Archive

Aviation materials and tecnologes №S, 2017

Pages: 11-16

E.N. Kablov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Introduction

DOI: 10.18577/2071-9140-2017-0-S-17-23

UDC: 669.018.44

Pages: 17-23

O.G. Ospennikova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012-2016

The main achievements over the last five years of the research and developmental works, executed at FSUE «VIAM» in 2012-2016 in the field of development of new generation of heat resisting cast and wrought alloys and steels are considered. Works are executed within the implementation of the complex scientific directions: 3. «Computer modeling methods of structure and properties of materials at their development and work in construction», 7. «Intermetallic materials», 9. «Single-crystal, heat-resisting superalloys, natural composites», 10. «Power-effecient, resource-saving and additive technologies for producing details, semi-finished products and constructions» and 17. «The complex anticorrosive protection, hardening, wear-protective and heat-protection coatings» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: computer modeling methods; intermetallic materials; single-crystal, heat-resisting superalloys, natural composites; the additive technologies; hardening, wear-resistant protective and heat-protection coatings.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
4. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
6. Kablov E.N. Bez novyh materialov – net budushhego [Without new materials there is no future] // Metallurg. 2013. №12. S. 4–8.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
8. Kablov E.N. Materialy i tehnologii VIAM v konstrukciyah perspektivnyh dvigatelej razrabotki OAO «Aviadvigatel» [Materials and VIAM technologies in designs of perspective engines of development of JSC Aviadvigatel] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
9. Evgenov A.G., Lukina E.A., Aslanyan I.R. Struktura i svojstva splavov na osnove nikelya, poluchennyh metodom SLS [Structure and properties of alloys on the basis of the nickel, received by SLS method] // Additivnye tehnologii: nastoyashhee i budushhee: mater. II Mezhdunar. konfer. M.: VIAM, 2016. S. 1.
10. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [What the future to made of? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.

DOI: 10.18577/2071-9140-2017-0-S-24-38

UDC: 669.018.44

Pages: 24-38

E.N. Kablov1, Yu.A. Bondarenko1, A.B. Echin1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Development of technology of cast superalloys directional solidification with variable controlled temperature gradient

Development stages of the process of directional solidification of engine blades from superalloys in VIAM have been described in this article. Study ofdirectional solidification conditions with variable controlled gradient has been presented. The factors influencing the temperature gradient at the growth front have been determined. The positive effect of the temperature gradient on the formation of a homogeneous fine-dendritic structure (l<200 microns) with low porosity (Vp<0,05%), decrease in dendritic segregation on the growth of strength properties of high-temperature alloys has been confirmed. Data of study on directional solidification of eutectic superalloys of «niobium-silicium» system have been provided. The work is executed within the implementation of the complex scientific direction 9.5. «Directional solidification (with variable controlled gradient) of high-temperature superalloys («The strategic directions of development of materials and technologies of their processing for the period till 2030») [1] that is aimed at the creation of the concept «Advanced engine» with thrust-to-weight ratio of 20:1.

Keywords: directional solidification, temperature gradient, nickel single crystal superalloy, in-situ composite structure, engine blade, y'-reinforcing phase, y/y'-eutectic dendrite segregation, microporosity, short-term strength, long-term strength.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya / pod obshh. red. E.N. Kablova. 2-e izd. [Cast blades of gas turbine engines: alloys, technologies, coverings / gen. ed. by E.N. Kablov. 2nd ed.]. M.: Nauka, 2006. 632 s.
3. Bondarenko Yu.A., Kablov E.N., Pankratov V.A. Osobennosti polucheniya rabochih lopatok malogabaritnyh GTD iz splavov tipa VKLS-20 [Features of receiving working blades of small-size GTE from VKLS-20 type alloys] // Aviacionnaya promyshlennost. 1993. №2. S. 9–10.
4. Bondarenko Yu.A., Kablov E.N., Morozova G.I. Vliyanie vysokogradientnoj napravlennoj kristallizacii na strukturu i fazovyj sostav zharoprochnogo splava tipa RENE-N5 [Influence of the high-gradient directed crystallization on structure and phase composition of hot strength alloy of the RENE-N5 type] // MiTOM. 1999. №2. S. 15–18.
5. Bondarenko Yu.A., Kablov E.N. Napravlennaya kristallizaciya zharoprochnyh splavov s povyshennym temperaturnym gradientom [The directed crystallization of hot strength alloys with the raised temperature gradient] // MiTOM. 2002. №7. S. 20–23.
6. Bondarenko Yu.A. Perspektivy tehnologii napravlennoj kristallizacii krupnogabaritnyh rabochih lopatok nazemnyh gazovyh turbin [Perspectives of technology of the directed crystallization of large-size working blades of land gas turbines] // Materialovedenie. 1998. №7. S. 21–25.
7. Aristova E.Yu., Belova E.N., Bondarenko Yu.A., Ginzburg S.S. i dr. Samodiffuziya nikelya po vnutrennim poverhnostyam razdela v zharoprochnom splave na osnove slozhnolegirovannogo intermetallida Ni3Al [Nickel self-diffusion on inner surfaces of the section in hot strength alloy on the basis of complex-alloyed Ni3Al intermetallic compound] // Doklady Akademii nauk. Ser.: Metally. 1996. №3. S. 113–120.
8. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
9. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
10. Bondarenko Yu.A., Echin A.B., Surova V.A., Narskij A.R. Vliyanie temperaturnogo gradienta na strukturu zharoprochnogo splava pri ego napravlennoj kristallizacii [Influence of temperature gradient on hot strength alloy structure at its directed crystallization] // Litejshhik Rossii. 2014. №5. S. 24–28.
11. Echin A.B., Bondarenko Yu.A. Osobennosti struktury i svojstva nikelevogo monokristallicheskogo splava, poluchennogo v usloviyah peremennogo temperaturnogo gradienta na fronte rosta [Structural features and properties of single-crystal Ni-based superalloy produced under conditions of variable temperature gradient on the solidification front] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 01. Available at: http://www.viam-works.ru (accessed: October 14, 2016). DOI: 10.18577/2307-6046-2015-0-8-1-1.
12. Echin A.B., Bondarenko Yu.A., Bityuckaya O.N., Narskij A.R. Vliyanie peremennogo temperaturnogo gradienta na dispersnost struktury Re-soderzhashhego splava [Influence of variable temperature gradient on dispersion of structure of Re-containing alloy] // Litejnoe proizvodstvo. 2015. №10. S. 33–36.
13. Echin A.B., Bondarenko Yu.A. Novaya promyshlennaya vysokogradientnaya ustanovka napravlennoj kristallizacii UVNS-6, ee harakteristiki i preimushhestva [New commercial high-gradient unit of directed crystallization UVNS-6, its characteristics and advantage] // Novosti materialovedeniya. Nauka i tehnika. 2014. №2. St. 06. Available at: http://www.materialsnews.ru (accessed: October 14, 2016).
14. Bondarenko Yu.A., Echin A.B., Surova V.A., Kolodyazhnyj M.Yu., Narskij A.R. Sovremennye issledovaniya v oblasti tehnologii vyplavki i napravlennoj kristallizacii, obespechivayushhie formirovanie estestvenno-kompozicionnoj struktury v vysokozharoprochnyh splavah na osnove niobij-kremniya dlya detalej goryachego trakta GTD [Modern research in the field of technology of melting and crystallization for the formation of the natural composite structure in a highly temperature-resistant alloys based on niobium-silicon for details of the hot path of gas turbine engines] // Novosti materialovedeniya. Nauka i tehnika. 2015. №4. St. 01. Available at: http://www.materialsnews.ru (accessed: October 14, 2016).
15. Bondarenko Yu.A., Echin A.B., Kolodyazhnyj M.Yu. Osobennosti formirovaniya estestvenno-kompozicionnoj struktury evtekticheskogo splava Nb–Si pri napravlennoj kristallizacii v zhidkometallicheskom ohladitele [Features of forming of natural and composition structure of Nb-Si eutectic alloy at the directed crystallization in liquidly metal cooler] // Elektrometallurgiya. 2016. №11. S. 2–8.

DOI: 10.18577/2071-9140-2017-0-S-39-54

UDC: 621.793

Pages: 39-54

S.A. Muboyadzhyan1, S.A. Budinovskiy1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Ion-plasma technology: prospective processes, coatings, equipment

The directionsfor the development of aviation engines were considered and it was shown that the production of advanced gas turbine engine is possible by using new structural materials, protective and strengthening coatings with high performance and new advanced ion-plasma technologies and units for their production. Some characteristics of newly developed protection, thermal protection, reinforcement, wear-resistant and damping coatings for aviation GTE parts were shown.

