityh dispersno-uprochnennyh kompozi-cionnyh materialov na osnove aljuminievyh splavov pri termomehanicheskoj obrabotke [Change of properties of the cast disperse strengthened composite materials on the basis of aluminum alloys at thermomechanical processing] /V sb. trudov III Mezhdunarodnoj nauch.-praktich. konf. «Issledovanie, razrabotka i primenenie vysokih tehnologij v promyshlen-nosti». SPb.: 2007. S. 167–168.
18. Kurganova Ju.A. Universal'nye tribotehnicheskie materialy na osnove aljuminievyh splavov [Universal tribotekhnichesky materials on the basis of aluminum alloys] //Tehnologija metallov. 2007. №8. S. 29–32.
19. Chawla N., Chawla K.K. Metal Matrix Composites /In: Springer Sience+Business Media, Inc. 2006. P. 560.
20. Skakov Ju.A. Vysokojenergeticheskaja holodnaja plasticheskaja deformacija, diffuzija i me-hanicheskij sintez [High-energy cold plastic strain, diffusion and mechanical synthesis] //MiTOM. 2004. №4. S. 3–11.
21. Aksenov A.A., Filippov A.T., Zolotorevskij V.S. Formirovanie struktury dispersnouprochnennyh kompozicionnyh materialov «aljuminij–karbid kremnija» [Forming of structure of dispersnouprochnenny «aluminum-silicon carbide» composite materials] //Izvestija vuzov. Cvetnaja metallurgija. 1999. S. 39–45.
22. Aljuminievye splavy. Proizvodstvo polufabrikatov iz aljuminievyh splavov [Aluminum alloys. Production of semi-finished products from aluminum alloys]: Spravochnoe rukovodstvo. M.: Metallurgija. 1971. 496 s.

DOI: 10.18577/2071-9140-2014-0-s6-24-27

UDC: 669.018.95

Pages: 24-27

O.I. Grishina1, A.A. Shavnev1, V.M. Serpova1

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,

Features of influence of structural parameters on mechanical properties of metallic composite material based on particle-reinforced aluminum alloys by silicon carbide

This article provides an over view of hardening features of aluminum metal matrix composite reinforced with heat-resistant silicon carbide particles. We described the influence on mechanical properties of the difference in thermal expansion coefficient of matrix and reinforcing component and availability of residual thermal stress that arise in composite during producting. Was considered the mechanism of crack formation and growth during fatigue fracture, wich is observed at the interface, on within the reinforcing particles. Also examined the effect of interfacial interaction on the mechanism of fatigue failure and the influence of the interface condition on mechanical properties of the composite material.

Keywords: a metal composite material, silicon carbide particles, aluminum alloy

Reference List

1. Aljuminievye splavy [Aluminum alloys] /V kn. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi; Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 143–156. 
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
4. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM − dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials − for perspective aviation engineering of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
5. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
6. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol' napravlennoj kristallizacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTD] //Trudy VIAM. 2013. №3. St. 01 (viam-works.ru).
7. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlja perspektivnogo dvigatelja OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
8. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTD from hot strength alloys with single-crystal and composition structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
9. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] //Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
10. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodjashhih osnovanij iz MMK Al–SiC v silovoj jelektronike i preobrazovatel'noj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] //Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
11. Erasov V.S., Grinevich A.V., Senik V.Ja., Konovalov V.V., Trunin Ju.P., Nesterenko G.I. Raschetnye znachenija harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
12. Zhang F., Sun P., Li X., Zhang G. A comparative study on microplastic deformation behavior in a SiCp/2024Al composite and its unreinforced matrix alloy //J. Mater. Lett. 2001. V. 49. №2. P. 69–74.
13. Arsenault R.J., Taya M. Thermal residual stress in metal matrix composite //Acta Metall. 1987. V. 35. №3. P. 651–659.
14. Lur'e S.A., Soljaev Ju.O. Modificirovannyj metod Jeshelbi v zadache opredelenija jeffektivnyh svojstv so sfericheskimi mikro- i nanovkljuchenijami [The modified method of Eshelbi in problem of determination of effective properties with spherical micro and nanoinclusions] //Vestnik PGTU. Mehanika. 2010. №1. S. 80–90.
15. Beljaev M.S., Koshkin S.B., Gorbovec M.A. Opredelenie predela ustalosti zharoprochnogo splava sposobom stupenchatogo izmenenija nagruzki [Definition of fatigue value of hot strength alloy by way of step change of loading] //Aviacionnye materialy i tehnologii. 2011. №1. S. 27–30.
16. Arsenault R.J., Shi N. Dislocation generation due to differences between the coefficients of thermal expansion //Mater. Sci. and Eng. 1986. V. 81. P. 175–187.
17. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzhenija pri ustalostnyh ispytanijah [Rigid cycle of loading at fatigue tests] //Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
18. Volkov V.M., Mironov A.A. Ob#edinennaja model' obrazovanija i rosta ustalostnyh treshhin v koncentratorah naprjazhenij [The integrated model of education and growth of fatigue cracks in concentrators of tension] //Problemy prochnosti i plastichnosti. 2005. Vyp. 67. S. 20–25.
19. Kumai S., King J.E., Knott J.F. Fatigue in SiC-particulate-reinforced aluminum alloy composites //Mater. Sci. and Eng. A. 1991. V. 146. P. 317–326.
20. Treninkov I.A., Alekseev A.A., Zajcev D.V., Filonova E.V. Issledovanija fazovyh i strukturnyh izmenenij, a takzhe ostatochnyh naprjazhenij v processe vysokotemperaturnoj polzuchesti v splave VZhM4 [Researches of phase and structural changes, and also residual stresses in the course of high-temperature creep in VZhM4 alloy] //Aviacionnye materialy i tehnologii. 2011. №2. S. 11–19.
21. King J.E., Bhattacharjee D. Interfacial effects on fatigue and fracture in discontinuously reinforced metal matrix composites //Materials Science Forum. 1995. V. 189–190. P. 43–56.
22. Shan D., Nayeb-Hashemi H. Fatigue-life prediction of SiC particulate reinforced aluminum alloy 6061 matrix composite using AE stress delay concept //J. Mater. Sci. 1999. V. 34. №13. P. 3263–3270.
23. Dalin M.A., Generalov A.S., Bojchuk A.S., Lozhkova D.S. Osnovnye tendencii razvitija akusticheskih metodov nerazrushajushhego kontrolja [Main tendencies of development of acoustic methods of non-destructive testing] //Aviacionnye materialy i tehnologii. 2013. №1. S. 64–69.
24. Li Y., Mohamed F.A. An investigation of creep behavior in an SiC–2124 Al composite //Acta Mater. 1998. V. 45. №11. P. 4775–4785.
25. Tham L.M., Gupta M., Cheng L. Effect of limited matrix-reinforcement interfacial reactions on enhancing the mechanical properties of aluminum-silicon carbide composites //Acta Mater. 2001. V. 49. №16. P. 3243–3253.
26. Sun C., Shen R., Song M. Effects of sintering and extrusion on the microstructures and mechanical properties of a SiC/Al–Cu composite //Journal of Materials Engineering and Performance. 2011. V. 12. №2. P. 37–38.

DOI: 10.18577/2071-9140-2014-0-s6-28-34

UDC: 669.018.95

Pages: 28-34

A.N. Nayfkin1, O.I. Grishina1, A.A. Shavnev1, Y.V. Loshhinin1, S.I. Pahomkin1

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,

THE INFLUENCE OF COMPOSITION OF HETEROGENEOUS SYSTEMS WITH A HIGH OF THE CARBIDE PHASE ON THERMO-PHYSICAL PROPERTIES

This article shows the theoretical aspects of the factors that determine the stacking density of silicon carbide particles in the volume of the composite material. Studies were carried out to determine the complex of thermo-physical properties (thermal conductivity, thermal expansion coefficient, specific heat), including a wide range of temperatures of aluminum composite materials reinforced with silicon carbide particles. Also in the article is presented the study of variance regularities of thermo-physical properties depending of the composition in order to create new multifunctional heterogeneous systems.

