Archive

Aviation materials and tecnologes №2, 2013

UDC: 621.74:669.018.44

Pages: 3-7

E.G. Arginbaeva1, O.A. Bazyleva1, V.G. Kolodochkina1, K.K. Khvatsky1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

The influence of crystallographic orientation on structure, physical and mechanical properties of intermetallic alloys based on Ni 3Al

The article presents the results of study of single-crystal samples of VKNA-type intermetallic alloy with different crystallographic orientations (CGO). The effect of crystallographic orientation <001>, <011> and <111> on microstructure, elastic modulus, tensile strength, yield strength and rapture strength. It was stated that the choice of the CGO depends on working conditions of each specific part. Accordingly, aircraft designer may choose not only materials, but also production technologies, which ensure maximum values of physical and mechanical properties. Application of intermetallic materials such as low-density VKNA alloy allows a reduction in the weight of components by 10–15%, labor input in their production, an increase of working temperature by 50–100°C, an increase in service life of nozzle blades and turbine disks about 3 and 1,5–2 times respectively and a reduction in costs of ingots as compared with commercial superalloys by 25–30%.

Keywords: VKNA, single-crystal sample, crystallographic orientation (CGO), microstructure, Ni3Al intermetallic alloy, elasticity modulus, tensile strength, yield strength, elongation, rapture strength

Reference List

1. Inozemcev A.A., Nihamkin M.A., Sandrackij V.L. Osnovy konstruirovanija aviacionnyh dvigatelej i jenergeticheskih ustanovok [Basis for designing aircraft engines and power plants]. M.: Mashinostroenie. 2008. T. 2. S. 159‒192.
2. Bazyleva O.A., Arginbaeva Je.G., Turenko E.Ju. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting foundry intermetallic alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57‒60.
3. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Litye lopatki iz intermetallida nikelja (Ni3Al) dlja vysokotemperaturnyh gazovyh turbin [Alloy blades intermetallic nickel (Ni3Al) for high-temperature gas turbines] //Konversija v mashinostroenii. 2004. №4. S. 57‒59.
4. Povarova K.B., Bazyleva O.A., Kazanskaja N.K., Drozdov A.A. i dr. Konstrukcionnye zharoprochnye splavy na osnove Ni3Al: poluchenie, struktura i svojstva [Constructional heat resisting alloys on the basis of Ni3Al: receiving, structure and properties] //Materialovedenie. 2011. №4. S. 39–48.
5. Kablov E.N., Sidorov V.V., Rigin V.E., Gorjunov A.V. Sovremennye tehnologii poluchenija prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technologies of receiving the bar stock from foundry heat resisting alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97‒105.
6. Bondarenko Ju.A., Echin A.B., Surova V.A., Narskij A.R. O napravlennoj kristal-lizacii zharoprochnyh splavov s ispol'zovaniem ohladitelja [About the directed crystallization of heat resisting alloys with cooler use] //Litejnoe proizvodstvo. 2011. №5. S. 36–39.
7. Bondarenko Ju.A., Bazyleva O.A., Echin A.B., Surova V.A., Narskij A.R. Vysokogradientnaja napravlennaja kristallizacija detalej iz splava VKNA-1V [The high-gradient directed crystallization of details from VKNA-1V alloy] //Litejnoe proizvodstvo. 2012. №6. S. 12‒16.
8. Kablov E.N., Golubovskij E.R. Zharoprochnost' nikelevyh splavov [Heat-resistant nickel alloys]. M.: Mashinostroenie. 1998. 152 s

UDC: 669.715

Pages: 8-11

D.K. Ryabov1, N.I. Kolobnev1, S.V. Samohvalov1, V.V. Makhsidov1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

The effect of natural ageing on evolution of mechanical properties of 1913 aluminium alloy during artificial ageing

The effect of natural ageing on evolution of mechanical and corrosion (intergranural, exfoliation) properties during artificial ageing of Russian medium strength corrosion resistant weldable aluminium alloy 1913 (Al–Zn–Mg-(Cu)) is described. Kinetics of long-time natural aging is studied.