Keywords: heat-resistant rhenium- and rhenium-ruthenium-containing alloys, thermal barrier coating, erosion-resistant coating, fretting-wear resistant coating, wear-resistant coating, a damping coating.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
3. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
4. Muboyadzhyan S.A., Galoyan A.G. Diffuzionnye alyuminidnye pokrytiya dlya zashhity poverhnosti vnutrennej polosti monokristallicheskih lopatok turbin iz renij i renij-rutenijsoderzhashhih zharoprochnyh splavov. Chast I [Diffusion alyuminid coatings for surface protection of internal cavity of single-crystal blades of turbines from rhenium and rhenium- ruthenium contain hot strength alloys. Part I] // Metally. 2012. №5. S. 1–9.
5. Muboyadzhyan S.A., Galoyan A.G. Diffuzionnye alyuminidnye pokrytiya dlya zashhity poverhnosti vnutrennej polosti monokristallicheskih lopatok turbin iz renij i renij-rutenijsoderzhashhih zharoprochnyh splavov. Chast II [Diffusion alyuminid coatings for surface protection of internal cavity of single-crystal blades of turbines from rhenium and rhenium ruthenium contain hot strength alloys. Part II] // Metally. 2013. №2. S. 46–54.
6. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Stepanova S.V. Ionno-plazmennye zharostojkie pokrytiya s kompozicionnym barernym sloem dlya zashhity ot okisleniya splava ZhS36-VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ZhS36-VI] // MiTOM. 2011. №1. S. 34–40.
7. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M. Sovremennoe sostoyanie i osnovnye tendencii razvitiya vysokotemperaturnyh teplozashhitnyh pokrytij dlya rabochih lopatok turbin aviacionnyh GTD [Current state and the main tendencies of development of high-temperature heat-protective coverings for working blades of turbines of aviation GTE] // Aviacionnaya promyshlennost. 2008. №4. S. 33–38.
8. Kablov E.N., Muboyadzhyan S.A. Teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTE] // Metally. 2012. №1. S. 5–13.
9. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Ionno-plazmennye nanoslojnye erozionnostojkie pokrytiya na osnove karbidov i nitridov metallov [Ion-plasma nanolayer erosion resistant coverings on the basis of carbides and nitrides of metals] // Metally. 2010. №5. S. 39–51.
10. Muboyadzhyan S.A. Erozionnostojkie pokrytiya iz nitridov i karbidov metallov i ih plazmohimicheskij sintez [Erosion resistant coatings from nitrides and carbides of metals and their plasmochemical synthesis] // RHZh. 2010. T. 54. №1. S. 103–110.
11. Muboyadzhyan S.A. Erozionnostojkie pokrytiya dlya lopatok kompressora GTD [Erosion resistant coatings for GTE compressor blades] // Metally. 2009. №3. S. 3–20.
12. Kablov E.N., Muboyadzhyan S.A., Lucenko A.N. Nanostrukturnye ionno-plazmennye zashhitnye i uprochnyayushhie pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Nanostructural ion-plasma protective and strengthening coverings for blades of gas turbine engines] // Voprosy materialovedeniya. 2008. №2. S. 175–186.
13. Muboyadzhyan S.A., Konnova V.I., Gorlov D.S., Alexandrov D.A. Issledovanie frettingostojkosti stali EP866Sh [The study of steel EP866Sh fretting resistance] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 01. Available at: http://www.viam-works.ru (accessed: September 23, 2016). DOI: 10.18577/2307-6046-2015-0-7-1-1.
14. Muboyadzhyan S.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Korrozionnostojkoe antifrettingovoe pokrytie dlya zashhity zamkov lopatok kompressora i ventilyatora GTD [Corrosion resistant interetinly coating for protection of locks of compressor blades and the GTD fan] // Metally. 2014. №5. S. 52–60.
15. Artemenko N.I., Muboyadzhyan S.A., Simonov V.N., Aleksandrov D.A. Ocenka otnositelnoj iznosostojkosti ionno-plazmennyh kondensirovannyh pokrytij na splavah VT8 i EP742 [Assessment of the relative wear resistance of ion-plasma fused coatings on VT8 and EP742 alloys] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2015. №3 (15). St. 09. Available at: materialsnews.ru (accessed: September 23, 2016).
16. Budinovskij S.A., Matveev P.V., Smirnov A.A. Issledovanie zharostojkosti litejnyh zharoprochnyh nikelevyh splavov v oblasti temperatur 1000–1200°C [Research of heat resistance of cast heat resisting nickel alloys in the field of temperatures 1000–1200°C] // Aviacionnaya promyshlennost. 2014. №2. S. 48–52. DOI: 10.18577/2071-9140-2014-0-2-48-52.
17. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
18. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Matveev P.V. Razrabotka ionno-plazmennyh zharostojkih metallicheskih sloev teplozashhitnyh pokrytij dlya ohlazhdaemyh rabochih lopatok turbin [Development of ion-plasma heat resisting metal layers of heat-protective coverings for cooled working blades of turbines] // MiTOM. 2013. №11. S. 16–21.
19. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlya teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coating using in GTE turbine blades] // Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
20. Matveev P.V., Budinovskij S.A. Issledovanie svojstv zashhitnyh zharostojkih pokrytij dlya intermetallidnyh nikelevyh splavov tipa VKNA dlya rabochih temperatur do 1300°C [Research of the properties of protective heat-resistant coating for intermetallic nickel alloys operating at temperatures up to 1300°C] //Aviacionnye materialy i tehnologii. 2014. №3. S. 22–26.
21. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
22. Budinovskij S.A., Smirnov A.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlja rabochih i soplovyh lopatok turbiny iz zharoprochnyh i intermetallidnyh splavov [Development of thermal barrier coatings for rotor and nozzle turbine blades made of nickel-base super- and intermetallic alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 05. Available at: http://www.viam-works.ru (accessed: September 23, 2016). DOI: 10.18577/2307-6046-2015-0-4-5-5.
23. Smirnov A.A., Budinovskij S.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlya lopatok TVD iz nikelevyh monokristallicheskih splavov VZhM4, VZhM5U [The development of thermal barrier coatings for turbine blades of single-crystal nickel alloys VZHM4, VZHM5U] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 03. Available at: http://www.viam-works.ru (accessed: September 23, 2016). DOI: 10.18577/2307-6046-2016-0-1-3-3.
24. Chubarov D.A., Budinovskij S.A. Vybor keramicheskogo materiala dlya teplozashhitnyh pokrytij lopatok aviacionnyh turbin na rabochie temperatury do 1400°C [Choosing ceramic materials for thermal barrier coating of GTE turbine blades on working temperatures up to 1400°С] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2015. №4. St. 07. Available at: http://viam-works.ru (accessed: September 23, 2016). DOI: 10.18577/2307-6046-2015-0-4-7-7.
25. Muboyadzhyan S.A., Aleksandrov D.A., Konnova V.I. Metodika ispytanij na otnositelnuyu erozionnuyu stojkost\' tverdyh pokrytij otvetstvennyh detalej kompressora GTD [Technique of tests for relative erosion resistance of hard coatings of responsible details of the GTD compressor] // Vse materialy. Enciklopedicheskij spravochnik. 2014. №4. S. 7–18.
26. Shorr B.F., Serebryakov N.N. Raschetno-eksperimentalnyj analiz amplitudno-zavisimyh harakteristik dempfirovaniya v detalyah i materialah [The rated and experimental analysis of amplitude and dependent characteristics of damping in details and materials] // Problemy mashinostroeniya i nadezhnosti mashin. 2011. №3. S. 91–99.
27. Muravchenko F.M., Sheremetev A.V. Aktualnye problemy dinamiki, prochnosti i nadezhnosti sovremennyh aviadvigatelej [Actual problems of dynamics, durability and reliability of modern aircraft engines] // Vibracii v tehnike i tehnologiyah. 2001. №4 (20). S. 2–5.
28. Ivchenko D.V., Shtanko P.K., Isaev N.V., Pavlov I.Yu. Erozionnaya prochnost detalej gazovozdushnogo trakta vertoletnyh gazoturbinnyh dvigatelej pri ekspluatacii v usloviyah zapylennosti vozduha. Sovremennoe sostoyanie problemy i vozmozhnyj put ee resheniya [Erosive durability of details of air-gas path of helicopter gas turbine engines at operation in the conditions of air dust content. Current state of problem and possible way of its decision] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2004. №7 (15). S. 135–139.
29. Shchepilov A.V., Muboyadzhyan S.A., Gorlov D.S., Konnova V.I. Issledovanie vliyaniya ionno-plazmennyh pokrytij na dempfiruyushhuyu sposobnost kompozicii «splav–pokrytie» pri ispytaniyah na vibrodinamicheskom stende [Investigation of the ion-plasma coatings influence on damping capacity of «alloy-coating» composition during testing on vibrodynamic bench] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 08. Available at: http://www.viam-works.ru (accessed: September 23, 2016). DOI: 10.18577/2307-6046-2015-0-4-8-8.

DOI: 10.18577/2071-9140-2017-0-S-55-71

UDC: 669.018.44:669.245

Pages: 55-71

E.N. Kablov1, V.V. Sidorov1, D.E. Kablov1, P.G. Min1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys

To produce single crystal castings from supеr alloys without defects it is necessary to provide them with an ultra-low level of impurities such as sulfur, phosphorus, oxygen, nitrogen, carbon, non-ferrous metals. As result of conducted thermodynamic calculations and executed science-research works the conditions of effective removal ofthe impurities from melt by different methods: melt temperature and duration refining control, introduction of high active REM additions, application of ceramic foam filters for precipitation of the impurities junctions with refining additions were determined. As result the single crystals with ultra-low content of nitrogen (<0,001%), oxygen (<0,001%), sulfur (<0,0005%), phosphorus (<0,005%), carbon (<0,005%), plumbum (<0,00001%), also with high level parameters of heat resistance coating at 1150°C, low fatigue at 900°C and stress rupture at 1000°C on 500-1000 hour base were produced. The work is executed within the implementation of the complex scientific direction 10.1. «Resource-saving melting technologies of advanced cast and wrought highly heat-resistant alloys with provision for processing of all types of wastes» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: heat-resistant alloy, impurities, stress rupture strength, sulfur, phosphorus, oxygen, nitrogen, refining.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 1–8.
3. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
4. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features of the single-crystal heat resisting nickel alloys alloyed by rhenium] // Metally. 2006. №5. S. 47–57.
5. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya / pod obshh. red. E.N. Kablova. 2-e izd. [Cast blades of gas turbine engines: alloys, technologies, coverings / gen. ed. E.N. Kablov]. M.: Nauka, 2006. 631 s.
6. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [Experience of processing of foundry waste of alloy ZhS32-VI on VIAM scientific-industrial complex on manufacturing of cast bar (blend) preparations] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
7. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Opyt pererabotki v usloviyah FGUP «VIAM» litejnyh othodov zharoprochnyh splavov, obrazuyushhihsya na motorostroitelnyh i remontnyh zavodah [Experience of processing in the conditions of FSUE «VIAM» of foundry waste of the hot strength alloys which are forming at engine-building and repair plants] // Metallurg. 2014. №1. S. 86–90.
8. Sidorov V.V., Rigin V.E., Gorjunov A.V., Min P.G. Innovatsionnaya tehnologiya proizvodstva zharoprochnogo splava ZhS32-VI s uchetom pererabotki vseh vidov othodov v usloviyah sertificirovannogo serijnogo proizvodstva FGUP «VIAM» [The innovation technology of high temperature GS32-VI alloy production considering the recycling of all scrap appearance a certificated quantity production of FGUP «VIAM»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 01. Available at: http://www.viam-works.ru (accessed: October 03, 2013). DOI: 10.18577/2307-6046-2014-0-6-1-1.
9. Min P.G., Vadeev V.E., Kramer V.V. Rafinirovanie nekondicionnyh othodov deformiruemyh nikelevyh splavov v vakuumnoj indukcionnoj pechi [Refinement of unconditioned waste of deformable nickel alloys in the vacuum induction furnace] // Tehnologiya metallov. 2015. №4. S. 8–13.
10. Ospennikova O.G., Min P.G., Vadeev V.E., Kalitsev V.A., Kramer V.V. Resursosberegayushhaya tehnologiya pererabotki nekondicionnyh othodov deformiruemogo splava VZh175 dlya diskov GTD [Resource-saving processing technology of off-grade scrap of wrought superalloy VG175 for GTE disks production] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 01. Available at: http://www.viam-works.ru (accessed: October 03, 2016). DOI: 10.18577/2307-6046-2016-0-2-1-1.
11. Min P.G., Vadeev V.E., Kramer V.V. Resursosberegayushhaya tehnologiya polucheniya deformiruemogo nikelevogo zharoprochnogo splava VZh175 s primeneniem nekondicionnyh othodov [Resource-saving technology of receiving deformable nickel VZh175 hot strength alloy using unconditioned waste] // Metallurg. 2016. №9. S. 88–94.
12. Min P.G., Vadeev V.E., Kalicev V.A., Kramer V.V. Resursosberegayushhaya tehnologiya vyplavki deformiruemogo splava VZh175 s ispolzovaniem nekondicionnyh othodov [Resource-saving smelting technology of deformable alloy VZh 175 with use of unconditioned waste] // Sovremennye zharoprochnye deformiruemye nikelevye i intermetallidnye splavy, metody ih obrabotki: mater. konf. M.: VIAM, 2015. S. 9–14.
13. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resursosberegayushhie tehnologii vyplavki perspektivnyh litejnyh i deformiruemyh superzharoprochnyh splavov s uchetom pererabotki vseh vidov othodov [Resource-saving smelting technologies of perspective cast and deformable superhot strength alloys taking into account processing of all types of waste] // Elektrometallurgiya. 2016. №9. S. 30–41.
14. Min P.G., Goryunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i effektivnye resursosberegayushhie tehnologii ih izgotovleniya [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] // Tehnologiya metallov. 2014. №8. S. 12–23.
15. Sidorov V.V., Kablov D.E., Min P.G., Vadeev V.E. Rafinirovanie slozhnolegirovannogo nikelevogo splava ZhS32-VI ot primesi kremniya i fosfora putem odnonapravlennogo zatverdevaniya rasplava pri malyh skorostyah peremeshheniya fronta kristallizacii [Refinement of complex-alloyed ZhS32-VI nickel alloy from silicon and phosphorus impurity by unidirectional hardening melt with small traverse speeds of the front of crystallization] // Tehnologiya metallov. 2016. №3. S. 2–7.
16. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnyh dvigatelej [ Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38–52.
17. Kablov D.E., Sidorov V.V., Min P.G. Vliyanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [Influence of impurity of nitrogen on structure of monocrystals of heat resisting ZhS30-VI nickel alloy and development of effective ways of its refinement] // Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
18. Kablov D.E., Sidorov V.V., Gerasimov V.V., Simonov V.N., Min P.G. Issledovanie zakonomernostej povedeniya azota pri poluchenii monokristallov zharoprochnogo nikelevogo splava ZhS30-VI [Research of patterns of behavior of nitrogen when receiving monocrystals of heat resisting ZhS30-VI nickel alloy] // Nauka i obrazovanie: elektronnoe nauchno-tehnicheskoe izdanie. 2012. №4. St. 12-12. Available at: http://technomag.edu.ru (accessed: October 04, 2016).
19. Kablov D.E., Chabina E.B., Sidorov V.V., Min P.G. Issledovanie vliyaniya azota na strukturu i svojstva monokristallov iz litejnogo zharoprochnogo splava ZhS30-VI [Research of influence of nitrogen on structure and properties of monocrystals from foundry ZhS30-VI hot strength alloy] // MiTOM. 2013. №8. S. 3–7.
20. Kablov D.E., Sidorov V.V., Min P.G. Zakonomernosti povedeniya azota pri poluchenii monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i ego vliyanie na ekspluatacionnye svojstva [Patterns of behavior of nitrogen when receiving monocrystals of heat resisting ZhS30-VI nickel alloy and its influence on operational properties] // MiTOM. 2014. №1. S. 8–12.
21. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast 1) [Refinement complex-alloyed nickel rasplava from sulfur impurity when melting in the vacuum induction furnace (part 1)] // Elektrometallurgiya. 2014. №3. S. 18–23.
22. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast 2) [Refinement complex-alloyed nickel rasplava from sulfur impurity when melting in the vacuum induction furnace (part 2)] // Elektrometallurgiya. 2014. №5. S. 26–30.
23. Sidorov V.V., Min P.G., Folomejkin Yu.I., Vadeev V.E. Vliyanie skorosti filtracii slozhnolegirovannogo nikelevogo rasplava cherez penokeramicheskij filtr na soderzhanie primesi sery v metalle [Influence of speed of filtering complex-alloyed nickel melt via the foamceramic filter on the content of impurity of sulfur in metal] // Elektrometallurgiya. 2015. №5. S. 12–15.
24. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Issledovanie processov rafinirovaniya v vakuume slozhnolegirovannyh nikelevyh rasplavov ot primesi sery [Research of refining processes in vacuum complex-alloyed nickel melt from sulfur impurity] // Metally. 2015. №6. S. 37–43.
25. Min P.G., Sidorov V.V., Kablov D.E., Vadeev V.E. Issledovanie sery i fosfora v litejnyh zharoprochnyh nikelevyh splavah i razrabotka effektivnyh sposobov ih rafinirovaniya [Sulfur and phosphorus research in cast heat resisting nickel alloys and development of effective ways of their refinement] // Tehnologiya metallov. 2015. №12. S. 2–9.
26. Sidorov V.V., Min P.G., Burcev V.T., Kablov D.E., Vadeev V.E. Kompyuternoe modelirovanie i eksperimental\'noe issledovanie reakcij rafinirovaniya v vakuume slozhnolegirovannyh renijsoderzhashhih nikelevyh rasplavov ot primesej sery i kremniya [Computer modeling and pilot study of reactions of refinement in vacuum of complex-alloyed rhenium containing nickel melt from sulfur and silicon impurity] // Vestnik RFFI. 2015. №1 (85). S. 32–36.
27. Kablov D.E., Min P.G., Sidorov V.V. Povyshenie svojstv monokristallov splava ZhS36-VI putem rafinirovaniya ot primesej sery i fosfora pri mikrolegirovanii lantanom [Increase of properties of monocrystals of alloy ZhS36-VI by refinement from sulfur and phosphorus impurity at microalloying lanthanum] // Mater. VIII Vseros. konf. po ispytaniyam i issledovaniyam svojstv materialov «TestMat-2016» / VIAM. M., 2016. Available at: conf.viam.ru/conf/1901/proceedings (accessed: November 28, 2016).
28. Kablov D.E., Sidorov V.V., Min P.G. Povyshenie ekspluatacionnyh harakteristik monokristallov splava ZhS36-VI putem ego rafinirovaniya ot primesi sery [Increase of utilization properties of monocrystals of alloy ZhS36-VI by its refinement from sulfur impurity] // III Vseros. nauch.-issled.konf.«Rol fundamentalnyh issledovanij pri realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda»: sb. tr. M.: VIAM, 2016. S. 13–18.
29. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I., Timofeeva O.B., Filonova E.V., Ishodzhanova I.V. Vliyanie primesej na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of impurity on structure and property of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 03. Available at: http://www.materialsnews.ru (accessed: October 05, 2016).
30. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Vliyanie fosfora i kremniya na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of phosphorus and silicon on structure and properties of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // MiTOM. 2015. №6. S. 55–60.
31. Min P.G., Kablov D.E., Sidorov V.V., Vadeev V.E. Zakonomernosti povedeniya primesej pri poluchenii monokristallicheskih zharoprochnyh nikelevyh splavov i razrabotka effektivnyh sposobov ih rafinirovaniya [Patterns of behavior of impurity when receiving single-crystal heat resisting nickel alloys and developing effective ways of their refinement] // Mater. VII konf. molodyh specialistov «Perspektivy razvitiya metallurgicheskih tehnologij». M.: CNIIchermet im. I.P. Bardina, 2016. S. 36–37.
32. Kablov D.E., Sidorov V.V., Min P.G., Gerasimov V.V., Bondarenko Yu. A. Vliyanie primesej sery i fosfora na svojstva monokristallov zharoprochnogo splava ZhS36-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [The sulfur and phosphorus influence on properties of single crystals GHS36-VI supperalloy and design of effective methods their refining] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 3–9. DOI: 10.18577/2071-9140-2015-0-3-3-9.
33. Kablov D.E., Sidorov V.V., Min P.G., Vadeev V.E. Vliyanie primesej i lantana na ekspluatacionnye svojstva splava ZhS36-VI [Influence of impurity and lanthanum on operational properties of alloy ZhS36-VI] // Metallurgiya mashinostroeniya. 2015. №6. S. 19–23.
34. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie lantana na kachestvo i ekspluatacionnye svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36-VI [The lanthanum influence on quality and operational properties of single crystal nickel base ZhS36-VI superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 02. Available at: http://www.viam-works.ru (accessed: October 04, 2016). DOI: 10.18577/2307-6046-2015-0-12-2-2.
35. Min P.G., Kablov D.E., Sidorov V.V., Vadeev V.E. Vliyanie primesej na strukturu i svojstva monokristallicheskih zharoprochnyh litejnyh nikelevyh splavov i razrabotka effektivnogo metoda ih rafinirovaniya [Influence of lanthanum on quality and operational properties of single-crystal heat resisting ZhS36-VI nickel alloy] // Sb. tez. dokl. Vseros. nauch.-tehnich. konf. «Aviadvigateli XXI veka». M.: CIAM im. P.I. Baranova, 2015. S. 662–664.
36. Min P.G., Sidorov V.V., Kablov D.E., Rigin V.E., Vadeev V.E. Vliyanie primesi na strukturu i mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov i razrabotka effektivnyh sposobov ih rafinirovaniya [Influence of impurity on structure and property of single-crystal heat resisting cast nickel alloys and development of effective method of their refinement] // Perspektivnye napravleniya razvitiya aviadvigatelestroeniya: sb. dokl. nauch.-tehn. konf. «Klimovskie chteniya–2015». SPb.: Skifiya-print, 2015. S. 275–283. 
37. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vliyanie kremniya i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashheniya v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [An effect of silicon and phosphorus on high temperature properties and structure-phase transformations of single crystals of VGM4-VI superalloy] //Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
38. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. Vliyanie primesej sery i fosfora na malociklovuyu ustalost monokristallov zharoprochnogo splava ZhS36-VI [The influence of sulfur and phosphorus impurities on low cycle fatigue of single crystals of ZhS36-VI alloy] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
39. Kablov D.E., Sidorov V.V., Budinovskij S.A., Min P.G. Vliyanie primesi sery na zharostojkost monokristallov zharoprochnogo splava ZhS36-VI s zashhitnym pokrytiem [The influence of sulfur impurity on heat resistance of single crystals of ZhS36-VI alloy with protective coating] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 20–23. DOI: 10.18577/2071-9140-2016-0-1-20-23.
40. Min P.G., Sidorov V.V., Budinovskij S.A., Vadeev V.E. Vliyanie sery na zharostojkost monokristallov zharoprochnogo nikelevogo splava sistemy Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr [Influence of sulfur on the heat resistance of monocrystals of heat resisting nickel alloy of Ni-Al-Co-Re-Ta-Mo-W-Ru-Cr system] // Materialovedenie. 2016. №7. S. 9–12.