Keywords: thermo-physical properties, thermal conductivity, specific heat, thermal conductivity, thermal expansion coefficient, metal matrix composite (MMC), aluminum alloy, silicon carbide particles

Reference List

1. Singh Sarabjot, Junior B. Tech, Ryssel Heiner Lifetime of power modules /In: 7 Indo-German winter academy. Proceedings. Germany. 2008.
2. Gilleo K. MEMS/MOEMS Packaging Concepts, Designs, Materials, and Processes /In: Nanoscience and Technology Series. USA. NY-Chicago: McGraw-Hill. 2005. 239 p.
3. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
5. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC OAK] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
6. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
7. Manohin A.I., Enikolopov N.S., Fridljander I.N. i dr. Kompozicionnye materialy [Composite materials]. M.: Nauka. 1981. C. 92–98.
8. Occhionero M.A., Adams R.W., Saums D. AlSiC for Optoelectronic Thermal Management and Packaging Designs. 2001. http://www.alsic.com.
9. Occhionero M.A., Fennessy K.P., Sundberg G.J. AlSiC Baseplates for Power IGBT Modules: Design, Performance and Reliability, Ceramics Process Systems. 2003. http://www.alsic.com.
10. Aksenov A.A. Metallicheskie kompozicionnye materialy, poluchaemye zhidkofaznymi metodami [The metal composite materials received by liquid-phase methods] //Izvestija vuzov Cvetnaja metallurgija. 1996. №2. C. 34–46.
11. Aljuminievye splavy [Aluminum alloys] /V kn. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi; Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 143–156. 
12. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] //Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
13. Kablov E.N., Grashhenkov D.V., Shhetanov B.V., Shavnev A.A., Njafkin A.N., Vdovin S.M., Nishhev K.N., Chibirkin V.V., Eliseev V.V., Jemih L.A. Metallicheskie kompozicionnye materialy na osnove Al–SiC dlja silovoj jelektroniki [Metal composite materials on the basis of Al–SiC for power electronics] //Mehanika kompozicionnyh materialov i konstrukcij. 2012. T. 2. №3. S. 359–368.
14. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodjashhih osnovanij iz MMK Al–SiC v silovoj jelektronike i preobrazovatel'noj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] //Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
15. Erasov V.S., Grinevich A.V., Senik V.Ja., Konovalov V.V., Trunin Ju.P., Nesterenko G.I. Raschetnye znachenija harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
16. Grinevich A.V., Lucenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [Rated characteristics of metal materials taking into account humidity] //Trudy VIAM. 2014. №7. Ct. 10 (viam-works.ru).
17. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye aljuminievye splavy (k 100-letiju so dnja rozhdenija M.B. Al'tmana) [Cast aluminum alloys (to the 100 anniversary since the birth of M.B. Altman)] //Trudy VIAM. 2014. №4. Ct. 02 (viam-works.ru).
18. Kumai S., King J.E., Knott J.F. Fatigue in SiC-particulate-reinforced aluminum alloy composites //Mater. Sci. and Eng. A. 1991. V. 146. P. 317–326.
19. McGeary R.K. Mechanical packing of spherical particles //J. Amer. Ceram. Soc. 1961. V. 44. №10. P. 513–522.
20. Dyban' Ju.P., Sichkar' Z.V., Shipilova L.A. Vlijanie frakcionnogo sostava formovochnyh smesej na svojstva samosvjazannogo karbida kremnija [Influence of fractional structure of forming mixes on properties of the self-connected silicon carbide] //Poroshkovaja metallurgija. 1982. №6. S. 16–23.
21. Dyban' Ju.P. Strukturno-tehnologicheskie aspekty prochnosti samosvjazannogo karbida kremnija (SKK) [Structural and technological aspects of durability of the self-connected silicon carbide (SSC)] /Prepr. NAN Ukrainy. 98-1. Kiev: IPM im. I.N. Francevicha NAN Ukrainy. 1998. 64 s.
22. Ха Shijie Liu, Zhanyao Ha. Prediction of random packing limit for multimodal particle mixture //Powder Technology. 2002. №126. P. 283–296.
23. Takashi I., Yoshimoto W., Hiroshi S. Relation between Packing Density and Particle Size Distribution in Random Packing Models of Powders //J. of the Institute of Metals. 1986. V. 50. №8. P. 740–746.
24. Kansal A.R., Torquato S., Stillinger F.H. Computer generation of dense polydisperse sphеre packings //J. Chemical Physics. 2002. V. 117. №18. P. 8212–8218.
25. Hari Babu N., Zhongyun Fan, Eskin D.G. Application of external fields to technology of metalmatrixcomposite materials //TMS-2013 Annual Meeting Supplemental Proceedings. 2013. P. 1037–1044.
26. Milejko S.T. Kompozity i nanostruktury [Composites and nanostructures] //Kompozity i nanostruktury. 2009. №1. S. 6–37.
27. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspective high-temperature ceramic composite materials //Russian Journal of General Chemistry. 2011. Т. 81. №5. С. 986–991.
28. Saini V.K., Khan Z.A., Siddiquee A.N. Advancements in non-conventional machining of aluminum metal matrix composite materials //International Journal of Engineering Research & Technology. 2012. V. 1. №3. P. 2–13.
29. ASTM E 1461-01. Standard Test Method for Thermal Diffusivity by the Flash Method. 2001. P. 1–13.
30. Garshin A.P., Gropjanov V.M., Zajcev G.P., Semenov S.S. Keramika dlja mashinostroenija [Ceramics for mechanical engineering]. M.: Nauchtehlitizdat. 2003. S. 8‒34.

DOI: 10.18577/2071-9140-2014-0-s6-35-38

UDC: 669.018.95

Pages: 35-38

E.I. Kurbatkina1, D.V. Kosolapov1, L.G. Khodykin1, M.S. Nigmetov1

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,

Influence of the silicon addition on the phase composition of aluminum composite materials reinforced with silicon carbide particles

This article describes the analysis of the Al-Si-C phase diagram. Were calculated the isothermal and polythermal sections. Silicon concentration in the matrix aluminum alloy was theoretically substantiated, which excludes the formation of aluminum carbide (Al4C3). To confirm theoretical calculations were conducted experimental studies, which confirm that in samples, containing silicon in an amount of ≥12% in the matrix aluminum alloy, the aluminum carbide formation does not occur. It was shown that the experimental values of Al4C3 amount significantly lower than estimated, due to short time of contact of molten aluminum and silicon carbide particles

Keywords: аluminum matrix composite material, silicon, silicon carbide, aluminum carbide, Al‒Si‒C phase diagram