Keywords: 1913 alloy, natural aging, quenching, mechanical properties

Reference List

1. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167‒182.
2. Elagin V.I., Zaharov V.V., Dric A.M. Struktura i svojstva splavov sistemy Al‒Zn‒Mg [Structure and properties of alloys of Al‒Zn‒Mg system]. M.: Metallurgija. 1982. 222 s.
3. Elagin V.I. Legirovanie deformirovannyh aljuminievyh splavov perehodnymi metallami [Doping of the deformed aluminum alloys transitional metals]. M.: Metallurgija. 1975. 321 s.
4. Promyshlennye aljuminievye splavy [Industrial aluminum alloys]: Spravochnik /Pod red. F.I. Kvasova, I.N. Fridljandera. 2-e izd., pererab. i dop. M.: Metallurgija. 1984. 528 s.
5. Fridljander I.N. Vysokoprochnye deformiruemye aljuminievye splavy [High-strength deformable aluminum alloys]. M.: Oborongiz. 1960. 290 s.
6. Fridljander I.N. Aljuminievye deformiruemye konstrukcionnye splavy [Aluminum deformable constructional alloys]. M.: Metallurgija. 1979. 208 s.
7. Martinsen F.A., Ehlers F.J.H., Torster M., Holmestad R. Reversal of the negative natural aging effect in Al–Mg–Si alloys //Acta Materialia. 2012. V. 60. P. 6091–6101.
8. Rjabov D.K., Kolobnev N.I., Mahsidov V.V., Fomina M.A. O stabil'nosti peresyshhennogo tverdogo rastvora listov splava 1913 pri zakalke [About stability of supersaturated firm solution of sheets of an alloy 1913 when training] //Metallurgija mashinostroenija. 2012. №3. S. 30‒33.
9. Loshhinin Ju.V., Pahomkin S.I., Fokin A.S. Vlijanie skorosti nagrevanija pri issledovanii fazovyh prevrashhenij v aljuminievyh splavah metodom DSK [Influence of speed of heating at research of phase transformations in aluminum alloys the DSK method] //Aviacionnye materialy i tehnologii. 2011. №2. S. 3‒6.
10. Starenie splavov [Aging of alloys]: Lekcii /Per. s angl. L.I. Mirkina. M.: Metallurgizdat. 1962. 494 s.
11. Novikov I.I. Teorija termicheskoj obrabotki metallov [Theory of heat treatment of metals]: Uchebnik dlja vuzov. M.: Metallurgija. 1986. 479 s.
12. Bergi L.K., Gjonnes J., Hansen V. Gp-zones in Al–Zn–Mg alloys and their role in artificial aging //Acta materialia. 2001. V. 49. P. 3443–3451.
13. Alieva S.G., Al'tman M.B., Ambarcumjan S.M. i dr. Promyshlennye aljuminievye splavy [Industrial aluminum alloys]: Spravochnik. M.: Metallurgija. 1984. 527 s.
14. Liddicoat P.V., Honma T., Stephenson L.T., Ringer S.P. Evolution of Nanostructure During the Early Stages of Ageing in Al‒Zn‒Mg‒Cu Alloys /Proceedings of the 10-th International Conference on Aluminium Alloys. Canada. 2006. P. 555‒560.

UDC: 629.7.023.224

Pages: 12-15

P.V. Matveev1, S.A. Budinovsky1, S.A. Mouboiadjian1, A.A. Kos'min1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

High-temperature coatings for intermetallic nickel-based alloys

Possibility of development of high-temperature coating enabling an increase in service life of intermetallic nickel-based alloys working at 1200°C is shown. High temperature tests of coatings of different compositions and structures were made. Experimental results show that a condensation-diffusion coating containing carbide-forming and reactive elements is optimal.

Keywords: coatings, high-temperature coatings, plasma-sprayed coatings, plasma-spraying technology, heat resistance, intermetallic alloys

Reference List

1. Bazyleva O.A., Arginbaeva Je.G., Turenko E.Ju. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting foundry intermetallic alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
2. Mubojadzhjan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnjajushhie ionno-plazmennye pokrytija dlja lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for shovels and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81

UDC: 629.7.023:66.045.3

Pages: 16-18

A. Mayorova1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Mathematical modeling of heat transfer and optimization of multilayer thermal protective system

Multilayer thermal protective element consisting of a fibrous inner layer and the reflective radiation foils intended for reusable launch vehicles was investigated. Mathematical modeling with a different number of foils was held and their optimal location coordinates were calculated.

Keywords: reusable launch vehicles, thermal protective system, thermal engineering

Reference List

1. Tinjakova E.V., Grashhenkov D.V. Teploizoljacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Heat-insulating material on a basis the mullite-corundum and quartz fibers] //Aviacionnye materialy i tehnologii. 2012. №3. S. 43‒46.
2. Grashhenkov D.V., Shhetanov B.V., Tinjakova E.V., Shheglova T.M. O vozmozhnosti ispol'zovanija kvarcevogo volokna v kachestve svjazujushhego pri poluchenii legkovesnogo teplozashhitnogo materiala na osnove volokon Al2O3 [About possibility of use of quartz fiber as a lightweight heat-shielding material binding at receiving on the basis of Al2O3 fibers] //Aviacionnye materialy i tehnologii. 2011. №4. S. 8‒14.
3. Glass D., Dirling R., Croop H., Fry T., Frank G. Materials Development for Hypersonic Flight Vehicle /In.: AIAA Paper 2006‒8122. 2006, NASA, Langley Research Center. 13 p.
4. Daryabeigi K. Heat Transfer in High-Temperature Fibrous Insulation /In.: Proceedings 8-th   AIAA/ASME Joint Thermophysics and Heat Transfer Conference (June 24‒26, 2002, St. Louis, MO). AIAA 2002‒3332. 15 p.
5. Mokrecova I.A., Zuev A.V. Matematicheskoe modelirovanie i optimizacija processa tep-loperenosa v mnogoslojnyh teplozashhitnyh pokrytijah mnogorazovyh kosmicheskih apparatov [Mathematical modeling and optimization of process of heattransfer in multilayered heat-shielding coverings of reusable spacecrafts] //Vse materialy. Jenciklopedicheskij spravochnik s Prilozheniem «Kommentarii k standartam, TU, sertifikatam». 2012. №5. S. 61‒64.
6. Reznik S.V. Matematicheskie modeli radiacionno-konduktivnogo teploobmena v materialah teplovoj zashhity mnogorazovyh transportnyh kosmicheskih sistem [Mathematical models of radiation and conductive heat exchange in materials of thermal protection of reusable transport space systems] //IFZh. 2000. T. 73. №1. S. 11–25.
7. Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning, Reading, Mass.: Addison Wesley. 1989. 432 s.