DOI: 10.18577/2071-9140-2017-0-S-72-103

UDC: 669.018.44:669.245

Pages: 72-103

N.V. Petrushin1, O.G. Ospennikova1, I.L. Svetlov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines

Analysis of modern single crystal nickel-based superalloys of 1-5 generations for turbine blades of GTE, including their chemical composition, structural phase characteristics and mechanical properties was presented. Temperature and orientation dependences of elastic modulus, tensile strength, yield strength, plasticity, long-term strength, low-cycle fatigue and high-cycle fatigue of single crystals with crystallographic orientation <001>, <011>, <111> from advanced Ni-based superalloys (rhenium and ruthenium containing alloy VZhM8 of the 5th generation, rhenium containing alloy VZhM7of the 3rd generation with low density and intermetallic alloy VIN3) were identified. The effect of hot isostatic pressing on mechanical properties of cast Ni-based superalloys was studied. The promising ways have been determined to improve the efficiency of air cooling of turbine blades and development of in situ composites based on niobium-reinforced niobium silicides.

Keywords: single crystal nickel-based superalloys, chemical composition, rhenium, ruthenium, microstructure, , modulus of elasticity, ultimate  strength, yield strength, plasticity, long-term strength, low-cycle fatigue, high-cycle fatigue, anisotropy of properties of single crystals, hot isostatic pressing (HIP).