Reference List

1. Yang Z., Hea X., Wang L., Liu R., Hu H., Wang L., Qu X. Microstructure and thermal expansion behavior of diamond/SiC/(Si) composites fabricated by reactive vapor infiltration //Journal of the European Ceramic Society. 2014. V. 34, №5. P. 1139–1147.
2. Aksenov A.A. Metallicheskie kompozicionnye materialy, poluchaemye zhidkofaznymi metodami [The metal composite materials received by liquid-phase methods] //Izvestija vuzov. Cvetnaja metallurgija. 1996. №2. S. 34–40.
3. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Aljuminievye splavy [Aluminum alloys] /V kn. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi. Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 143–156. 
5. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
6. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM − dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials − for perspective aviation engineering of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
7. Kablov E.N., Grashhenkov D.V., Shhetanov B.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] //Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
8. Kablov E.N., Grashhenkov D.V., Shhetanov B.V., Shavnev A.A., Njafkin A.N., Vdovin S.M., Nishhev K.N., Chibirkin V.V., Eliseev V.V., Jemih L.A. Metallicheskie kompozicionnye materialy na osnove Al–SiC dlja silovoj jelektroniki [Metal composite materials on the basis of Al–SiC for power electronics] //Mehanika kompozicionnyh materialov i konstrukcij. 2012. T. 2. №3. S. 359–368.
9. Lee J.C., Ahn J.P., Shim J.H., Shi Z., Lee H.I. Control of the interface in SiC/Al composites // Scripta Materialia. 1999. V. 41. №8. P. 895–900.
10. Mandal D., Viswanathan S. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite // Materials Characterization. 2013. V. 85. P. 73–81.
11. Grinevich A.V., Lucenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [Rated characteristics of metal materials taking into account humidity] //Trudy VIAM. 2014. №7. Ct. 10 (viam-works.ru).
12. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye aljuminievye splavy (k 100-letiju so dnja rozhdenija M.B. Al'tmana) [Cast aluminum alloys (to the 100 anniversary since the birth of M.B. Altman)] //Trudy VIAM. 2014. №4. Ct. 02 (viam-works.ru).
13. Erasov V.S., Grinevich A.V., Senik V.Ja., Konovalov V.V., Trunin Ju.P., Nesterenko G.I. Raschetnye znachenija harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
14. Li K., Jin X.-D., Yan B.-D., Li P.-X. Effect of SiC particles on fatigue crack propagation in SiC/Al composites // Composites. 1992. V. 23. №1. P. 54–58.
15. Bruzzi M.S., McHugh P.E. Micromechanical investigation of the fatigue crack growth behaviour of Al–SiC MMCs // International Journal of Fatigue. 2004. V. 26. №8. P. 795–804.
16. Lee J.C., Subramanian K.N. Failure behaviour of particulate-reinforced aluminium alloy composites under uniaxial tension // Journal of Materials Science. 1992. V. 27. P. 5453–5462.
17. Lee J.-C., Byun J.-Y., Park S.-B., Lee H.-I. Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite // Acta Materialia. 1998. V. 46. №5. P. 1771–1780. 
18. Shin C.S., Huang J.C. Effect of temper, specimen orientation and test temperature on the tensile and fatigue properties of SiC particles reinforced PM 6061 Al alloy //International Journal of Fatigue. 2010. V. 32. №10. P. 1573–1581.
19. Milejko S.T. Kompozity i nanostruktury [Composites and nanostructures] //Kompozity i nanostruktury. 2009. №1. S. 6–37.
20. Shi Z., Gu M., Liu J., Liu G., Lee J., Zhang D., Wu R. Interfacial reaction between the oxidized SiC particles and Al–Mg alloys //Chinese Science Bulletin. 2001. V. 46. №23. P. 1948–1952.
21. Du X., Gao T., Wu Y., Liu X. Effects of copper addition on the in-situ synthesis of SiC particles in Al–Si–C–Cu system //Materials & Design. 2014. V. 63. P. 194–199.

DOI: 10.18577/2071-9140-2014-0-s6-39-44

UDC: 669.018.28

Pages: 39-44

O.I. Grishina1, V.M. Serpova1, A.N. Zhabin1, E.I. Kurbatkina1

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,

The effect of heat treatment on specific electrical conductivity in aluminum composite material

The article presents the experimental results analysis of the effect of different heat treatment (annealing) on the value of the conductivity of a composite material based on aluminum alloy reinforced with discrete carbon fibers. The problem of wetting of the carbon fibers by molten aluminum during infiltration and suggested ways to improve it was shown. Samples of aluminum metal matrix composite material using liquid-phase technology, such as the method of forced infiltration were prepared. Article also shows the influence of the volume fraction of the reinforcing filler to a value of conductivity.

Keywords: metal matrix composite (MMC), carbon fibers, specific electrical conductivity, heat treatment

Reference List

1. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
3. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
4. Aljuminievye splavy [Aluminum alloys] /V kn. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi; Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 143–156. 
5. Milejko S.T. Kompozity i nanostruktury [Composites and nanostructures] //Kompozity i nanostruktury. 2009. №1. S. 6–37.
6. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
7. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] //Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
8. Kablov E.N., Grashhenkov D.V., Shhetanov B.V., Shavnev A.A., Njafkin A.N., Vdovin S.M., Nishhev K.N., Chibirkin V.V., Eliseev V.V., Jemih L.A. Metallicheskie kompozicionnye materialy na osnove Al–SiC dlja silovoj jelektroniki [Metal composite materials on the basis of Al–SiC for power electronics] //Mehanika kompozicionnyh materialov i konstrukcij. 2012. T. 2. №3. S. 359–368.
9. Karabasova Ju.S. Novye materialy [New materials]. M.: MISiS. 2002. 736 s.
10. Portnoj K.I., Salibekov S.E., Svetlov I.L., Chubarov V.M. Struktura i svojstva kompozicionnyh materialov [Structure and properties of composite materials]. M.: Mashinostroenie. 1979. 255 s.
11. Chawla N., Chawla K.K. Metal Matrix Composites. 2006. P. 99–123.
12. Abuzin Ju.A. Funkcional'nye metallicheskie kompozicionnye materialy i tehnologii v mashinostroenii [Functional metal composite materials and technologies in mechanical engineering] //Materialy v mashinostroenii. 2010. №6 (69). S. 52–54.
13. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
14. Kostikov V.I., Varenkov A.N. Kompozicionnye materialy na osnove aljuminievyh splavov, armirovannyh uglerodnymi voloknami [Composite materials on the basis of the aluminum alloys reinforced by carbon fibers]. M.: Intermet Inzhiniring. 2001. 528 s.
15. Hari Babu N., Zhongyun Fan, Eskin D.G. Application of external fields to technology of metalmatrixcomposite materials //TMS-2013 Annual Meeting Supplemental Proceedings. 2013. P. 1037–1044.
16. Kovtunov A.I., Mjamin S.V. Issledovanie tehnologicheskih i mehanicheskih svojstv sloistyh titanoaljuminievyh kompozicionnyh materialov, poluchennyh zhidkofaznym sposobom [Research of technological and mechanical properties of the layered titanoalyuminiyevy composite materials received in the liquid-phase way] //Aviacionnye materialy i tehnologii. 2013. №1. S. 9–12.
17. Kostikov V.I., Antipov V.I., Krivcun V.M. i dr. Issledovanie smachivanija uglerodnyh materialov rasplavami metallicheskih matric [Research of wetting of carbon materials rasplavami metal matrixes] /V sb. Kompozicionnye materialy: sb. trudov. M.: Nauka. 1981. S. 89–92.
18. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye aljuminievye splavy (k 100-letiju so dnja rozhdenija M.B. Al'tmana) [Cast aluminum alloys (to the 100 anniversary since the birth of M.B. Altman)] //Trudy VIAM. 2014. №4. Ct. 02 (viam-works.ru).
19. Borisoglebskij Ju.V., Galevskij G.V., Kulagin N.M. Metallurgija aljuminija [Aluminum metallurgy]. Novosibirsk: Nauka. 1999. 437 s.
20. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodjashhih osnovanij iz MMK Al–SiC v silovoj jelektronike i preobrazovatel'noj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] //Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
21. Saini V.K., Khan Z.A., Siddiquee A.N. Advancements in non-conventional machining of aluminum metal matrix composite materials //International Journal of Engineering Research & Technology. 2012. V. 1. №3. P. 2–13.