UDC: 621.792.053

Pages: 19-21

L.A. Dement’eva1, A.A. Serezhenkov1, N.F. Lukina1, K.E. Kutsevich1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Adhesive prepregs and layered materials on their basis

Distinctive features of adhesive prepregs and results of their application are demonstrated. Description of a new class of alumopolymer layered materials (SIAL grade) – a hybrid material on the basis of thin sheets made from structural aluminium alloys and fiberglass on the basis of adhesive prepregs from melt-type bonding adhesive and glass fillers with various structure of reinforcing is given.

Keywords: structural adhesives, adhesive prepregs, adhesive composite materials, coal- and glass fillers, adhesive matrix, processing characteristics, SIALs, strength properties

Reference List

1. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of production of constructional fibrous PKM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38‒42.
2. Dushin M.I., Hrul'kov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovanija detalej iz polimernyh kompozicionnyh materialov [Selection of process parameters autoclave molding parts made of polymer composites] //Aviacionnye materialy i tehnologii. 2011. №3. S. 20‒26.
3. Anihovskaja L.I., Minakov V.T. Klei i kleevye prepregi dlja perspektivnyh izdelij aviakosmicheskoj tehniki [Adhesives and adhesive prepregs for advanced aerospace products] /V sb.: Aviacionnye materialy. Izbrannye trudy «VIAM» 1932‒2002: Jubilejnyj nauch.-tehnich. sb. M.: MISiS‒VIAM. 2002. S. 315‒326.
4. Dement'eva L.A., Lukina N.F., Serezhenkov A.A., Kucevich K.E. Osnovnye svojstva i naznachenie PKM na osnove kleevyh prepregov [Main properties and usages RMB based adhesive prepreg] /V sb. tezisov dokladov XIX Mezhdunarodnoj nauch.-tehnich. konf. «Konstrukcii i tehnologija poluchenija izdelij iz nemetallicheskih materialov». Obninsk. 2010. S. 11‒12.
5. Fridljander I.N., Anihovskaja L.I., Senatorova O.G. i dr. /V sb. trudov Mezhdunarodnoj konf. «Sloistye kompozicionnye materialy‒98». Volgograd. 1998. S. 30‒32.
6. Senatorova O.G., Antipov V.V., Lukina N.F., Sidel'nikov V.V., Kotova E.V. Vysoko-prochnye treshhinostojkie legkie sloistye aljumostekloplastiki klassa SIAL – perspektivnye materialy dlja aviacionnyh konstrukcij [Cracking high-class lightweight layered aluminum-fiberglass class SIAL – advanced materials for aircraft structures] //Tehnologija legkih splavov. 2010. №1. S. 28‒31.

UDC: 678.8

Pages: 22-25

M.I. Dushin1, R.R. Mukhametov1, A.A. Platonov1, Yu.I. Merkulova1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Study of filtration characteristics of reinforcing fillers and binders in the development of non-out-of-autoclave technology for polymer composite material

Features of impregnation under pressure for manufacturing products from polymer composite material are described; data on study of properties of carbon fillers depending on the applied compacting pressure and associated volumetric filling with fibers and also permeability characteristics of fillers and viscosity of binders used in this work are given.

Keywords: impregnation, pressure, time of impregnation, permeability viscosity, properties

Reference List

1. Masket M. Techenie odnorodnyh zhidkostej v poristoj srede [Flowing of uniform liquids in the porous environment]. Gostoptehizdat. 1949. 358 s.
2. Dushin M.I., Hrul'kov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Non-autoclave molding carbon fiber based prepregs obtained by mortar technology] //Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
3. Mihajlin Ju.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tehnologii. 2008. 822 s.
4. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of production of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38‒42.

UDC: 678.8

Pages: 26-28

V.G. Zheleznyak1, L.V. Chursova1, M.M. Grigor’ev1, E.I. Kosarina1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Study of an increase in shock resistance of polycyanurate with modifier based on linear heat-resistant polymers

Compositions on the basis of aryldicyanate and polyarylsulfone were considered. An effect of introduction of modifier on shock resistance of aryldicyanate and an effect of polyarylsulfone on structuring process, physical, chemical and operational properties of the composition was studied.

Keywords: aryldicyanate, polyarylsulfone, structuring, polycyclotrimerization, PCM

Reference List

1. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologija [Polymeric composite materials: structure, properties, technology]: Ucheb. posobie. SPb.: Professija. 2008. 560 s.
2. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [History of aviation materials science. VIAM – 80 years: years and people] /Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. 520 s.
3. Mihajlin Ju.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tehnologii. 2008. 822 s.
4. Polimernye smesi [Polymeric mixes]. Tom II: Funkcional'nye svojstva: Per s angl. /Pod red. Pola D.R., Baknella K.B. SPb.: Nauchnye osnovy i tehnologii. 2009. 606 s.
5. Vinogradov G.V., Malkin A.Ja. Reologija polimerov [Reologiya of polymers]. M.: Himija. 1977. 438 s.
6. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PKM metodom propitki pod davleniem [Features of production of products from PCM an impregnation method under pressure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 18‒26.
7. Dushin M.I., Hrul'kov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Non-autoclave molding carbon fiber based prepregs obtained by mortar technology] //Aviacionnye materialy i tehnologii. 2012. №2. S. 43‒48.