Reference List

1. Nozhnickij Yu.A., Golubovskij E.R. Obespechenie prochnostnoj nadezhnosti monokristallicheskih rabochih lopatok vysokotemperaturnyh turbin perspektivnyh GTD [Ensuring strength reliability of single-crystal working blades of high-temperature turbines of perspective GTD] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tehnich. konf. M.: VIAM, 2006. S. 65−71.
2. Harada H. Development of Superalloys for 1700°C ultra-efficient gas turbines // Proc. 9th Liege Conf. «Materials for Advanced Power Engineering 2010». Belgium: University of Liège, 2010. P. 604−614.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Walston S., Cetel A., MacKay R. et al. Joint development of a fourth generation single crystal superalloy // Superalloys 2004. Pennsylvania: Minerals, Metals & Materials Society, 2004. P. 15−24.
5. Koizumi Y., Kobayashi T., Yokokawa T. et al. Development of next-generation Ni-base single crystal superalloys // Ibid. P. 35−43.
6. Fifth generation nickel base single crystal superalloy // TMS-196. Tokyo (Japan): NIMS and IHI, 2006. 4 p. Available: http://www.sakimori.nims.go.jp (accessed: December 21, 2011).
7. Kablov E.N., Petrushin N.V., Svetlov I.L. Kompyuternoe konstruirovanie zharoprochnogo nikelevogo splava IV pokoleniya dlya monokristallicheskih lopatok gazovyh turbin [Computer designing of heat resisting nickel alloy IV of generation for single-crystal blades of gas turbines] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 98–115.
8. Kablov E.N., Petrushin N.V. Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviacionnyh GTD [Cast heat resisting nickel alloys for perspective aviation GTD] // Tehnologiya legkih splavov. 2007. №2. S. 6–16.
9. Sato A., Harada H., Yeh An-C. et al. A 5th generation SC superalloy with balanced high temperature properties and processability // Superalloys 2008. Pennsylvania: Minerals, Metals & Materials Society, 2008. P. 131–138.
10. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
11. Petrushin N.V., Svetlov I.L., Ospennikova O.G.: 1) Litejnye zharoprochnye nikelevye splavy [Cast heat resisting nickel alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 15−19; 2) Litejnye zharoprochnye nikelevye splavy // Vse materialy. Enciklopedicheskij spravochnik. 2012. №6. S. 16−21.
12. Kawagishi K., Yeh An-C., Yokokawa T., Kobayashi T., Koizumi Y., Harada H. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 // Superalloys 2012. Pennsylvania: Minerals, Metals & Materials Society, 2012. P. 189−195.
13. Yokokawa T., Harada H., Mori Y., Kawagishi K. et al. Design of nest generation Ni-base single-crystal superalloy containing Ir: towards 1150 ºC temperature capability // Superalloys 2016. Pennsylvania: Minerals, Metals & Materials Society, 2016. P. 123−130.
14. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
15. Inozemcev A.A., Koryakovcev A.S., Lesnikov V.P., Kuznecov V.P. Rol materialov i zashhitnyh pokrytij turbinnyh lopatok v obespechenii nadezhnosti i ekonomichnosti GTD [Role of materials and protecting covers of turbine blades in ensuring reliability and profitability of GTD] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. Mezhdunar. nauch.-tehnich. konf. M.: VIAM, 2006. S. 84−87.
16. Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraiya V.N., Gavrilin O.S. Monokristally nikelevyh zharoprochnyh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. 336 s. 
17. Petrushin N.V., Svetlov I.L. Fiziko-himicheskie i strukturnye harakteristiki zharoprochnyh nikelevyh splavov [Physical and chemical and structural characteristics of heat resisting nickel alloys] // Metally. 2001. №2. S. 63−73.
18. Petrushin N.V., Svetlov I.L., Samoylov A.I., Morozova G.I. Physicochemical properties and creep strength of a single crystal of nickel-base superalloy containing rhenium and ruthenium // Intern. J. Materials Research (formerly Z. Metallkunde). 2010. Vol. 101. No. 5. P. 594−600.
19. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38−52.
20. Kablov E.N., Petrushin N.V., Morozova G.I., Svetlov I.L. Fiziko-himicheskie faktory zharoprochnosti nikelevyh splavov, soderzhashhih renij [Physical and chemical factors of thermal stability of the nickel alloys, containing reniye] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 116−130.
21. Petrushin N.V., Ospennikova O.G., Elyutin E.S. Renij v monokristallicheskih zharoprochnyh nikelevyh splavah dlya lopatok gazoturbinnyh dvigatelej [Rhenium in single crystal nickel-based superalloys for gas turbine engine blades] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 5–16. DOI: 10.18577/2071-9140-2014-0-s5-5-16.
22. Portnoj K.I., Bogdanov V.I., Fuks D.L. Raschet vzaimodejstviya i stabilnosti faz [Calculation of interaction and stability of phases]. M.: Metallurgiya, 1981. 248 s.
23. Blavette D., Caron P., Khan T. An atom probe investigation of the role rhenium additions in improving creep resistance of Ni-base superalloys // Scripta Metallurgica. 1986. Vol. 20. No. 10. P. 1395–1400.
24. Fink P.J., Miller J.L., Konitzer D.G. Rhenium reduction – alloy design using an economically strategic element // J. of Metals. 2010. Vol. 62. No. 1. P. 55−57.
25. Wahl J.B., Harris K. New single crystal superalloys, CMSX-7 and CMSX-8 // Superalloys–2012. Pennsylvania: Minerals, Metals & Materials Society, 2012. P. 179−188.
26. Nickel-Basislegierung für die gießtechnische Herstellung einkristallin erstarter Bauteile: pat. 10100790 Deutsches; publ. 18.07.02.
27. Petrushin N.V., Ospennikova O.G., Visik E.M., Rassohina L.I., Timofeeva O.B. Zharoprochnye nikelevye splavy nizkoj plotnosti [Heat resisting nickel alloys of low density] // Litejnoe proizvodstvo. 2012. №6. S. 5−11.
28. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monokristallicheskij zharoprochnyj nikelevyj splav novogo pokoleniya s nizkoj plotnostyu [Single-crystal nickel-based superalloy of a new generation with low-density] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
29. Low density, high creep resistant single crystal superalloy for turbine airfoils: pat. 7261783 US; publ. 28.08.07.
30. Kablov E.N., Petrushin N.V. Komp\'yuternyj metod konstruirovaniya litejnyh zharoprochnyh nikelevyh splavov [Computer method of designing of cast heat resisting nickel alloys] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina. M.: Nauka. 2006. S. 56–78.
31. Rae C.M.F., Reed R.C. The precipitation of topologically close-packed phases in rhenium-containing superalloys // Acta Materialia. 2001. Vol. 49. No. 10. P. 4113–4125.
32. Acharya M.V., Fuch G.E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys // Materials Science Engineering A. 2004. Vol. 381. P. 143−153.
33. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features of the single-crystal heat resisting nickel alloys alloyed by rhenium] // Metally. 2006. №5. S. 47−57.
34. Morozova G.I., Timofeeva O.B., Petrushin N.V. Osobennosti struktury i fazovogo sostava vysokorenievogo nikelevogo zharoprochnogo splava [Features of structure and phase composition of high-rhenium nickel hot strength alloy] // Metallovedenie i termicheskaya obrabotka metallov. 2009. №2 (644). S. 10–16.
35. Walston W.S., Schaeffer J.C., Murphy W.H. A new type microstructural instability in superalloys – SRZ // Superalloys 1996. Pennsylvania: Minerals, Metals & Materials Society, 1996. P. 9−18.
36. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy, legirovannye ruteniem [The nickel hot strength alloys alloyed by ruthenium] // Aviacionnye materialy i tehnologii. M.: VIAM, 2004. Vyp.: Vysokorenievye zharoprochnye splavy, tehnologiya i oborudovanie dlya proizvodstva splavov i lit\'ya monokristallicheskih turbinnyh lopatok GTD. S. 80−90.
37. Petrushin N.V., Elyutin E.S., Nazarkin R.M. i dr. Segregaciya legiruyushhih elementov v napravlenno zakristallizovannyh zharoprochnyh nikelevyh splavah, soderzhashhih renij i rutenij [Segregation of doping elements in directionally crystalline heat resisting nickel alloys, containing rhenium and ruthenium] // Voprosy materialovedeniya. 2015. №1 (81). S. 27–37.
38. Murakami H., Honma T., Koizumi Y., Harada H. Distribution of platinum group metals in Ni-base single-crystal superalloys // Superalloys 2000. Pennsylvania: Minerals, Metals& Materials. Society, 2000. P. 747−756.
39. Fu C.L., Reed R., Janotti A., Kremar M. On the diffusion of alloying elements in the nickel-base superalloys // Superalloys 2004. Pennsylvania: Minerals, Metals & Materials Society. 2004. P. 867−876.
40. Argence D., Vernault C., Desvallées Y., Fournier D. MC-NG: a 4th generation single-crystal superalloy for future aeronautical turbine blades and vanes // Superalloys 2000. Pennsylvania: Minerals, Metals &Materials Society, 2000. P. 829−837.
41. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Konstrukcionnye zharoprochnye materialy na osnove soedineniya Ni3Al dlya detalej goryachego trakta GTD [Constructional heat resisting materials on the basis of Ni3Al connection for details of hot path of GTD] // Tehnologiya legkih splavov. 2007. №2. S. 75−80.
42. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
43. Povarova K.B., Bazyleva O.A., Drozdov A.A. i dr. Konstrukcionnye zharoprochnye splavy na osnove Ni3Al: poluchenie, struktura, svojstva [Constructional hot strength alloys on the basis of Ni3Al: receiving, structure, properties] // Materialovedenie. 2011. №4. S. 39–48.
44. Svetlov I.L., Petrushin N.V., Golubovskij E.R., Hvackij K.K., Shhegolev D.V., Elyutin E.S. Mehanicheskie svojstva monokristallov nikelevogo zharoprochnogo splava, soderzhashhego renij i rutenij [Mechanical properties of monocrystals of the nickel hot strength alloy, containing rhenium and ruthenium] // Deformaciya i razrushenie materialov. 2008. №11. S. 26–35.
45. Petrushin N.V., Visik E.M., Gorbovec M.A., Nazarkin R.M. Strukturno-fazovye harakteristiki i mehanicheskie svojstva monokristallov zharoprochnyh nikelevyh renijsoderzhashhih splavov s intermetallidno-karbidnym uprochneniem [Structural phase characteristics and mechanical properties of monocrystals of heat resisting nickel rhenium containing alloys with intermetallic-carbide hardening] // Metally. 2016. №4. S. 57–70.
46. Seleznev V.G., Rozanov M.A., Minova N.I. Opredelenie fizicheskih harakteristik monokristallicheskih obrazcov splava ZhS36 [Definition of physical characteristics of single-crystal samples of alloy ZhS36] // Novye tehnologicheskie processy i nadezhnost GTD. M.: CIAM, 2008. Vyp. 7: Obespechenie prochnostnoj nadezhnosti rabochih lopatok vysokotemperaturnyh turbin. S. 73–77.
47. Fährmann M., Hermann W., Fährmann E. et al. Determination of matrix and precipitate elastic constants in (γ-γ) Ni-base model alloys, and their relevance to rafting // Material Science Engineering A. 1999. Vol. 260. Issue 1–2. P. 212−221.
48. Miner R.V., Voigt R.S., Gayda J., Gabb T.P. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy René N4: Part I. Tensile behavior // Metallurgical Transactions A. 1986. Vol. 17. Issue 3. P. 491–496.
49. Yun-Jiang W., Chong-Yu W. First-principles calculation for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers // Chinese Physics B. 2009. Vol. 18. No. 10. P. 4339−4348.
50. Caron P., Diologent F., Drawin S. Influence of chemistry on the tensile yield strength of nickel-based single crystal superalloys // Proc. Conf. Eurosuperalloys 2010. Switzerland. Scientific net Trans. Tech. Publications. Advanced Materials Research. 2011. Vol. 278. P. 345–350. DOI: 10.4028/www.scientific.net/AMR.278.345.
51. Kablov E.N., Golubovskij E.R. Zharoprochnost nikelevyh splavov [Thermal stability of nickel alloys]. M.: Mashinostroenie, 1998. 462 s.
52. Golubovskij E.R., Svetlov I.L. Temperaturno-vremennáya zavisimost anizotropii dlitelnoj prochnosti monokristallov ZhNS [Dependence of anisotropy of long durability of monocrystals ZHNSOT of temperature and time] // Problemy prochnosti. 2002. №2. S. 5–19.
53. Bokshtejn B., Epishin A., Svetlov I., Esin V., Rodin A., Link T. Rost i zalechivanie por v monokristallah zharoprochnyh splavov na nikelevoj osnove [Growth and curing of time in monocrystals of hot strength alloys on nickel basis] // Zhurnal funkcionalnyh materialov. 2007. T. 1. №5. S. 162–170.
54. Epishin A.I., Svetlov I.L. Evolyuciya morfologii por v monokristallah nikelevyh zharoprochnyh splavov [Evolution of morphology of time in monocrystals of nickel hot strength alloys] // Materialovedenie. 2015. №7. S. 21–28.
55. Epishin A., Link T., Fedelich B., Svetlov I., Golubovskiy E. Hot isostatic processing of single crystal nickel-base superalloys mechanism of pore closure and effect on mechanical properties // MATEC WEB of Conference. 2014. Vol. 14. P. 08003. DOI: 10.1051/matecconf/2014141/3009.
56. Svetlov I.L., Khvatskiy K.K., Gorbovets M.A., Belyaev M.S. Vliyanie goryachego izostaticheskogo pressovaniya na mehanicheskie svojstva litejnyh nikelevyh zharoprochnyh splavov [An effect of Hot Isostatic Pressing (HIP) on mechanical properties of casting Ni-based superalloys] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 10–14. DOI: 10.18577/2071-9140-2015-0-3-10-14.
57. Transpiration cooled blade for a gas turbine engine: pat. 4314794 A US; publ. 09.02.82.
58. Method of manufacturing a transpiration cooled ceramic blade for a gas turbine: pat. 4376004 A US; publ. 08.03.83.
59. GE assembles first 777x engine // Aviation week. Network. Available at: http://aviationweek.com/commercial-aviation/ge-assembles-first-777x-engine/2016-02-23 (accessed: August 21, 2016).
60. Xu L., Bo S., Hongde Y., Lei W. Evolution of Rolls-Royce air-cooled turbine blades and feature analysis // J. Procedia Engineering. 2015. Vol. 99. P. 1482–1491.
61. Turbine blade for extreme temperature condition: pat. 7189459 B2 US; publ. 03.13.07.
62. Drawin S. Ultra High temperature refractory metal based silicide materials for next generation turbines // ONERA (French aerospace research Centre), Metallic Materials and Processing Department 92320 CHÂTILLON (France). Available at: http://www.aerodays2006.org/sessions/B_Sessions/ B5/B54.pdf (accessed: April 11, 2012).
63. Shryu Q., Rongming W., Yarfang H. Microstructure of Nb/Nb5Si3 in situ composites // Transaction Nonferrous Met. Sos. China. 2002. Vol. 12. No. 4. P. 681–684.
64. Svetlov I.L. Vysokotemperaturnye Nb–Si kompozity [High-temperature Nb–Si composites] // Materialovedenie. 2010. №9–10. S. 18–38.
65. Karpov M.I., Vnukov V.I., Korzhov V.P. i dr. Struktura i mehanicheskie svojstva zharoprochnogo splava sistemy Nb–Si evtekticheskogo sostava, poluchennogo metodami napravlennoj kristallizacii [Structure and mechanical properties of hot strength alloy of Nb-Si system of the eutectic structure received by methods of directed crystallization] // Deformaciya i razrushenie materialov. 2002. №12. S. 2–8.

