Aviation materials and tecnologes №4, 2010

UDC: 669.018.95

E.N. Kablov, B.V. Shchetanov, A.A. Shavnev, A.N. Nyafkin, V.V. Chibirkin, V.V. Eliseev, V.A. Martynenko, V.G. Myskatin'ev, L.A. Emix, S.M. Vdovin, K.H. Nishchev

Increase of reliability of power IGBT-modulus by means of high filled metal matrix composite of Al-SiC system

Main factor of providing the maximal productivity of semi-conductor devices is efficiency of heat transfer from a crystal to the heat-carrier, characterized by thermal resistance. From the point of view of thermal processes, power packs can reliably function on the understanding that there is an effective heat rejection. In a complex multilayered structure for heat rejection the heat-rejecting substrates are of prime importance. It is especially actual at growing need for new power semi-conductor devices where the heat-rejecting substrates should possess high heat conductivity and low factor of thermal expansion.

Keywords: filled metal matrix composite of Al-SiC metal system, power semi-conductor devices, for example (IGBT-modulus), heat-rejecting substrates, heat-resistance, heat conductivity, factor of thermal expansion

Reference List

  1. Gilleo K., Ph.D. MEMS/MOEMS Packaging Concepts, Designs, Materials, and Processes - McGraw-Hill //Nanoscience and Technology Series. 2005. 239 p.
  2. Occhionero M.A., Adams R.W., Saums D. AlSiC for Optoelectronic //Thermal Management and Packaging Designs. 2001. 5 p.
  3. Occhionero M.A., Fennessy K.P., Adams R.W., Sundberg G.J. AlSiC Baseplates for Power IGBT Modules: Design, Performance and Reliability //Ceramics Process Systems. 2003. 6 p.

UDC: 621.78:669.157.8:669.718

M.S. Oglodkov, L.B. Khokhlatova, N.I. Kolobnev, A.A. Alekseev, E.A. Lukina

Effect of the thermomechanical treatment on Al (Al-Cu-Mg-Li-Zn) alloy properties and structure

The high-strength weldable corrosion-resistant B-1461 (Al-Cu-Mg-Li-Zn (Zr, Sc)) alloy is related to the last generation of Al-Li alloys and it's characterized by the decreased Li content, high technological efficiency and cracking resistance characteristics. The effect of thermomechanical treatments, multi-stage ageing conditions on the structure and properties of B-1461 alloy is considered in the present paper.

Keywords: B-1461 (Al-Cu-Mg-Li-Zn (Zr, Sc)) alloy, rolled plates, straightening after hardening, low-temperature mechanical treatment, multi-stage ageing, tensile properties, fracture toughness

Reference List

  1. Giummarra C., Rioja R.J., Bray G.H., Magnusen P.E., Moran J.P. //Aluminum Alloys (ICAA 11) Germany. 2008. V. 1. Р. 176-188.
  2. Alekseev A.A., Khokhlatova L.B., Kolobnev N.I., Lukina E.A., Samokhvalov S.V. //Aluminum Alloys (ICAA 11) Germany. 2008. V. 1. Р. 234-240.

UDC: 669.018.44:669.24

V.N. Toloraiya, E.V. Filonova, G.A. Ostroukhova, I.N. Aleshin

Microporosity of the single-crystal castings produced of carbon-free superalloys

The study of the microporosity of the single-crystal castings for turbine blades, produced of carbon-free superalloys (ЖС36, ВЖМ5 types), was conducted along with the development of technological methods for the microporosity reduction or its complete elimination during the alloy structure formation process by the directional or highly directional solidification methods.

Keywords: carbon-free superalloy, directional solidification, single-crystal structure, microporosity

Reference List

  1. Литейные жаропрочные сплавы. Эффект С.Т. Кишкина: науч.-техн. сб. /Под. ред. Е.Н. Каблова. М.: Наука. 2006. 272 с.
  2. Шалин Р.Е., Светлов И.Л., Толорайя В.Н. Монокристаллы никелевых жаропрочных сплавов. М.: Машиностроение. 1997. 336 с.

UDC: 620.1:681.785.5

E.N. Kablov, D.V. Sivakov, I.N. Gulyaev, K.V. Sorokina, M.YU. Fedotov, V.A. Goncharov

Test methods of structural composites with the integrated electromechanical system

Some specific aspects have been considered when studying the properties of composites with integrated actuatoring systems. The description of the special equipment such as the spectrometer for determining the characteristics of fiber-optical Bragg lattices and lazer three-angel measuring system is given for studying the appearance and changes of strain-stress state as well as the geometric changes of a structural composite specimen shape.

Keywords: structural composite, piezoelectric actuator, fiber-optical sensor

Reference List

  1. Уорден К. Новые интеллектуальные материалы и конструкции. М.: Техносфера. 2006. 223 с.
  2. Шарапов В.М., Мусиенко М.П., Шарапова Е.В. Пьезоэлектрические датчики. М.: Техносфера. 2006. 628 с.
  3. Удд Э. Волоконно-оптические датчики. М.: Техносфера. 2008. 518 с.