UDC: 678.8

Pages: 29-31

M.I. Melekhina1, N.S. Kavun1, V.P. Rakitina1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Epoxy fiberglass plastics with an improved moisture and water resistance

Research of properties of fiberglass plastics based on epoxy resins and different structures of glass fillers with new finishing mixtures is described in this article. An effect of glass fiber composition on strength characteristics of fiberglass plastics and also water- and moisture absorption was studied.

Keywords: polymer matrix composites, fiberglass plastics, epoxy resins, water resistance, strength characteristics

Reference List

1. Davydova I.F., Kavun N.S. Stekloplastiki – mnogofunkcional'nye kompozicionnye materialy [Fibreglasses – multipurpose composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 253‒260.
2. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PKM metodom propitki pod davleniem [Features of production of products from PСM an impregnation method under pressure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 18‒26.
3. Istorija aviacionnogo materialovedenija: VIAM – 75 let poiska, tvorchestva, otkrytij [History of aviation materials science: VIAM – 75 years of search, creativity, opening] /Pod obshh. red. E.N. Kablova. M.: Nauka. 2007. 343 s.
4. Fiziko-himicheskie osnovy tehnologii kompozicionnyh materialov [Physical and chemical bases of technology of composite materials]: Ucheb. posob. M.: MISiS. 2011. 163 s.
5. Fomin A.V., Rakitina V.P., Kavun N.S. Stekloplastiki konstrukcionnogo naznachenija [Fibreglasses of constructional appointment] /V sb.: Aviacionnye materialy. Izbrannye trudy «VIAM» 1932‒2002 /Pod obshh. red. E.N. Kablova. M.: MISiS. VIAM. 2002. S. 291‒300.
6. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of production of constructional fibrous PKM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38‒42.
7. Kirillov V.V., Kavun N.S., Deev I.S., Rakitina V.P., Efimov V.A. Issledovanie vlijanija teplovlazhnostnogo vozdejstvija na svojstva jepoksidnyh steklotekstolitov [Investigation of the influence of heat and humidity effects on the properties of epoxy fiberglass] //Plasticheskie massy. 2008. №9. S. 14‒17.
8. Rakitina V.P., Kavun N.S., Kirillov V.V., Deev I.S., Topunova T.Je., Efimov V.A. Issledovanie klimaticheskoj stojkosti jepoksidnyh steklotekstolitov, primenjaemyh v sotovyh i monolitnyh konstrukcijah samoletov [Study of climatic resistance of epoxy fiberglass used in cellular and solid aircraft designs] /V sb. dokladov VI nauchno-tehnicheskoj konferencii «Gidrosalon-2006». M.: CAGI. 2006. S. 28‒32.

UDC: 678.744

Pages: 32-34

A.A. Petrov1, I.V. Mekalina1, E.G. Sentyurin1, V.A. Bogatov1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru ; glass627@viam.

Features of manufacture of glazing parts from partially cross-linked organic glasses

Aviation-purposed acrylate organic glasses with partially cross-linked structure of SO-120S and AO-120S type are described. The possibility of their orientation and molding to obtain glazing parts with higher operation properties than those of linear organic glasses is shown. It was stated that properties of some developed partially cross-linked organic glasses compare favorable with characteristics of foreign organic glasses of similar nature.

Keywords: organic glass, glass parts, «cracking resistance», molding

Reference List

1. Gudimov M.M., Perov B.V. Organicheskoe steklo [Organic glass]. M.: Himija. 1981. 216 s.
2. Gorelov Ju.P., Chmyhova T.G., Shalaginova I.A. Novye organicheskie stekla dlja aviastroenija [New organic glasses for aircraft industry] //Plasticheskie massy. 2009. №12. S. 20‒22.
3. Trigub T.S., Mekalina I.V., Gorelov Ju.N., Shalaginova O.A. Organicheskoe steklo dlja vysokoskorostnoj aviacii [Organic glass for high-speed aircraft] //Aviacionnaja promyshlennost'. 2007. №1. S. 39‒42.
4. Bogatov V.A., Trigub T.S., Mekalina I.V., Ajzatulina M.K. Ocenka jekspluatacionnyh harakteristik novyh teplostojkih organicheskih stekol VOS-1 i VOS-2 [Assessment of operational characteristics of new heat-resistant organic VOS-1 and VOS-2 glasses] //Aviacionnye materialy i tehnologii. 2010. №1. S. 21‒26.
5. Mekalina I.V., Trigub T.S., Bogatov V.A., Sentjurin E.G. Novoe vysokoteplostojkoe orientirovannoe orgsteklo marki VOS-2AO [The new high-heat-resistant focused plexiglas of the VOS-2AO brand] //Aviacionnye materialy i tehnologii. 2010. №3. S. 14‒19.
6. Mekalina I.V. Orgsteklo kak chast' konstrukcii samoleta [Plexiglas as part of a design of the plane] //Industrija. Inzhenernaja gazeta. 2011. №22. S. 3.
7. Sentjurin E.G., Mekalina I.V., Trigub T.S., Klimova S.F. Modificirovannye organicheskie stekla dlja perspektivnoj aviacionnoj tehniki [The modified organic glasses for the perspective aircraft equipment] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №2. S. 2‒4.
8. Bogatov V.A., Kondrashov S.V., Hohlov Ju.A. Mnogofunkcional'nye opticheskie pokrytija i materialy [Multipurpose optical coverings and materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 343‒348.