DOI: 10.18577/2071-9140-2017-0-S-104-115

UDC: 669.017.165

Pages: 104-115

O.A. Bazyleva1, O.G. Ospennikovna1, E.G. Arginbaeva1, E.Yu. Letnikova1, A.V. Shestakov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Development trends of nickel-based intermetallic alloys

The research resultson development of heat-resistant casting alloys based on nickel aluminide and manufacturing technologies of semi-finished products made from these materials, including selective laser synthesis are shown in this article. The influence of technological parameters of directed solidification, such as: crystallization rate and temperature gradient on microstructure, structural and phase parameters, mechanical properties of the intermetallic alloys based on nickel aluminide were defined. It was shown the improvement opportunity and increase in time till destruction of intermetallic nickel alloys at the temperature of 1200°C due to REM microalloying.

Keywords: nickel aluminide, intermetallic metal, single crystal, math modelling, nickel aluminide-based composite material, microstructure, selective laser sintering, microporosity.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kolobov Yu.R., Kablov E.N., Kozlov E.V. i dr. Struktura i svojstva intermetallidnyh materialov s nanofaznym uprochneniem [Structure and properties of intermetallidny materials with nanophase hardening]. M.: Izd. dom MISiS, 2008. 328 s.
4. Grinberg B.A., Ivanov M.A. Intermetallidy Ni3Al i TiAl: mikrostruktura, deformacionnoe povedenie [Ni3Al and TiAl intermetallic compound: microstructure, deformation behavior]. Ekaterinburg: UrO RAN, 2002. 359 s.
5. Buntushkin V.P., Larina L.V. i dr. Issledovanie splava na osnove intermetallida sostava Ni3Al (VKNA-1LK) [Alloy research on the basis of intermetallic compound of structure of Ni3Al (VKNA-1LK)] // Voprosy aviacionnoj nauki i tehniki. Ser.: Aviacionnye materialy. M.: VIAM. 1987. №3. S. 14–17.
6. Afanasev N.I., Buntushkin V.P., Kasymov M.K., Larina L.V., Kolobov Yu.R. Preryvistaya reakciya obrazovaniya γ-fazy v splave na osnove Ni3Al [Discontinuous reaction of education γ-фазы in alloy on the basis of Ni3Al] // Fizika metallov i metallovedenie. Akademiya nauk SSSR. 1989. T. 68. vyp. 3. S. 602–605.
7. Buntushkin V.P., Matuhnov V.M. i dr. O haraktere povrezhdaemosti rabochih lopatok turbin na uchastkah kontaktnyh ploshhadok [About nature of damageability of working blades of turbines on sites of signal connect pads] // Aviacionnaya promyshlennost. 1974. №2. S. 16–18.
8. Buntushkin V.P., Kurochko R.S., Elkin I.S. i dr. Zharostojkij material s povyshennym soprotivleniem iznosu [Heat resisting material with increased resistance to wear] // Aviacionnaya promyshlennost. 1975. №7. S. 59–61.
9. Buntushkin V.P. Issledovanie i razrabotka zharostojkogo intermetallidnogo splava i pokrytij dlya teplonagruzhennyh detalej aviacionnyh gazovyh turbin: avtoref. dis. … kand. tehn. nauk [Research and development of heat resisting intermetallidny alloy and coverings for the heatloaded details of aviation gas turbines: thesis Cand. Sci. (Tech.)]. M., 1976. 30 s.
10. Kaplin Yu.I., Melimevker O.D., Buntushkin V.P. Intermetallidnyj splav – shtampovyj material dlya izostaticheskogo deformirovaniya [Intermetallidny alloy is a stamp material for isostatic deformation] // Aviacionnaya promyshlennost. 1981. №9. S. 48–50.
11. Splav na osnove intermetallida sostava Ni3Al: pat. 2088686 Ros. Federaciya [Alloy on the basis of intermetallic compound of structure of Ni3Al: pat. 2088686 Rus. Federation]; zayavl. 25.10.95; opubl. 27.08.97. Byul. №24.
12. Sklyarov N.M. Stanovlenie i razvitie Vserossijskogo instituta aviacionnyh materialov (1932–1992 gg.) [Formation and development of the All-Russian institute of aviation materials (1932–1992)] // Aviacionnye materialy na rubezhe XX–XXI vekov: nauch.-tehnich. sb. M.: VIAM, 1994. S. 14–48.
13. Buntushkin V.P., Kablov E.N. i dr. Vysokotemperaturnye konstrukcionnye splavy na osnove intermetallida Ni3Al [High-temperature structural alloys on the basis of Ni3Al intermetallic compound ] // Ibid. S. 278–284.
14. Bazyleva O.A., Buntushkin V.P. Vzaimosvyaz dlitelnoj prochnosti splava na osnove intermetallida sostava Ni3Al s sostavom karbidnoj fazy [Interrelation of long durability of alloy on the basis of intermetallic compound of structure of Ni3Al with structure of carbide phase] // Aviacionnye materialy. 1990. №2. S. 12–14.
15. Lukin V.I., Bazyleva O.A., Kovalchuk V.G., Golev E.V., Hodakova E.A. Issledovanie svojstv otlivok iz intermetallidnogo splava VKNA-1VR posle ispravleniya defektov metodom svarki [Research of properties of castings from intermetallic alloy VKNA-1BP after correction of defects by welding technique] // Svarochnoe proizvodstvo. 2014. №10. S. 5–12.
16. Bazyleva O.A., Turenko E.Yu., Rassohina L.I. i dr. Litye bloki soplovogo apparata 2-j stupeni TVD iz intermetallidnogo splava VKNA-4-VI [Cast blocks of the nozzle device of the 2nd step of TVD from intermetallidny alloy of VKNA-4-VI] // Litejnoe proizvodstvo. 2014. №10. S. 7–12.
17. Kishkin S.T., Portnoj K.I., Buntushkin V.P. i dr. Teoreticheskie issledovaniya zharoprochnyh nikelevyh i intermetallidnyh materialov [Theoretical researches of heat resisting nickel and intermetallic materials] // Aviacionnye materialy. M.: VIAM, 1982. S. 28–32.
18. Portnoj K.I., Buntushkin V.P., Bogdanov V.I. i dr. Vliyanie legirovaniya na termodinamicheskuyu stabilnost faz v sisteme Ni–Al [Influence of alloying on thermodynamic stability of phases in Ni-Al system] // Doklady AN SSSR 1980. T. 252. №1. S. 12.
19. Buntushkin V.P., Bazyleva O.A., Trohina G.N. i dr. Issledovanie prichin hrupkogo razrusheniya intermetallida Ni3Al pri vysokih temperaturah [Research of the reasons of brittle destruction of Ni3Al intermetallic compound at high temperatures] // Aviacionnye materialy. 1989. №3. S. 10–15.
20. Kablov E.N., Buntushkin V.P., Morozova G.I., Bazyleva O.A. Osnovnye principy legirovaniya intermetallida Ni3Al pri sozdanii vysokotemperaturnyh splavov [The basic principles of alloying of Ni3Al intermetallic compound at creation of high-temperature alloys] // Materialovedenie. 1998. №7. S. 13–17.
21. Morozova G.I. Kompensaciya disbalansa legirovaniya zharoprochnyh nikelevyh splavov [Compensation of imbalance of alloying of heat resisting nickel alloys] // MiTOM. 2012. №12. S. 52–58.
22. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [ Alloys on the basis of nickel aluminides] // MiTOM. 1999. №1. S. 32–34.
23. Kablov E.N., Buntushkin V.P., Povarova K.B., Bazyleva O.A. i dr. Malolegirovannye legkie zharoprochnye vysokotemperaturnye materialy na osnove intermetallida Ni3Al [The low-alloyed easy heat resisting high-temperature materials on the basis of Ni3Al intermetallic compound] // Metally RAN. 1999. №1. S. 58–65.
24. Petrushin N.V., Chabina E.B., Nazarkin R.B. Konstruirovanie zharoprochnyh intermetallidnyh splavov na osnove γʹ-fazy s vysokoj temperaturoj plavleniya. Chast 2 [Designing of heat resisting intermetallic alloys on basis γʹ-phases with high melting temperature. Part 2] // MiTOM. 2012. №3 (681). S. 20–23.
25. Povarova K.B., Kazanskaya N.K., Buntushkin V.P., Bazyleva O.A. i dr. Termostabilnost struktury splava na osnove Ni3Al i ego primenenie v rabochih lopatkah malorazmernyh GTD [Thermostability of alloy structure on the basis of Ni3Al and its application in working blades of low-dimensional GTE] // Metally RAN. 2003. №3. S. 95–100.
26. Echin A.B. Vliyanie temperaturnogo gradienta i skorosti kristallizacii na strukturu i svojstva monokristallicheskih Re i Ru soderzhashhih zharoprochnyh splavov primenitelno k vysokogradientnoj tehnologii lit\'ya lopatok GTD: avtoref. dis. … kand. tehn. nauk [Influence of temperature gradient and crystallization speed on structure and properties of single-crystal Re and Ru of containing hot strength alloys with reference to high-gradient casting technology of blades of GTD: thesis Cand. Sci. (Tech.)]. M. 2016. 26 s.
27. Bondarenko Yu.A., Bazyleva O.A., Echin A.B. i dr. Vysokogradientnaya napravlennaya kristallizaciya detalej iz splava VKNA-1V [The high-gradient directed crystallization of details from alloy VKNA-1B] // Litejnoe proizvodstvo. 2012. №6. S. 12–16.
28. Bazyleva O.A., Arginbaeva E.G., Echin A.B., Shestakov A.V. Vliyanie mikrolegirovaniya redkozemelnymi metallami i tehnologii polucheniya konstrukcionnogo intermetallidnogo splava na osnove alyuminida nikelya na ego svojstva [Microalloying influence by rare earth metals and technologies of receiving structural intermetallic alloy on the basis of nickel aluminide on its properties] // Materialovedenie. 2016. №4. S. 21–27.
29. Bazyleva O.A., Shestakov A.V., Arginbaeva E.G., Turenko E.Yu. Vozmozhnost\' povysheniya harakteristik zharoprochnosti i zharostojkosti konstrukcionnogo intermetallidnogo splava na osnove alyuminida nikelya [Possibility of increase of characteristics of thermal stability and heat resistance of structural intermetallic alloy on the basis of nickel aluminide] // Metally. 2016. №1. S. 93–101.
30. Burkovskaya N.P., Efimochkin I.Yu., Sevost\'yanov N.V., Rodionov A.I. Kompozicionnyj material na osnove intermetallida nikelya s dispersnym uprochneniem Al2O3 [Composite material on the basis of nickel intermetallic compound with disperse hardening of Al2O3] // Materialovedenie. 2015. №8. S. 29–34.
31. Burkovskaya N.P., Efimochkin I.Yu., Bazyleva O.A. i dr. Issledovanie strukturnyh osobennostej, prochnostnyh svojstv i zharostojkosti dispersno-uprochnennogo kompozicionnogo materiala na osnove intermetallida nikelya [Research of structural features, strength properties and the heat resistance of the disperse strengthened composite material on the basis of nickel intermetallic compound] // Materialovedenie. 2016. №3. S. 8–15.
32. Sposob polucheniya vysokotemperaturnogo kompozicionnogo materiala na osnove nikelya: pat. 2563084 Ros. Federaciya [Way of receiving high-temperature composite material on the basis of nickel: pat. 2563084 Rus. Federation]; zayavl. 14.11.2014; opubl. 20.09.2015. Byul. 26. 
33. Evgenov A.G., Shherbakov S.I., Rogalev A.M. Primenenie poroshkov svarivaemyh i litejnyh zharoprochnyh splavov proizvodstva FGUP «VIAM» dlya remonta detalej GTD lazernoj gazoporoshkovoj naplavkoj [The use of welded and powder casting superalloys produced by FGUP «VIAM» for the repair of gas turbine engine components laser gas powder braze] // Novosti materialovedeniya. Nauka i tehnika. 2016. №4 (22). St. 04. URL: http://www.materialsnews.ru (Available at: November 07, 2016).