DOI: 10.18577/2071-9140-2014-0-s6-45-51

UDC: 666.266.51

Pages: 45-51

A.S. Chanikova1, M.V. Voropaeva2, L.A. Alexeeva2, L.A. Orlova3, V.I. Samsonov2

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,
[2] OJSC «ORPE «TECHNOLOGIYA»,
[3] D. MENDELEYEV UNIVERSITY OF CHEMICAL TECHNOLOGY OF RUSSIA,

Current state of developments in the field of radio transparent cordierite glass-ceramics

In recent years increasing interest of scientists are attracted by the glass-ceramic materials having advantages of technology of glass and crystal materials. The greatest practical application was received by cordierite glass-ceramics. It is caused by their technological effectiveness, high mechanical and thermal properties, high radio transparency and chemical resistance. In this article the main achievements in the field of synthesis, researches and technology of cordierite glass-ceramics for the last one and a half decades on world patent, scientific and technical data are considered. The main russian and foreign producers of cordierite glass-ceramics are given, the most known among them are: Corning Inc. (USA), Schott (Germany), Ohara Inc. (Japan), JSC «Fazar» and OJSC «ORPE «Technology». Results of recent researches, devoted to clarification of role of different nucleating agents, such as TiO2 and ZrO2, in processes of phase formation and formation of structure of cordierite glass-ceramics are shown. The data on development of new compositions of glass and properties of cordierite glass-ceramics received on their basis are provided. In conclusion the results of researches on creation of the radio transparent cordierite glass-ceramics with the increased thermal properties, carried out in OJSC «ORPE «Technology» are given.

Keywords: radio transparent cordierite glass-ceramics, nucleating agent, TiO2, ZrO2

Reference List

1. Zanotto E.D. A Bright future for glass-ceramics //American ceramic society bulletin. 2010. V. 89. №8. P. 19–27.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] //Steklo i keramika. 2012. №4. S. 7–11.
3. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Ju.E., Solncev S.St. Dispersnouprochnennye kompozity na osnove steklo/steklokristallicheskih matric: svojstva i oblasti primenenija (obzor) [Dispersnouprochnennye composites on basis glass/steklokristallicheskikh matrixes: properties and scopes (review)] //Aviacionnye materialy i tehnologii. 2014. №3. S. 45–54.
4. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Ju.E., Solncev S.St. Funkcional'nye kompozity na osnove steklo/steklokristallicheskih matric i diskretnyh napolnitelej: svojstva i oblasti primenenija [Functional composites on basis glass/steklokristallicheskikh matrixes and discrete fillers: properties and scopes] //Aviacionnye materialy i tehnologii. 2014. №S6. S. 52–58.
5. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline fibers α-Аl2O3] //Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
6. Shhetanov B.V., Kupcov R.S., Svistunov V.I. Metody poluchenija monokristallicheskih volokon oksida aljuminija dlja sozdanija kompozicionnyh materialov i vysokotemperaturnoj volokonnoj optiki [Methods of receiving single-crystal fibers of aluminum oxide for creation of composite materials and high-temperature fiber optics] //Trudy VIAM. 2013. №4. St. 01 (viam-works.ru).
7. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
8. Kablov E.N., Grashhenkov D.V., Uvarova N.E. Issledovanija metodom infrakrasnoj spektroskopii strukturnyh izmenenij gelej v processe termicheskoj obrabotki pri poluchenii vysokotemperaturnyh steklokeramicheskih materialov po zol'-gel' tehnologii [Researches by method of infrared spectroscopy of structural changes of gels in heat treatment process when receiving high-temperature steklokeramichesky materials on technology sol-gel] //Aviacionnye materialy i tehnologii. 2011. №2. S. 22–25.
9. Gregory A.G., Veasey T.J. The crystallization of cordierite glass: Review //Journal of Materials Science. 1971. №6. P. 1312–1321.
10. Loshmanov A.A., Sigaev V.N., Khodakovskaya R.Y., Pavlushkin N.M., Yamzin I.I. Small-angle neutron scattering on siliсa glasses containing titania //J. Appl. Cryst. 1974. №7. P. 207–210.
11. Zdaniewski W. DTA and X-ray analysis study of nucleation and crystallization of MgO–Al2O3–SiO2 glasses containing ZrO2, TiO2 and CeO2 //J. Amer. ceram. Soc. 1975. V. 58. №5–6. P. 163–169.
12. Tykachinskij I.D. Proektirovanie i sintez stekol i sitallov s zadannymi svojstvami [Design and synthesis of glasses and sitallov with the set properties]. M.: Strojizdat. 1977. 145 s.
13. Barry T.I., Cox J.M., Morrell R.J. Cordierite glass-ceramic – effect of TiO2 and ZrO2 content on phase sequence during heat treatmente //Journal of Materials Science. 1978. №13. P. 594–610.
14. Hodakovskaja R.Ja. Himija titansoderzhashhih stekol i sitallov [Chemistry of titansoderzhashchy glasses and sitallov]. M.: Himija. 1978. 284 s.
15. Pavlushkin N.M. Osnovy tehnologii sitallov [Technology bases sitallov]. M.: Strojizdat. 1979. 540 s.
16. McMillan P.W. Glass ceramic. London and New York: Academic Press. 1979. 285 p.
17. Strnad S. Steklokristallicheskie materialy [Steklokristallichesky materials]. M.: Strojizdat. 1988. 256 s.
18. Bobkova N.M., Silich L.M. Besshhelochnye sitally i steklokristallicheskie materialy [Besshchelochnye sitally and steklokristallichesky materials]. Minsk: Navuka i Tjehnika. 1992. 278 s.
19. Pinckney L.R., Beall G.H. Nanocrystalline non-alkali glass-ceramics //J. of Non-Crystalline Solids. 1997. V. 219. P. 219–227.
20. Sarkisov P.D. Napravlennaja kristallizacija stekla – osnova poluchenija mnogofunkcional'nyh steklokristallicheskih materialov [The directed crystallization has flown down – basis of receiving multifunction steklokristallichesky materials]. M.: RHTU im. D.I. Mendeleeva. 1997. 218 s.
21. Fokin V.M., Zanotto E.D. Surface and volume nucleation and growth in TiO2 cordierite glasses //J. of Non-Crystalline Solids. 1999. №246. P. 115–127.
22. Beall G.H., Pinckney L.R. Nanophase glass-ceramics //J. Amer. Cer. Soc. 1999. V. 82. P. 5–16.
23. Carl G., Höche T., Voigt B.  Crystallisation behaviour of a MgO–Al2O3–SiO2–TiO2–ZrO2 glass //Physics and Chemistry of Glasses. 2002. V. 43. P. 256–258.
24. Wange P., Hoche T., Russel C. Microstructure-property relationship in high strength MgO–Al2O3–SiO2–TiO2 glass-ceramics //J. of Non-Cryst. Solids. 2002. V. 298. P. 137–145.
25. Weaver D.T., Van Aken D.C., Smith J.D. The role of TiO2  and composition in the devitri-fication of near-stoichiometric cordierite //Journal of Materials Science. 2004. V. 39. P. 51–59.
26. Stoch L., Lelatko J. Mechanisms of crystal structure organization in magnesium alumino-silicate glass: HREM and analytical study //European Journal of Glass Science and Technology Part A. 2008. V. 48. P. 183–188.
27. Guignard M., Cormier L., Montouillout V., Menguy N., Massiot D., Hannon A. Environment of titanium and aluminum in a magnesium alumino-silicate glass //Journal of Physics: Condensed Matter. 2009. V. 21. P. 1–10.
28. Guignard M., Cormier L., Montouillout V., Menguy N., Massiot D.  Structural fluctuations and role of Ti as nucleating agent in an aluminosilicate glass //J. of Non-Cryst. Solids. 2010. №356. P. 1368–1373.
29. Dargaud O., Cormier L., Menguy N., Galoisy L., Calas G., Papin S., Querel G., Olivi L. Structural role of Zr4+ as a nucleating agent in a MgO–Al2O3–SiO2 glass-ceramics: A combined XAS and HRTEM approach //Journal of Non-Crystalline Solids. 2010. №356. P. 2928–2934.
30. Patzig C., Höche T., Hu Y., Ikeno H., Krause M., Dittmed M., Gawronski A., Rüssel C., Tanaka I., Henderson G.S. Zr coordination change during crystallization of MgO–Al2O3–SiO2–ZrO2 glass ceramics //Journal of Non-Crystalline Solids. 2013. V. 384. P. 47–54.
31. Shu-Ming Wang, Feng-Hua Kuang, Qing-Zhi Yan, Chang-Chun Ge, Long-Hao Qi. Crys-tallization and infrared radiation properties of iron ion doped cordierite glass-ceramics //J. of Alloys and Compounds. 2011. №509. P. 2819–2823.
32. Maurer R.D. Crystal nucleation in a glass containing titania //J. Appl. Phys. 1962. V. 33. P. 2132–2139.
33. Lembke U., Bruckner R., Kranold R., Hoche T.-I. Phase Formation Kinetics in a Glass Ceramic Studied by Small-Angle Scattering of X-rays and Neutrons and by Visible-Light Scattering //Journal of Applied Crystallography. 1997. №30. P. 1056–1064.
34. Furic K., Stoch L., Dutkiewicz J. Raman study of TiO2 role in SiO2–Al2O3–MgO–TiO2–ZnO glass crystallization //Spectrochim Acta. 2005. V. 61. P. 1653–1659.
35. Neilson G. Phase separation in glass and glass-ceramic systems //Discuss. Faraday Soc. 1970. V. 50. P. 145–154.
36. Steklokristallicheskij material dlja SVCh-tehniki [Steklokristallichesky material for the Microwave engineering]: pat. 2393124 Ros. Federacija; opubl. 27.06.2010.
37. Steklokristallicheskij material dlja SVCh-tehniki [Steklokristallichesky material for the Microwave engineering]: pat. 2498953 Ros. Federacija; opubl. 20.11.2013.
38. Tough cordierite glass-ceramics: pat. 7465687 US; pabl. 16.12.2008. 
39. Glass ceramic and method of producing the same: pat. 7300896 US; pabl. 27.11.2007.
40. Substrate for information recording medium and magnetic recording medium composed of crystallized glass: pat. 7015161 US; pabl. 21.03.2006.
41. Glass with high proportion of zirconium-oxide and its uses: pat. 6627567 US; pabl. 30.09.2003.
42. Crystallized glass for information recording medium:pat. 7264894 US; pabl. 04.09.2007.
43. Tough cordierite glass-ceramics: pat. 2007/0281850 US; pabl. 06.12.2007.
44. Steklokristallicheskij material [Steklokristallichesky material]: pat. 2374190 Ros. Federacija; opubl. 07.11.2009.