UDC: 621.315.616.7

Pages: 35-36

A.M. Chaykun1, I.S. Naumov1, O.A. Eliseev1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Fluoro-silicone rubbers: some aspects of application

Foreign and home-made fluoro-silicone rubbers widely used in aviation are presented. Their main operational characteristics and features of application are given.

Keywords: rubbers, fluoro-silicone rubbers, high-molecular rubbers

Reference List

1. Bol'shoj spravochnik rezinshhika [Big reference book of a specialist of rubber industry]: V 2 ch. M.: Tehinform. 2012. 1385 s.
2. Nudel'man Z.N. Ftorkauchuki: osnovy, pererabotka, primenenie [Fluoroelastomers: bases, processing, application]. M.: «PIF RIAS». 2007. 383 s.
3. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki do 2030 goda [The strategic directions of development of materials and technologies of their processing till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7‒17.
4. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Pererabotka i modificirovanie jelastomernyh materialov vo vseklimaticheskih uslovijah [Processing and modifying of elastomeric materials in the weatherproof conditions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
5. Mahlis F.A., Fedjukin D.L. Terminologicheskij spravochnik po rezine [Terminological reference book on rubber]. M.: Himija. 1989. 400 s.
6. Tehnologija reziny: Recepturostroenie i ispytanija [Technology of rubber: Formulary structure and tests]: Per. s angl. /Pod red. Dika Dzh. S. SPb.: Nauchnye osnovy i tehnologii. 2010. 620 s.
7. Shvejcer F.A. Korrozija plastmass i rezin [Corrosion of plastic and rubbers]. SPb.: Nauchnye osnovy i tehnologii. 2010. 637 s.

UDC: 667.6

Pages: 37-40

L.V. Semenova1, N.D. Rodina1, N.I. Nefedov1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

An effect of roughness of paint and varnish coating systems on service properties of aircraft

Paints and varnishes are much widely used then other methods of decorative processing and protection of surfaces because of a simple technology of application, rather low cost and ability to form coating with high physical-mechanical, protective and, especially, decorative properties. The concept «surface roughness», which is widespread in aviation material science, includes different types of imperfections. Some actual tasks such as definition of influence of each type of roughness on performance capabilities of aircraft, choice of effective test methods and procedures for improvement of surface by smoothing of imperfections by means of different processing methods, development and implementation of new paint and varnish coatings with improved properties and technologies of painting are described.

Keywords: paints and varnishes, surface roughness, coating defects, profilograph

Reference List

1. Chebotarevskij V.V., Kondrashov Je.K. Tehnologija lakokrasochnyh pokrytij v mashi-nostroenii [Technology of paint and varnish coverings in mechanical engineering]. M.: Mashinostroenie. 1978. 295 s.
2. Kondrashov Je.K., Kuznecova V.A., Semenova L.V., Lebedeva T.A., Malova N.E. Razvitie aviacionnyh lakokrasochnyh materialov [Development of aviation paintwork materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №5. S. 49‒54.
3. Grashhenkov D.V., Chursova L.V. Strategija razvitija kompozicionnyh i funkcional'nyh materialov [Strategy of development of composite and functional materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 231‒242.
4. Semenova L.V., Malova N.E., Kuznecova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytija [Paintwork materials and coverings] //Aviacionnye materialy i tehnologii. 2012. №S. S. 315‒327.
5. Kondrashov Je.K., Kuznecova V.A., Semenova L.V., Lebedeva T.A. Osnovnye napravlenija povyshenija jekspluatacionnyh, tehnologicheskih i jekologicheskih harakteristik lakokrasochnyh pokrytij dlja aviacionnoj tehniki [The main directions of increase of operational, technical and ecological characteristics on paint and varnish coverings for the aircraft equipment] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 96‒102.

UDC: 620.179

Pages: 41-46

A.S. Boychuk1, A.V. Stepanov1, E.I. Kosarina1, A.S. Generalov1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Application of ultrasonic phased lattice technique for nondestructive testing of aviation frp parts and structures

Nondestructive ultrasonic techniques are one of the main quality testing techniques for aviation FRP parts and structures. Application of ultrasonic phased lattices makes it possible to increase sensitivity, productivity, completeness and reliability of testing results. Basic principles of phased lattice operation and CFRP ultrasonic testing results are described.

Keywords: nondestructive testing, ultrasonic technique, pulse-echo method, phased lattice, FRP (fiber reinforced plastics), CFRP (carbon fiber reinforced plastic)

Reference List

1. Generalov A.S., Murashov V.V., Dalin M.A., Bojchuk A.S. Diagnostika polimernyh kompozitov ul'trazvukovym reverberacionno-skvoznym metodom [Diagnostics of polymeric composites by an ultrasonic reverberation and through method] //Aviacionnye materialy i tehnologii. 2012. №1. S. 42‒47.
2. Nerazrushajushhij kontrol' [Nondestructive control]: Spravochnik. V 8 t. /Pod obshh. red. V.V. Kljueva. T. 3. I.N. Ermolov, Ju.V. Lange. Ul'trazvukovoj kontrol'. 2-e izd., ispr. M.: Mashinostroenie. 2006. 864 s.
3. Kanevskij I.N., Sal'nikova E.N. Nerazrushajushhie metody kontrolja [Nondestructive control methods]: Ucheb. posob. Vladivostok: Izd-vo DVGTU. 2007. 243 s.
4. Introduction to Phased Array Ultrasonic Technology Applications: R/D Tech Guideline.
5. Advances in Phased Array Ultrasonic Technology Applications: Olympus NDT.
6. Hrul'kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanie i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovanija PKM [Research and development autoclave and non-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292‒301.