DOI: 10.18577/2071-9140-2017-0-S-116-129

UDC: 669.245

Pages: 116-129

B.S. Lomberg1, S.V. Ovsepyan1, M.M. Bakradze1, M.N. Letnikov1, I.S. Mazalov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

The application of new wrought nickel alloys for advanced gas turbine engines

The article presents the results of work, aimed at introducing new heat-resistant wrought nickel alloys, developed at FSUE «VIAM» into production of advanced gas turbine engines (GTE). Researches in the field of materials science and manufacturing technologies have provided industrial production of large-sized component billets from VZh175-ID alloy with improved performance properties. Technologies have been developed, ensuring the use of new constructive solutions for rotor units of GTE - billets ofturbine disk and «blisk» rotor construction made from EP975-ID with solder joint of turbine blades. For the first time, welded constructions of high pressure compressor rotor and turbine were made from VZh172 nickel superalloy., VZh171 superalloy, strengthened by the internal nitration has been tested for combustion chamber of advanced helicopter engine.

Keywords: wrought heat-resistant nickel alloys, gas turbine engine, rotor disks, welded rotor, manufacturing technologies, gamma-prime phase, microstructure, mechanical properties, combustion chamber, flame tube, thermochemical treatment.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Lomberg B.S., Ovsepyan S.V., Bakradze M.M. Novyj zharoprochnyj nikelevyj splav dlya diskov GTD i GTU [New heat resisting nickel alloy for disks GTE and GTU] // Materialovedenie. 2010. №7. S. 23–29.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
4. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokozharoprochnye deformiruemye nikelevye splavy dlya perspektivnyh GTD i GTU [High-heat resisting deformable nickel alloys for perspective GTE and GTU] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 98–103.
5. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
6. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10–11. S. 23–32.
8. Ovsepyan S.V., Lomberg B.S., Grigoreva T.N., Bakradze M.M. Zharoprochnyj deformiruemyj svarivaemyj splav dlya detalej GTD s nizkim temperaturnym koefficientom linejnogo rasshireniya [Heat resisting deformable welded alloy for GTD details with low temperature coefficient of linear dilatation] // Metallurg. 2013. №7. S. 61–65.
9. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metalurgii i materialovedeniya. 2013. №3. S. 47–54.
10. Ovsepyan S.V, Lomberg B.S., Bakradze M.M., Letnikov M.N., Mazalov I.S., Ahmedzyanov M.V. Sovremennye zharoprochnye deformiruemye nikelevye splavy VIAM dlya detalej GTD [The modern heat resisting deformable VIAM nickel alloys for GTD details] // Sovremennye zharoprochnye deformiruemye nikelevye i intermetallidnye splavy, metody ih obrabotki: sb. mater. konf. M.: VIAM, 2015, doklad №1.
11. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tekhnologii. 2011. №2. S. 25–30.
12. Zharoprochnyj deformiruemyj splav na osnove nikelya i izdelie, vypolnenoe iz etogo splava: pat. 2571674 Ros. Federaciya [Heat resisting deformable alloy on the basis of nickel and the product executed from this alloy: pat. 2571674 Rus. Federation]; opubl. 25.11.14.
13. Lukin V.I., Ryl\'nikov B.C., Afanasev-Hodykin A.N., Timofeeva O.B. Osobennosti tehnologii diffuzionnoj pajki zharoprochnogo splava EP975 i litejnogo monokristallicheskogo intermetallidnogo splava VKNA-4U primenitel\'no k konstrukcii blisk [Features of technology of the diffusion soldering of EP975 hot strength alloy and cast single-crystal intermetallic alloy VKNA-4U with reference to design blisk] // Svarochnoe proizvodstvo. 2013. №7. S. 19–25.
14. Ovsepyan S.V., Bazyleva O.A., Letnikov M.N., Arginbaeva E.G. Raschet stabilnosti nerazemnogo soedineniya zharoprochnyh nikelevogo i intermetallidnogo splavov [Calculation of stability of permanent connection of heat resisting nickel and intermetallidny alloys] // Voprosy materialovedeniya. 2014. №2. S. 155–162.
15. Lomberg B.S., Mazalov I.S., Bykov Yu.G., Dokashev V.V. Osobennosti tehnologii izgotovleniya svarnyh kolcevyh konstrukcij iz vysokoprochnogo splava VZh172 [Features of manufacturing techniques of welded ring designs from VZh172 high-strength alloy] // Svarochnoe proizvodstvo. 2014. №2. S. 8–13.
16. Sposob izgotovleniya rotora turbiny iz nikelevogo zharoprochnogo splava: pat. 2571673 Ros. Federaciya [Way of manufacturing of the turbine rotor from nickel hot strength alloy: pat. 2571673 Rus. Federation]; opubl. 25.11.15.