DOI: 10.18577/2071-9140-2014-0-s6-52-58

UDC: 666.9-16

Pages: 52-58

A.S. Chainikova1, L.A. Orlova2, N.V. Popovich2, Yu.E. Lebedeva1, S.St. Solncev1

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,
[2] D. MENDELEYEV UNIVERSITY OF CHEMICAL TECHNOLOGY OF RUSSIA,

Functional composites based on glass/glass-ceramics matrixes and discrete fillers: properties and possible applications

One of the most important problems of modern materials science is creation of the multifunctional materials, being characterized resistance to influence of high temperatures, dynamic loads and hostile environment. This problem can be solved by development of glass/glass-ceramic composite materials (SKKM) with special functional properties. In this paper the overview of modern scientific and patent literature devoted to creation and studying of functional SKKM with discrete fillers is provided. The most popular glass/glass-ceramic matrixes and the fillers used for their development are given. The tendency to creation of functional nanocomposites on the basis of carbon nanotubes (UNT) is shown. Structure and properties of these fillers are described. Methods for the production and functional properties of glass/glass-ceramic composite materials (electric conductivity, heat conductivity, thermal expansivity, dielectric and optical properties) reached for the last decade are presented. It is shown that the greatest number of works are deal with modification of electric and thermophysical properties of matrixes. The maximum increase of these properties is reached by means of introduction of carbon nanotubes. As one of the perspective directions in creation of SKKM with discrete fillers is noted the creation of luminescent materials. Among the possible applications of functional SKKM is allocated the creation of solid oxide fuel cells. Besides the great attention of scientists attracts creation of low temperature co-fired ceramics on the basis of SKKM perspective for integration, packaging and connection of different elements in uniform electronic modules.