UDC: 66.045.3

Pages: 47-49

Yu.V. Sitiy1, V.A. Sagomonova1, V.G. Maksimov1, V.G. Babashov1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

VTI-22 sound and thermal insulation material of gradient structure

This report covers acoustic, thermal, mechanical and other operational properties of VTI-22 thermal and acoustic insulation material given in comparison with those of such similar materials as ATM-1MK and Microlite. VTI-22 material has high acoustic properties, satisfies FAR 25.856 requirements and is recommended for application as sound and thermal insulation for civil aircraft in high acoustic stress areas of fuselage construction in temperature range from -60 to +80°C.

Keywords: sound and thermal insulation, sound wave attenuation coefficient, sound absorption coefficient, thermal conductivity coefficient, bending stress with 10 mm deflection

Reference List

1. Patent 2087605-D04N1/04. Ros. Federacija. №94044009/12; zajavl. 23.12.1994; opubl. 20.08.1997.
2. Patent 6294491–SOZS13/00–501/35 SShA. №09/311511; zajavl. 13.05.1999; opubl. 25.09.2001.
3. Patent 6670291–V32V27/04-442/136. SShA. №09/691575; zavl. 18.10.2000; opubl. 30.12.2003.
4. Patent 2004/0192148-V32V5/26-442/417. SShA. №10/401802; zajavl. 28.03.2003. opubl. 30.09.2004.
5. Sytyj Ju.V., Sagomonova V.A., Kisljakova V.I., Bol'shakov V.A. Novye vibropogloshhajushhie materialy [New vibration-absorbing materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 51‒54.
6. Sytyj Ju.V., Kisljakova V.I., Sagomonova V.A., Antjufeeva N.V. Perspektivnyj vibropogloshhajushhij material VTP-3V [Perspective vibration-absorbing material VTP-3V] //Aviacionnye materialy i tehnologii. 2012. №3. S. 47‒49.

UDC: 678.8:614.814.41

Pages: 50-54

M.M. Platonov1, T.A. Nesterova1, I.A. Nazarov1, E.Ya. Beider1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Fabric-based fireproof material with polyurethane coating for inflatable shell of rescue ladder

Material for inflatable shell of rescue ladder has been developed. Fabric made from high –strength polyamidobenzimidazol fibers is used as the base and cured polymeric composition of polyurethane rubber serves as coating. The obtained material is fireproof; its surface density is 250
±5g/cm
2. It has high mechanical characteristics: breaking tenacity of warp/weft – 780/710 N/cm, water permeability 0.5 l/(m
2∙24 hours). Properties of the developed material satisfy requirements of international technical standard TSO-C69c.

Keywords: fabric materials with elastomeric coating, self-extinguishing materials, hyper high modulus fabric, polyurethanes, fire retardants

Reference List

1. Kirin K.M. Perspektivnye pozharobezopasnye tekstil'nye materialy dlja primenenija v grazhdanskoj aviacii [Perspective fireproof textile materials for application in civil avia-tion]: Avtoreferat na soiskanie uchenoj stepeni kand. tehnich. nauk. Moskva. 2004. 16 s.
2. Pat. 4723628 US; opubl. 09.02.1988. The B.F. Goodrich Company.
3. Pat. 4519782 US; opubl. 28.05.1985. The B.F. Goodrich Company.
4. Pat. 4714637 US; opubl. 22.12.1987. The B.F. Goodrich Company.
5. Pat. 6536715 US; opubl. 25.03.2003. Air Cruisers Company.
6. Pat. 4233102 US; opubl. 11.11.1980. The B.F. Goodrich Company.
7. Pat. 4332049 US; opubl. 11.11.1980. The B.F. Goodrich Company.
8. Pat. 2006029759 US; opubl. 09.02.2006. Warwick Mills Inc.
9. Pat. 2068892 Ros. Federacija; opubl. 10.11.1996.
10. Pat. 5393595 US; opubl. 28.02.1995. Royaders Didier.
11. Pat. 4274526US;  opubl. 23.01.1981. The B.F. Goodrich Company.
12. Petrova G.N., Perfilova D.N., Grjaznov V.I., Bejder Je.Ja. Termoplastichnye jela-stomery dlja zameny rezin [Thermoplastic elastomers for replacement of rubbers] //Aviacionnye materialy i tehnologii. 2012. №S. S. 302–308.
13. Barbot'ko S.L. Pozharobezopasnost' aviacionnyh materialov [Fire-safety of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 431‒439.
14. Nesterova T.A., Izotova T.F., Nikolaeva M.F., Bejder Je.Ja., Buckih A.D. Razrabotka zashhitno-dekorativnogo materiala «Polipleks» [Development of the protective and decorative material "Polipleks"] /V sb.: Aviacionnye materialy i tehnologii. Vyp. «Ter-moplastichnye materialy». M.: VIAM. 2004. S. 28‒30.
15. Patent 2443820 C1. Ros. Federacija; opubl. 27.02.2012.
16. GOST 17073‒71. Kozha iskusstvennaja. Metod opredelenija tolshhiny i massy 1 m2 [Skin artificial. Method of determination of thickness and weight of 1 m2]. M.: Izd-vo standartov. 1971. 4 s.
17. Aviacionnye pravila, Chast' 25. Normy letnoj godnosti samoletov transportnoj kategorii [Aviation rules, Part 25. Standards of the flight validity of planes of transport category], Prilozhenie F. M.: Aviaizdat. 2004.
18. GOST 17316‒71. Kozha iskusstvennaja. Metod opredelenija razryvnoj nagruzki i ud-linenija pri razryve [Skin artificial. Method of definition of explosive loading and lengthening at a gap]. M.: Izd-vo standartov. 1972. 11 s.
19. Metodika ispytanij M 38-59-629‒2007. Tkani s rezinovym ili plastmassovym pokryti-em. Metod opredelenija vodorodopronicaemosti na tehnicheskom ustrojstve tipa PVPT [Fabrics with a rubber or plastic covering. Method of definition of water-tightness on the technical PVPT device]. NIIRP. 2007. 10 s.
20. Dik Dzh.S. Tehnologija reziny: recepturostroenie i ispytanija [Technology of rubber: formulary structure and tests]. SPb: NOT. 2010. 620 s.