UDC: 678.7

G.N. Petrova, T.V. Rumyantseva, D.N. Perfilova, E.YA. Beyder, V.I. Gryaznov

Thermoelastoplastics - a new class of polymer materials

The service properties of two types of thermoelastoplastics, developed in VIAM FSUE and entirely meeting АП-25 requirements on combustibility are considered in the present article. These materials are as follows:
- ВТЭП 1-Л type - with the increased weather resestance;
- ВТЭП 2-Л type - with the improved electroinsulation characteristics.
The developed materials are processed into products by the injection molding method and recommended for the partial rubber substitution.

Keywords: thermoelastoplast, rubber, sealing, dynamic vulcanization, weather resistance, electroinsulation properties, impact resistance, fire safety, processing by the injection molding and extrusion methods

Reference List

  1. Пол Д., Бакнелл К. Полимерные смеси. СПб.: НОТ. 2009. Т. 2. Функциональные свойства. С. 539-575.
  2. Мэнсон Дж., Сперлинг Л. Полимерные смеси и композиты. М.: Химия. 1979. С. 25.
  3. Термоэластопласты /Под ред. В.В. Моисеева. М.: Химия. 1985. С. 37-75.
  4. Ношей А., Мак-Грат Дж. Блок-сополимеры. М.: Мир. 1980. С. 20-58.
  5. Мартин Дж.М., Смит У.К. Производство и применение резинотехнических изделий. СПб.: Профессия. 2006. С. 407, 411.
  6. Вольфсон С.И. Динамически вулканизованные термоэластопласты: Получение. Переработка. Свойства. М.: Наука. 2004. С. 9-11.
  7. Нудельман З.Н. Фторкаучуки: Основы. Переработка. Применение. М.: ООО «ПИФ РИАС». 2007. С. 205-210, 250-260, 309-313.

UDC: 620.1

V.A. Efimov, V.N. Kirillov, O.A. Dobryanskaya, E.V. Nikolaev, A.K. Shvedkova

Methodical aspects of full-scale climatic tests of polymer composite materials

Some methodical aspects of natural climatic tests of polymer composites were considered on the example of СТ-2227М glassfiber reinforced plastic (GFRP). The full-scale climatic ageing was carried out under the open weather conditions and the shed. The tests were performed according to GOST 9.708 requirements at the climatic station, situated in the temperate climatic zone with the industrial atmosphere (Moscow city). The material mechanical properties were determined along with its macro- or microstructure throughout four-year exposure. It was stated, that it's necessary to define the moisture-saturation value of an exposed specimen as well as the strength of moistered and dried tested material specimen with the goal of studying and determining the possible irreversible processes in the polymer matrix due to the climatic factors effect during the full-scale exposure.

Keywords: full-scale climatic tests, polymer composites, glassfiber reinforced plastic (GFRP), moisture content, moisture diffusion, microstructure, strength

Reference List

  1. Вапиров Ю.М. Механизмы старения углепластиков авиационного назначения в условиях теплого влажного климата: Автореф. дис. канд. техн. наук. М. 1989. 36 с.
  2. Старцев О.В. Старение авиационных материалов в теплом влажном климате: Автореф. дис. д-ра техн. наук. М. 1990. 80 с.
  3. Старцева Л.Т. Исследование влияния влаги на молекулярную подвижность, структуру и вязкоупругие свойства некоторых двухкомпонентных полимерных систем: Автореф. дис. канд. техн. наук. Ташкент. 1983. 28 с.
  4. Старцев О.В., Перепечко И.И., Старцева Л.Т., Машинская Г.П. Структурные изменения в пластифицированном сетчатом аморфном полимере //ВМС. Серия Б. 1983. Т. 25. №6. С. 143-151.
  5. Павлов Н.Н. Старение пластмасс в естественных и искусственных условиях. М.: Химия. 1982. 224 с.
  6. Кириллов В.Н., Ефимов В.А. К методике проведения и обработке результатов натурных испытаний неметаллических материалов //Клеи, герметики, технологии. 2007. №1. С. 26-31.
  7. Кириллов В.Н., Ефимов В.А., Вапиров Ю.М. К вопросу о возможности прогнозирования атмосферной стойкости ПКМ //В сб. докл. VII научной конф. по гидроавиации «Гидроавиасалон-2008». М. 2008. Ч. I. С. 307-313.
  8. Вапиров Ю.М., Кириллов В.Н., Кривонос В.В. Закономерности изменения свойств полимерных композитов конструкционного назначения при длительном климатическом старении в свободном и нагруженном состояниях //В сб. докл. VI научной конф. по гидроавиации «Гидроавиасалон-2006». М. 2006. Часть II. С. 103-108.
  9. Старцев О.В., Аниховская Л.И., Литвинов А.А., Кротов А.С. Повышение достоверности прогнозирования свойств полимерных композиционных материалов при термовлажностном старении //ДАН. Химическая технология. 2009. Т. 428. №1. С. 51-62.
  10. Каблов Е.Н., Деев И.С., Ефимов В.А., Кавун Н.С., Кобец Л.П., Никишин Е.Ф. Влияние атмосферных факторов и механических напряжений на микроструктурные особенности разрушения полимерных композиционных материалов //В сб. докл. VII научной конф. по гидроавиации «Гидроавиасалон-2008». М. 2008. Ч. I. С. 73-79.