Keywords: composite materials, glass, glass-ceramics, discrete fillers

Reference List

1. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] //Steklo i keramika. 2012. №4. S. 7–11.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Ju.E., Solncev S.St. Dispersnouprochnennye kompozity na osnove steklo/steklokristallicheskih matric: svojstva i oblasti primenenija [Dispersnouprochnennye composites on basis glass/steklokristallicheskikh matrixes: properties and scopes] //Aviacionnye materialy i tehnologii. 2014. №3. S. 45–54.
4. Roether J.A., Boccaccini A.R. Dispersion-reinforced glass and glass-ceramic matrix composites /In: Handbook of ceramic composites. Boston: Kluwer Academic Publishers. 2005. P. 485–511.
5. Ghosh A., Ghosh S., Das S., Das P.K., Mukherjee J., Banerjee R. Near infrared fluorescence and enhanced electrical conductivity of single walled carbon nanotube-lead silicate glass composite //Journal of Non-Crystalline Solids. 2014. №385. P. 129–135.
6. Rakov Je.G. Nanokompozity na osnove polimerov s uglerodnymi nanotrubkami [Nanocomposites on the basis of polymers with carbon nanotubes] //Vse materialy. Jenci-klopedicheskij spravochnik. 2010. №1. S. 11–20.
7. Hillig W.B. Strength and toughness of ceramic matrix composites //Ann. Rev. Mater. Sci. 1987. V. 17. P. 341–383.
8. Saruhan B. Oxide-based fibre-reinforced ceramic-matrix composites. Principles and Materials. Kluwer Academic Publication. 2003. 199 p.
9. Pierson H.O. Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. New Jersey: Noyes Publications. 1996. 339 p.
10. Warren R. Ceramic Matrix Composites. Springer. 1992. 276 p. 
11. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
12. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline fibers α-Al2O3] //Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
13. Larionov S.A., Deev I.S., Petrova G.N., Bejder Je.Ja. Vlijanie uglerodnyh napolnitelej na jelektrofizicheskie, mehanicheskie i reologicheskie svojstva polijetilena [Influence of carbon fillers on electrophysical, mechanical and rheological polyethylene properties] //Trudy VIAM. 2013. №9. St. 04 (viam-works.ru).
14. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] //Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
15. Akatenkov R.V., Anoshkin I.V., Beljaev A.A., Bitt V.V., Bogatov V.A., D'jachkova T.P., Kucevich K.E., Kondrashov S.V., Romanov A.M., Shirokov V.V., Horobrov N.V. Vlijanie strukturnoj organizacii uglerodnyh nanotrubok na radiojekranirujushhie i jelektroprovodjashhie svojstva nanokompozitov [Influence of the structural organization of carbon nanotubes on radio shielding and electrocarrying-out properties of nanocomposites] //Aviacionnye materialy i tehnologii. 2011. №1. S. 35–42.
16. Akatenkov R.V., Kondrashov S.V., Fokin A.S., Marahovskij P.S. Osobennosti formirovanija polimernyh setok pri otverzhdenii jepoksidnyh oligomerov s funkcializo-vannymi nanotrubkami [Features of forming of polymeric grids when curing epoxy oligomers with funktsializovanny nanotubes] //Aviacionnye materialy i tehnologii. 2011. №2. S. 31–37.
17. Mishhenko S.V., Tkachev A.G. Uglerodnye nanomaterialy. Proizvodstvo, svojstva, primenenie [Carbon nanomaterials. Production, properties, application]. M.: Mashinostroenie. 2008. 319 s.
18. El-Kheshen A.A., Zawrah M.F. Sinterability, microstructure and properties of glass/ceramic composites //Ceramics International. 2003. № 29. P. 251–257.
19. de Magalhaes C.M.S., Macedo Z.S., Valerio M.E.G., Hernandes A.C., Souza D.N. Preparation of composites of topaz embedded in glass matrix for applications in solid state thermoluminescence dosimetry //Nuclear Instruments and Methods in Physics Research B. 2004. №218. P. 277–282. 
20. Boccaccini A.R., Acevedo D., Dericioglu A.F., Jana C. Processing and characterisation of model optomechanical composites in the system sapphire fibre/borosilicate glass matrix //J. of materials processing technology. 2005. №169. P. 270–280. 
21. Brochu M., Gauntt B.D., Shah R., Miyake G., Loehman R.E. Comparison between barium and strontium-glass composites for sealing SOFCs //J. of the European Ceramic Society. 2006. №26. P. 3307–3313. 
22. Tessier-Doyen N., Grenier X., Huger M.,  Smith D.S., Fournier D., Roger J.P. Thermal conductivity of alumina inclusion/glass matrix composite materials: local and macroscopic scales //J. of the European Ceramic Society. 2007. №27. P. 2635–2640. 
23. Abdel-Hameed S.A.M., Bakr I.M. Effect of alumina on ceramic properties of cordierite glass-ceramic from basalt rock //J. of the European Ceramic Society. 2007. №27. P. 1893–1897.
24. Thomas B.J.C., Shaffer M.S.P., Boccaccini A.R. Sol-gel route to carbon nanotube borosilicate glass composites //Composites: Part A. 2009. №40. P. 837–845. 
25. Chen G., Tang L., Cheng J., Jiang M. Synthesis and characterization of CBS glass/ceramic composites for LTCC application //J. of Alloys and сompounds. 2009. №478. P. 858–862. 
26. Otieno G., Koos A.A., Dillon F., Wallwork A., Grobert N., Todd R.I. Processing and properties of aligned multi-walled carbon nanotube/aluminoborosilicate glass composites made by sol-gel processing //Carbon. 2010. №48. P. 2212–2217.
27. Abdel-Hameeda S.A.M., Fathi A.M. Preparation and characterization of silver nanoparticles within silicate glass ceramics via modification of ion exchange process //J. of Alloys and Compounds. 2010. №498. P. 71–76. 
28. Orlova L.A., Chajnikova A.S., Popovich N.V., Lebedeva Ju.E. Kompozity na osnove aljumosilikatnoj steklokeramiki s diskretnymi napolniteljami [Composites on the basis of silica-alumina glass ceramics with discrete fillers] //Steklo i keramika. 2013. №4. S. 41–47.
29. Arcaro S., Cesconeto F.R., Raupp-Pereira F., Novaes de Oliveira A.P. Synthesis and characterization of LZS/α-Al2O3 glass-ceramic composites for applications in the LTCC technology //Ceramics International. 2014. V. 40. №4. P. 5269–5274.
30. Jang B.K., Matsubara H. Electrical resistance measurement of RuO2 dispersed glass composites during tensile loading //Materials Letters. 2005. №59. P. 266–270. 
31. Albert S., Frolet N., Yot P., Pradel A., Ribes M. Characterisation of porous Vycor® 7930-AgI composites synthesised by electro-crystallisation /Microporous and Mesoporous Materials. 2007. №99. P. 56–61.
32. Gao L., Jiang L., Sun J. Carbon nanotube-ceramic composites //J. Electroceram. 2006. V. 17. P. 51–55.
33. Cho J., Boccaccini A.R., Shaffer M.S.P. Ceramic matrix composites containing carbon nanotubes //J Mater Sci. 2009. V. 44. P. 1934–1951.
34. Mir L., Amlouk A., Barthou C., Alaya S. Luminescence of composites based on oxide aerogels incorporated in silica glass host matrix //Materials Science and Engineering C. 2008. №28. P. 771–776.
35. Boccaccini A.R., Bernardo E., Blain L., Boccaccini D.N. Borosilicate and lead silicate glass matrix composites containing pyrochlore phases for nuclear waste encapsulation //J. of Nuclear Materials. 2004. №327. P. 148–158.
36. Minghui C., Shenglong Z., Mingli S., Fuhui W., Yan N. Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites //Materials Science and Engineering A. 2011. №528. P. 1360–1366.
37. Lee J.C., Kwon H.C., Kwon Y.P. Lee J.H., Park S. Porous ceramic fiber glass matrix composites for solid oxide fuel cell seals //Colloids and Surfaces A: Physicochem. Eng. Aspects. 2007. №300. P. 150–153.
38. Choi S.R., Bansal N.P., Garg A. Mechanical and microstructural characterization of boron nitride nanotubes-reinforced SOFC seal glass composite //Materials Science and Engineering A. 2007. №460–461. P. 509–515. 
39. Sakuragi S., Funahashi Y., Suzuki T. Non-alkaline glass-MgO composites for SOFC sealant //J. of Power Sources. 2008. №185. P. 1311–1314.
40. Zhou D.-X., Sun R.-G., Gong S.-P., Hu Y.-X. Low-temperature sintering and microwave dielectric properties of 3Z2B glass-Al2O3 composites //Ceramics International. 2011. №37. P. 2377–2382.
41. Jung B.-H., Hwang S.-J., Kim H.-S. Glass-ceramic for low temperature co-fired dielectric ceramic materials based on La2O3–B2O3–TiO2 glass with BNT ceramics //J. of the European Ceramic Society. 2005. №25. P. 3187–3193.
42. Chen S., Zhang S., Zhou X., Wen Z. Preparation and properties of the barium borate glassy matrix composite materials containing fused silica and monoclinic zirconia //J. of Alloys and Compounds. 2011. №509. P. 4848–4853.

DOI: 10.18577/2071-9140-2014-0-s6-59-66

UDC: 661.183.4-911.48

Pages: 59-66

Yu.E. Lebedeva1, N.V. Popovich2, L.A. Orlova2, A.S. Chaynikova2

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIAL,
[2] D. MENDELEYEV UNIVERSITY OF CHEMICAL TECHNOLOGY OF RUSSIA,

Synthesis and perspective application of materials in the Y2O3-Al2O3-SiO2 system

Phase formation processes of Y2O3-Al2O3-SiO2 system are considered. High melting temperature, low oxygen tranmittivity, low value of thermal expansion close to silicon carbide one - all this does yttrium silicates excellent components for protection silicon carbide materials from influence of high temperatures in oxidation atmosphere now.