UDC: 620.179.15:539.12.03

Pages: 55-58

E.I. Kosarina1, N.A. Mikhaylova1, A.A. Demidov1, E.M. Turbin1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

X-ray testing of large-sized intricate castings made from aluminum alloys

Some aspects of X-ray testing of large-sized intricate castings made from aluminum alloys under industrial conditions are discussed. The operational sequence of testing procedure according to the designed flow sheets is defined.

Keywords: X-ray testing, flow sheets, sensitivity, optimum modes and parameters of testing

Reference List

1. Kljuev V.V., Sosnin F.R. Teorija i praktika radiacionnogo kontrolja [Theory and practice of radiation control: Studies. grant for students of higher education institutions]: Ucheb. posobie dlja studentov vuzov. M.: Mashinostroenie. 1998. 170 s.
2. Dobromyslov V.A. Radiacionnye metody nerazrushajushhego kontrolja [Radiation methods of nondestructive control]. M.: Mashinostroenie. 1999. 104 s.
3. Kosarina E.I., Stepanov A.V., Savvina N.A. i dr. Prakticheskoe rukovodstvo po radiograficheskomu metodu nerazrushajushhego kontrolja [Practical guidance on a radio graphic method of nondestructive control]. M.: Kontrol' i diagnostika. 2006. 106 s.
4. GOST 20426‒82 Kontrol' nerazrushajushhij. Metody defektoskopii radiacionnye. Oblast' primenenija [Control nondestructive. Defectoscopy methods the radiation. Scope].
5. Nerazrushajushhij kontrol'. Plenka dlja promyshlennoj radiografii. Chast' 1. Klassifikacija plenochnyh sistem dlja promyshlennoj defektoskopii [Nondestructive control. Film for an industrial radiographic analysis. Part 1. Classification of film systems for industrial defectoscopy] /Autentichnyj perevod EN 584-1: 1994. Standart Rossijskogo nauch.-tehnich. svarochnogo obshhestva. M. 4 s.
6. Stepanov A.V., Kosarina E.I., Savvina N.A. Radiograficheskie tehnicheskie plenki RT-K i RT-7T. Rezul'taty ih ispytanija [Radio graphic technical films of RT-K and RT-7T. Results of their test] //Aviacionnye materialy i tehnologii. 2012. № 1. S. 37‒42.
7. Nerazrushajushhij kontrol'. Kachestvo izobrazhenij pri radiografii. Chast' 1: Indikatory kachestva izobrazhenija (provolochnogo tipa, opredelenie velichiny kachestva izobrazhenija [Nondestructive control. Quality of images at a radiographic analysis. Part 1: Indicators of quality of the image (wire type, determination of size of quality of the image] /Autentichnyj perevod EN462-1: 2001. Standart Rossijskogo nauch.-tehnich. svarochnogo obshhestva. M. 6 s.
8. Stepanov A.V., Kosarina E.I., Savvina N.A., Usachev V.E. Makro- i mikroporistost' v splavah na osnove aljuminija i nikelja, obnaruzhenie ee rentgenoskopicheskimi metodami nerazrushajushhego kontrolja [Makro- and microporosity in alloys on the basis of aluminum and nickel, detection by its roentgenoscopic methods of nondestructive control] //Aviacionnye materialy i tehnologii. 2012. №S. S. 423‒430.

UDC: 620.1

Pages: 59-61

S.V. Panin1, M.G. Kurs1

[1] GELENDJIK CLIMATIC TESTING CENTER AFTER THE NAME OF G.V. AKIMOV, paninsv@gmail.com, kursmg@yandex.ru

Full-scale testing of wall-type air conditioners in marine climatic conditions of Gelendjik climatic testing center after the name of G.V. Akimov

A comparative evaluation of corrosion resistance of Lessar LS/LU-H12KA2 and Panasonic CU-PC7EKD air-conditioners operating under climatic conditions of Gelendjik town located at the seashore is presented. Materials used in the outer blocks of Lessar air conditioning units proved to have unsatisfactory corrosion resistance and consequently these units became non-operated within a relatively short operating period. Deficiencies of case integrity can result in accidents, including injuries of personnel. When comparing the outer blocks of Panasonic CU-PC7 EKD to the above mentioned ones it should be noticed that they remained the same in their appearance as originally after 5 years of operation under climatic conditions of Gelendjik and therefore they may be recommended for the use in this climatic zone.