Keywords: yttrium silicates, high temperature coatings, silicon carbide

Reference List

1. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Grashhenkov D.V., Solncev S.St., Shhegoleva N.E., Naumova A.S., Gaponov B.N. Steklokeramicheskij kompozicionnyj material [Steklokeramichesky composite material] //Aviacionnye materialy i tehnologii. 2012. №S. S. 368–372.
3. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
4. Sevast'janov V.G., Simonenko E.P., Simonenko N.P., Kuznecov N.T. Sintez vysokodispersnogo tugoplavkogo oksida cirkonija–gafnija–ittrija s ispol'zovaniem zol'-gel' tehniki [Synthesis of high-disperse high-melting oxide of zirconium-hafnium-yttrium with use equipment sol-gel] //Zhurnal neorganicheskoj himii. 2012. №57(3). S. 355–361.
5. Simonenko E.P., Ignatov N.A., Simonenko N.P., Ezhov Ju.S., Sevast'janov V.G., Kuznecov N.T. Sintez vysokodispersnyh sverhtugoplavkih karbidov tantala-cirkonija Ta4ZrC5 i tantala-gafnija Ta4HfC5 cherez zol'-gel' tehniku [Synthesis of high-disperse superhigh-melting carbides of Ta4ZrC5 tantalum-zirconium and Ta4HfC5 tantalum hafnium through sol-gel to equipment] //Zhurnal neorganicheskoj himii. 2011. №56(11). S. 1763–1769.
6. Sposob poluchenija vysokodispersnyh tugoplavkih karbidov dlja pokrytij i kompozitov na ih osnove [Way of receiving high-disperse high-melting carbides for coverings and composites on their basis]: pat. 2333888 Ros. Federacija; opubl. 20.09.2008.
7. Sposob poluchenija nanodispersnyh oksidov [Way of receiving nanodisperse oxides]: pat. 2407705 Ros. Federacija opubl. 27.12.2010.
8. Simonenko E.P., Simonenko N.P., Sevast'janov V.G., Grashhenkov D.V., Kuznecov N.T., Kablov E.N. Funkcional'no gradientnyj kompozicionnyj material SiC/(ZrO2–HfO2–Y2O3), poluchennyj s primeneniem zol'-gel' metoda [Functionally gradient SiC (/ZrO2–HfO2–Y2O3) composite material received using sol-gel of method] //Kompozity i nanostruktury. 2011. №4. S. 52–64.
9. Sevast'janov V.G., Simonenko E.P., Ignatov N.A., Ezhov Ju.S., Simonenko N.P., Kuznecov N.T. Nizkotemperaturnyj sintez nanodispersnyh karbidov titana, cirkonija i gafnija [Low-temperature synthesis of nanodisperse carbides of titanium, zirconium and hafnium] //Zhurnal neorganicheskoj himii. 2011. T. 56. №5. S. 707–719.
10. Lee W.E., Hilmas G.E. Microstructural сhanges in β-silicon nitride grains upon crystallizing the grain-boundary glass //J. Amer. Ceram. Soc. 1989. V. 72. №10. P. 1931–1937.
11. Becerro A.I., Escudero A., Florian P., Massiot D., Albaa M.D. Revisiting Y2Si2O7 and Y2SiO5 polymorphic structures by 89Y MAS-NMR spectroscopy //J. of Solid State Chemistry. 2004. №177. P. 2783–2789.
12. Drummond C.H., Lee W.E. Cristallization and Characterization of Y2O3–SiO2 //Glasses Ce-ram. Eng. Sci. Proc. 1988. V. 9. №9–10. P. 1343–1354.
13. Cock A.M., Shapiro I.P., Todd R.I., Roberts S.G. Effects of Yttrium on the Sintering and Microstructure of Alumina–Silicon Carbide «Nanocomposites» //J. Am. Ceram. Soc. 2005. V. 88. №9. P. 2354–2361.
14. Fukuda K., Matsubara H. Thermal Expansion of δ–Yttrium Disilicate //J. Amer. Ceram. Soc. 2004. V. 87. №1. P. 89–92.
15. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
16. Kolitsch U., Seifert H.J., Ludwig T., Aldinger F. Phase equilibria and crystal chemistry in the Y2O3–Аl2О3–SiO2 system //J. of Materials Research. 1999. №14. V. 2. P. 447–455.
17. Toropov N.A. i dr. Diagrammy sostojanija silikatnyh system [Charts of condition of silicate systems]: Spravochnik. M.-L.: Nauka. 1965. 258 s.
18. Harrysson R., Vomacka P. Glass formation in the system Y2O3–Аl2О3–SiO2 under conditions of laser melting //J. of the European Ceramic Society. 1994. №14. P. 377–382.
19. Courcot E., Rebillat F., Teyssandier F., Louchet-Pouillerie C. Thermochemical stability of the Y2O3–SiO2 system //J. of the European Ceramic Society. 2010. V. 30. P. 905–910.
20. Sainz М.A., Osendi M.I., Miranzo P. Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying //Surface & Coatings Technology. 2008. №202. P. 1712–1717.
21. Rabuhin A.I., Savel'ev V.G. Fizicheskaja himija tugoplavkih nemetallicheskih i silikatnyh soedinenij [Physical chemistry of high-melting nonmetallic and silicate connections]. M.: INFRA-M. 2008. 296 s.
22. Toropov I.A., Bondar' I.A., Lazarev A.N., Smolin Ju.I. Silikaty redkozemel'nyh jelementov i ih analogi [Silicates of rare earth elements and their analogs]. L.: Nauka. 1971. 230 s.
23. www.mincryst.ru
24. Shima J.B., Yoshikawa A., Nikl M., Soloviev N., Pejchal J., Yoon D.H., Fukuda T. Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method //J. of Crystal Growth. 2003. №256. P. 298–304.
25. Liang Wu, Guanghua Liu, Jiangtao Li, Bin He, Zengchao Yang, Yixiang Chen. Dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 system //Ceramics – Silikáty. 2011. V. 55. №3. P. 228–231.
26. Del' Pino K.H.S. Termicheskoe razlozhenie i nekotorye fiziko-himicheskie svojstva kristallogidratov nitrata ittrija [Thermal decomposition and some physical and chemical properties of crystalline hydrates of yttrium nitrate]: Avtoref. dis. k.h.n. M.: RHTU im. Mendeleeva.1981. 16 s.
27. Yahong Zhang, Alexandra Navrotsky. Thermochemistry of Glasses in the Y2O3–Al2O3–SiO2 System //J. Am. Ceram. Soc. 2003. V. 86. №10. P. 1727–1732.
28. Shen Xiaoyi, Zhai Yuchun. Preparation and optical properties of Y2O3/SiO2 powder //Rare Metalls. 2011. V. 30. №1. Р. 33–38.
29. MacLaren I., Richter G. The structure and possible origins of stacking faults in gamma-yttrium disilicate //Philosophical Magazine. 2009. V. 89. №2. P. 169–181.
30. Ya-Qin Wang, Jian-Feng Huang, Li-Yun Cao, Xie-Rong Zeng. Direct Preparation of Y2SiO5 Nanocrystallites by a Microwave Hydrothermal Process //ISRN Nanotechnology. 2011. V. 1. P. 1–5.
31. Ziqi Sun, Meishuan Li, Yanchun Zhou. Thermal properties of single-phase Y2SiO5 //J. of the European Ceramic Society. 2009. №29. P. 551–557.
32. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–385.
33. Solncev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklokeramicheskie pokrytija i kompozicionnye materialy [High-temperature steklokeramichesky coverings and composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 359–368.
34. Huang Jian-Feng, Zeng Xie-Rong, Li He-Jun, Xiong Xin-Bo, Fu Ye-Wei, Huang Min. SiC/yttrium silicate multi-layer coating for oxidation protection of carbon/carbon composites //J. of Materials science. 2004. №39. P. 7383–7385.
35. Liu Miao, Huang Jianfeng, Zhang Yutao, Deng Fei, Cao Liyun, Wu Jianpeng. Phase, microstructure, and oxidation resistance of yttrium silicates coatings prepared by a hydrothermal electrophoretic deposition process for C/C composites //J. Coat. Technol. Res. 2008. V. 10. №1007. P. 128–136.
36. Webster J.D., Westwood M.E., Hayes F.H. Oxidation Protection Coatings for C/SiC Based on Yttrium Silicate //J. Eur. Ceram. Soc. 1998. V. 18. P. 2345–2350.
37. Aparicio M., Duran A. Oxidation protection of SiC (C/SiC) composite material by combination of yttrium silicates and silica coatings //J. of Am. Cer. Society. 2000. V. 83. №6. P. 1351–1355.
38. Ziqi Sun, Meishuan Li, Yanchun Zhou. Kinetics and Mechanism of Hot Corrosion of γ-Y2Si2O7 in Thin-Film Na2SO4 Molten Salt //J. Am. Ceram. Soc. 2008. №91(7). P. 2236–2242.
39. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] //Trudy VIAM. 2013. №2. St. 06 (viam-works.ru).
40. Sigaev V.N., Atroschenko G.N., Savinkov V.I., Sarkisov P.D., Babajew G., Lingel K., Lo-renzi R., Paleari A. Structural rearrangement at the yttrium-depleted surface of HCl-processed yttrium aluminosilicate glass for 90Y-microsphere brachytherapy //Materials Chemistry and Physics. 2012. V. 1. №133. P. 24–28.
41. Atroshhenko G.N., Savinkov V.I., Paleari A., Sarkisov P.D., Sigaev V.N. Stekloobraznye mikrosfery dlja jadernoj mediciny s povyshennym soderzhaniem oksida ittrija [Stekloobraznye of microsphere for nuclear medicine with the raised content of yttrium oxide] //Steklo i keramika. 2012. №2. S. 3–7.
42. Sigaev V.N., Atroschenko G.N., Savinkov V.I., Paleari A.I., Sinyukov V., Levchuk A.V. Glass microspheres in the Y2O3–Al2O3–SiO2 system with a high content of yttrium oxide /In: Proceedings of 2011 International Congress on Engineering and Technology. IEEE. China. 2011. V. 4. P. 323–325.

DOI: 10.18577/2071-9140-2014-0-s6-67-72

UDC: 666.113.641ꞌ:541.182.642/644:620.192.42

Pages: 67-72

Yu.E. Lebedeva1, N.V. Popovich2, L.A. Orlova2, A.S. Chaynikova2, D.V. Grachshencov1

[1] FEDERAL STATE UNITARY ENTERPRISE ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS,
[2] D. MENDELEYEV UNIVERSITY OF CHEMICAL TECHNOLOGY OF RUSSIA,

Investigation of rheological properties at sol-gel synthesis of materials in Y2O3-SiO2 system

Data of rheological properties investigation of sol-gel solutions in the Y2O3-SiO2 system are presented in this work. Influence of initial reagent kinds, concentration and molar ration of water and alkoxides on the rheological properties and gel-formation processes is determined.

Keywords: sol-gel method, yttrium-silicate system, rheological properties, gel-formation

Reference List

1. Akpan U.G., Hameed B.H. The advancements in sol-gel method of doped-TiO2 photocatalysts //Applied Catalysis A: General. 2010. V. 375. P. 1–11.
2. Wang D., Bierwagen G.P. Sol-gel coatings on metals for corrosion protection //Progress in Organic Coatings. 2009. V. 64. P. 327–338.
3. Simonenko E.P., Ignatov N.A., Simonenko N.P., Ezhov Ju.S., Sevast'janov V.G., Kuznecov N.T. Sintez vysokodispersnyh sverhtugoplavkih karbidov tantala-cirkonija Ta4ZrC5 i tantala-gafnija Ta4HfC5 cherez zol'-gel' tehniku [Synthesis of high-disperse superhigh-melting carbides of Ta4ZrC5 tantalum-zirconium and Ta4HfC5 tantalum hafnium through sol-gel to equipment] //Zhurnal neorganicheskoj himii. 2011. №56(11). S. 1763–1769.
4. Sevast'janov V.G., Simonenko E.P., Simonenko N.P., Kuznecov N.T. Sintez vysokodis-persnogo tugoplavkogo oksida cirkonija–gafnija–ittrija s ispol'zovaniem zol'-gel' tehniki [Synthesis of high-disperse high-melting oxide of zirconium-hafnium-yttrium with use equipment sol-gel] //Zhurnal neorganicheskoj himii. 2012. №57(3). S. 355–361.
5. Simonenko E.P., Simonenko N.P., Sevast'janov V.G., Grashhenkov D.V., Kuznecov N.T., Kablov E.N. Funkcional'no gradientnyj kompozicionnyj material SiC/(ZrO2–HfO2–Y2O3), poluchennyj s primeneniem zol'-gel' metoda [Functionally gradient SiC/(ZrO2–HfO2–Y2O3) composite material received using sol-gel of method] //Kompozity i nanostruktury. 2011. №4. S. 52–64.
6. Zarzyki J. Past and Present of Sol-Gel Science and Technology //J. of Sol-Gel Science and Technology. 1997. №8. Р. 17–22.
7. Mackenzie J.D. Sol-Gel Research-Achievements Since 1981 and Hrospects for the Future //J. of Sol-Gel Science and Technology. 2003. №26. Р. 23–27.
8. Andrianov N.T. Zol'-gel' metod v tehnologii oksidnyh materialov [Sol-gel method in technology of oksidny materials] //Steklo i keramika. 2003. №10. S. 17–22.
9. Grashhenkov D.V., Solncev S.St., Shhegoleva N.E., Naumova A.S., Gaponov B.N. Steklokeramicheskij kompozicionnyj material [Steklokeramichesky composite material] //Aviacionnye materialy i tehnologii. 2012. №S. S. 368–372.
10. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
11. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
12. Gajamov A.M., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Vybor zharostojkogo pokrytija dlja zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Choice of heat resisting covering for heat resisting nickel reny-ruteniysoderzhashchy alloy of the VZhM4 brand] //Trudy VIAM. 2014. №1. St. 01 (viam-works.ru).
13. Solncev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklokeramicheskie pokrytija i kompozicionnye materialy [High-temperature steklokeramichesky coverings and composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 359–368.
14. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytija dlja kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] //Trudy VIAM. 2013. №2. St. 06 (viam-works.ru).
15. http://www.bccresearch.com/avm/AVM015C.asp.
16. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i vysokih tehnologij budushhego [Rare metals and rare earth elements – materials of modern and high technologies of the future] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
17. Emilie Courcot, Francis Rebillat, Francis Teyssandier, Caroline Louchet-Pouillerie. Thermochemical stability of the Y2O3–SiO2 system //Journal of the European Ceramic Society. 2010. V. 30. P. 905–910.
18. MacLaren I., Richter G. The structure and possible origins of stacking faults in gamma-yttrium disilicate //Philosophical Magazine. 2009. V. 89. №2. P. 169–181.
19. Shen Xiaoyi, Zhai Yuchun. Preparation and optical properties of Y2O3/SiO2 powder //Rare metals. 2011. V. 30. №1. Р. 33–38.
20. Ya-Qin Wang, Jian-Feng Huang, Li-Yun Cao and Xie-Rong Zeng Direct. Preparation of Y2SiO5 Nanocrystallites by a Microwave Hydrothermal Process //ISRN Nanotechnology. 2011. V. 1. P. 1–5.
21. Ziqi Sun, Meishuan Li, Yanchun Zhou. Thermal properties of single-phase Y2SiO5 //Journal of the European Ceramic Society. 2009. №29. P. 551–557.
22. Aparacio M., Duran A. Yttrium silicate Coatings for Oxidation Protection of Carbon-silicon Carbide Composites //J. Amer. Ceram. Soc. 2000. V. 83. №6. P. 1351–1355.
23. Kablov E.N., Solncev S.S., Rozenenkova V.A., Mironova N.A. Sovremennye polifunkcional'nye vysokotemperaturnye pokrytija dlja nikelevyh splavov, uplotnitel'nyh metallicheskih voloknistyh materialov i berillievyh splavov [Modern multifunctional high temperature coatings for nickel alloys, sealing metal fibrous materials and beryllium alloys] //Novosti materialovedenija. Nauka i tehnika. 2013. №1 (materialsnews.ru).
24. Himich N.N. Sintez kremnegelej i organo-neorganicheskih gibridov na ih osnove [Synthesis kremnegely and organo-inorganic hybrids on their basis]: Avtoref. dis. d.h.n. SPb. 2004. 40 s.
25. Maksimov A.I., Moshnikov V.A., Tairov Ju.M., Shilova O.A. Osnovy zol'-gel' tehnologii nanokompozitov [Bases sol-gel of technology of nanocomposites]: Monografija. SPb.: Tehnomedia, Jelmor. 2008. 255 s.
26. Sarkisov P.D., Orlova L.A., Popovich N.V., Anan'eva Ju.E. Processy strukturoobrazovanija pri poluchenii ittrijsilikatnyh materialov zol'-gel' metodom [Structurization processes when receiving ittriysilikatny materials sol-gel method] //Steklo i keramika. 2007. №1. S. 3–6.