Keywords: corrosion, operation of air conditioners, marine corrosion

Reference List

1. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167−182.
2. Aviacionnye materialy [Aviation materials]: Spravochnik. /Pod obshhej red. akad. RAN, prof. E.N. Kablova.  T. 4. Ch. 1 Deformiruemye aljuminievye splavy. Kn. 1. M.: VIAM. 2008. 264 s.
3. Aviacionnye materialy [Aviation materials]: Spravochnik. /Pod obshhej red. akad. RAN, prof. E.N. Kablova.  T. 4. Ch. 1 Deformiruemye aljuminievye splavy. Kn. 2. M.: VIAM. 2008. 172 s.
4. Zhuk N.P. Kurs teorii korrozii i zashhity metallov [Course in the theory of corrosion and protection of metals]. M.: Metallurgija. 1976. S. 6.
5. Komissarova V.S., Egorova N.V., Kireeva A.F. Osobennosti mehanizma mezhkristallitnoj korrozii splavov AV i AD33 v morskih uslovijah [Features of the mechanism of intercrystalline corrosion of alloys of AV and AD33 in sea conditions] /V sb.: Voprosy aviacionnoj nauki i tehniki. Ser. Aviacionnye materialy. Vyp. Korrozija i zashhita splavov v morskih uslovijah. M.: VIAM. 1985. S. 36−42.
6. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii aljuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Garlic research of dynamics of corrosion of aluminum alloys at test in the camera of salt fog (CSF)] //Aviacionnye materialy i tehnologii. 2012. №4. S. 18−22.

UDC: 677.2:576.8.078

Pages: 62-66

A.V. Polyakova1, T.V. Yakovenko1, J.S. Goryashnik1, A.A. Krivushina1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Investigation of an effect of silver nanoparticles on micromycetes-biodestructors

An effect of silver nanoparticles on viability of micromycetes-biodestructors was studied. Samples of textile materials on the basis of natural fibers impregnated with silver nanoparticle substance and samples without impregnation were exposed for testing on mycological test site under conditions of warm damp climate. Micromycetes were extracted from the surface of the most affected material samples and then they were used for fungi resistance tests of different textile samples (coarse calico, tick, tarpaulin, gauze) under laboratory conditions. Some techniques for protection of textile materials on the basis of natural fibers against biodeterioration by impregnation with silver nanoparticle substances were developed.

Keywords: biodeterioration, textile materials, biocide substances with silver nanoparticles, fungi resistance test, biodestructors

Reference List

1. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija: III. Znachimye faktory starenija [Climatic aging of composite materials of aviation appointment: III. Significant factors of aging] //Deformacija i razrushenie materialov. 2011. №11. S. 34‒40.
2. Kablov E.N., Poljakova A.V., Vasil'eva A.A., Gorjashnik Ju.S., Kirillov V.N. Mikrobiolog-icheskie ispytanija aviacionnyh materialov [Microbiological tests of aviation materials] //Aviacionnaja promyshlennost'. 2011. №1. S. 35‒40.
3. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vlijanija klimaticheskih faktorov i mehanicheskogo nagruzhenija na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41‒45.
4. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412‒422.
5. Estrin Y., Khaydarov R.R., Khaydarov R.A, Gapurova O., Cho S., Scheper T., Endres C. Antimicrobial and antibacterial effects of silver nanoparticles synthesized by novel electrochemical method. Nanoscience and Nanotechnology /In.: ICONN-2008, Proceedings of 2008 International Conference on Nanoscience and Nanotechnology, 25–29 February 2008, Australia. 2008. P. 44–47.
6. Moryganov P.A., Galashina V.N., Zavadskij A.E. Izuchenie biodestrukcii volokon l'na v prisutstvii nanochastic serebra [Studying of biodestruction of fibers of flax in the presence of silver nanoparticles] //Zhurnal prikladnoj himii. 2010. T. 83. №9. S. 1517‒1523.

UDC: 629.7.083

Pages: 67-70

N.S. Zhadova1, T.Yu. Tyumeneva1, I.A. Sharova1, N.F. Lukina1

[1] ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS, admin@viam.ru

Perspective technologies for field repair of aviation engineering

Description of adhesive materials such as self-adhesive materials on different substrates developed by FSUE « VIAM » is given. The main properties of materials are stated; possibility of their application for field repair of damaged surfaces of aviation engineering is shown.

Keywords: self-adhesive materials, substrates, temporary operational repair, technologies of repair, rapid-setting adhesive

Reference List

1. Sytyj Ju.V., Sagomonova V.A., Kisljakova V.I., Bol'shakov V.A. Novye vibropogloshhajushhie materialy [New vibration-absorbing materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 51‒54.
2. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svja-zujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of production of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38‒42.
3. Zhadova N.S., Lukina N.F., Tjumeneva T.Ju. Samoklejashhiesja materialy dlja vremennogo operativnogo remonta vneshnej poverhnosti izdelij aviacionnoj tehniki [Self-adhesive materials for temporary expeditious repair of an external surface of products of the aircraft equipment] //Klei. Germetiki. Tehnologii. 2012. №6. S. 2‒4.
4. Sharova I.A., Zhadova N.S., Lukina N.F. Klejashhie materialy i tehnologii dlja vremennogo operativnogo remonta sotovyh agregatov iz polimernyh kompozicionnyh materialov [Gluing materials and technologies for temporary expeditious repair of cellular units from polymeric composite materials] //Klei. Germetiki. Tehnologii. 2012. №5. S. 36‒39.