DOI: 10.18577/2071-9140-2017-0-S-130-143

UDC: 621.791

Pages: 130-143

V.I. Lukin1, V.G. Kovalchuk1, E.N. Ioda1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Fusion welding is a core of welding manufacturing

Welding is the most efficient technology of manufacturing the permanent connections of structural materials and production of energy-saving joints, that are very close to the optimal shape of completed parts or structures. In many cases welding technologies are the only possible or the most effective ways to manufacture construction materials joints allowing to reduce labor costs, increase the material utilization efficiency, decrease the energy consumption of completed parts. Now fusion welding (tungsten arc welding, electron beam welding, spot welding, laser welding, hybrid welding) is the base of welding manufacturing. The most important results of research projects carried out in the field of development of welding technologies of nickel, titanium, aluminum alloys and steels are presented in the paper. The work is executed within the implementation of the complex scientific direction 10.8. «Fusion welding technologies of construction materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: TIG welding, resistance spot welding, electron beam welding, welded joints, welding parameters, short-term durability, long-term durability, structure, impact resistance, resistance to hot crack formation.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 13–19.
3. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh splavov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern hot strength alloys and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3. S. 34–38.
4. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Svarka i bezopasnost: sb. mater. Vseros. nauch.-praktich. konf. Yakutsk, 2012. T. 1. S. 21–30.
5. Eliseev Yu.S., Maslenkov S.B., Gejkin V.A., Poklad V.A. Tehnologiya sozdaniya neraz#emnyh soedinenij pri proizvodstve gazoturbinnyh dvigatelej [Technology of creation of permanent connections by production of gas turbine engines]. M.: Nauka i tehnologii. 2001. 544 s.
6. Kablov E.N. Razrabotki VIAM dlya gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
7. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
8. Bykov Yu.G., Ovsepyan S.V., Mazalov I.S., Romashov A.S. Primenenie novogo zharoprochnogo splava VZh171 v konstrukcii perspektivnogo dvigatelya [Application of new VZh171 hot strength alloy in design of the perspective engine] // Vestnik dvigatelestroeniya, 2012. №2. S. 246–249.
9. Kochergin K.A. Kontaktnaya svarka [Contact welding]. L.: Mashinostroenie, 1987. 240 s.
10. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: October 20, 2016).
11. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
12. Kostina M.V., Bannyh O.A., Blinov V.M. Osobennosti stalej, legirovannyh azotom [Features staly, alloyed by nitrogen ] // Metallovedenie i termicheskaya obrabotka metallov. 2000. №12. S. 3–6.

DOI: 10.18577/2071-9140-2017-0-S-144-158

UDC: 621.791:669.018.44

Pages: 144-158

O.G. Ospennikova1, V.I. Lukin1, A.N. Afanasiev-Khodykin1, I.A. Galushka1, O.V. Shevchenko1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Advanced developments in the field of the high-temperature soldering of heat resisting alloys

This article describes the advantages of brazing technology at manufacturing the parts and components of modern gas turbine engines. The results of research in the field of production technologies of high-temperature nickel-based solder powders by the gas-jet spraying technique are shown. Compositions and technologies of new domestic nondeformable semi-manufactured solders in tapes and pastes based on organic binding are developed. The results of works on research and development of soldering technology of nickel-based superalloys in opposite combinations for perspective «blisk»-type» design of jet engine impeller made by using the permanent joints are shown. The results of development of soldering technology for manufacturing the permanent joints of intermetallic nickel superalloys of VKNA and WIN-types in the same combination in relation to parts and assembles of jet engine hot sections are shown

Keywords: solder, monocrystal nickel superalloys, brazing, brazed joints, organic binding, tapes, pastes.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
6. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
7. Kablov E.N., Golubovskij E.R. Zharoprochnost nikelevyh splavov [Thermal stability of nickel alloys]. M.: Mashinostroenie, 1998. 463 s.
8. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskie zharoprochnye splavy dlya gazoturbinnyh dvigatelej [Single-crystal hot strength alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 38–52.
9. Sims Ch., Hagel V. Zharoprochnye splavy [Hot strength alloys]. M.: Metallurgiya, 1976. 393 s.
10. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya / pod obshh. red. E.N. Kablova. 2-e izd. [Cast blades of gas turbine engines: alloys, technologies, coverings / gen. ed. by E.N. Kablov. 2nd ed.]. M.: Nauka, 2006. 632 s.
11. Lukin V.I., Sorokin L.I., Bagdasarov Yu.S. Svarivaemost litejnyh zharoprochnyh nikelevyh splavov tipa ZhS6 [Bondability of cast heat resisting nickel alloys of the ZhS6 type] // Svarochnoe proizvodstvo. 1997. №6. S. 12–17.
12. Lukin V.I., Semenov V.N., Starova L.L. i dr. Obrazovanie goryachih treshhin pri svarke zharoprochnyh splavov [Formation of hot cracks when welding hot strength alloys] // MiTOM, 2007. №12. S. 7–14.
13. Lukin V.I., Semenov V.N., Starova L.L., Zhegina I.P. at al. Formation of hot cracks in welding of refractory alloys // Metal Science and heat Treatment. 2001. P. 476–480.
14. Lukin V.I., Semenov V.N., Starova L.L., Morozova G.I. at al. Structure of the weld and near-weld zone in nickel alloys EP202 and EK61 // Ibid. P. 484–488.
15. Lukin V.I., Kovalchuk V.G., Samorukov M.L. at al. Effect of friction welding parameters and heat treatment on the quality of welded joints in creep-resisting deformable nickel alloys // Welding International. 2012. Vol. 26. No. 9. P. 728–731.
16. Lukin V.I., Kovalchuk V.G., Samorukov M.L., Gridnev Y.M. at al. Special features of friction welding joints in creep-resisting nickel alloys VKNA-25 and EP975 // Welding International. 2011. Vol. 25. No. 10. P. 800–804.
17. Lukin V.I., Kovalchuk V.G., Golev E.V., Mazalov I.S., Ovchenkova I.I. Welding a creep-resisting Ni–Co–Cr (VZH171) alloy strengthened by nitriding // Welding International. 2013. Vol. 27. No. 11. P. 897–902.
18. Lashko N.F., Lashko S.V. Voprosy teorii i tehnologii pajki [Questions of the theory and technology of the soldering]. M.: Izd-vo Saratovsk. un-ta, 1974. 248 s.
19. Lashko N.F., Lashko S.V. Pajka metallov [Soldering of metals]. M.: Mashinostroenie, 1967. 368 s.
20. Lukin V.I., Rylnikov V.S., Afanasev-Hodykin A.N. Osobennosti polucheniya payanyh soedinenij iz splava ZhS36 [Features of receiving sweated connections from alloy ЖС36] // Tehnologiya mashinostroeniya. 2010. №5. S. 21–25.
21. Horunov V.F., Maksimova S.V. Pajka zharoprochnyh splavov na sovremennom etape [The soldering of hot strength alloys at the present stage] // Svarochnoe proizvodstvo. 2010. №10. S. 24.
22. Chaturvedi M.C., Ojo O.A., Richards N.L. Diffusion brazing of cast Inconel 738 superalloy // Advances in Technol.: Materiales & Materiales Proc. 2004. No. 6. P. 206–213.
23. Kenyon N., Hrubec R.Y. Brazing of a dispersion strengthened nickel base alloy made by mechanical alloying // Welding Research Supplement. April, 1974. P. 145s–152s.
24. Lukin V.I., Stolyankov Yu.V., Rylnikov V.S., Shherbakov A.I. Pajka amorfnymi pripoyami [Soldering amorphous solders] // Aviacionnye tehnologii. 2002. S. 96–102.
25. Afanasev-Hodykin A.N., Lukin V.I., Rylnikov V.S. Vysokotehnologichnye polufabrikaty zharoprochnyh pripoev (lenty i pasty na organicheskom svyazuyushhem) [High-tech semi-finished high-temperature solders (tape and paste on an organic binder] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 02. Available at: http://viam-works.ru (accessed: October 03, 2016).

DOI: 10.18577/2071-9140-2017-0-S-159-174

UDC: 669.018.292

Pages: 159-174

V.I. Gromov1, N.M. Voznesenskaya1, N.G. Pokrovskaya1, O.A. Tonysheva1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering

The advanced domestic and foreign scientific and manufacturing enterprises carry out researches on creation of new high-strength steels and improvement of commercial high-strength steels, which are aimed at increase of strength, viscosity and corrosion resistance. The special attention is paid to cost reduction of semi-finished products and technological effectiveness increase when manufacturing the parts. Now the main efforts of developers of new steels are directed to the solution of the following tasks: - creation of new high-strength constructional steels, including steels which are strengthened by vacuum and ion-vacuum chemical thermal processing, allowing to raise the characteristic of endurance and strength of materials; - creation of high-strength corrosion-resistant welded steels, including steels with the superequilibrium nitrogen content possessing high values of strength, viscosity and endurance.

Keywords: high-strength steels, chemical and thermal processing, corrosion resistance, hardness.

Reference List

1 Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
4. Novikov I.I. Teoriya termicheskoj obrabotki metallov [Theory of thermal processing of metals]. M.: Metallurgiya, 1978. 338 s.
5. Petrakov A.F., Shalkevich A.B. Vysokoprochnye stali v aviastroenii [High-strength became in aircraft industry] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2002. S. 180–191.
6. Perkas M.D., Kardonskij V.M. Vysokoprochnye martensitostareyushhie stali [High-strength martensite aging steels]. M.: Metallurgiya, 1970. 350 s.
7. Markova E.S., Yakusheva N.A., Pokrovskaja N.G., Shalkevich A.B. Tehnologicheskie osobennosti proizvodstva martensitostareyushhej stali VKS-180 [Technological features of the production of martensite aging steel VKS-180] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 01. Available at: http://www.viam-works.ru (accessed: October 5, 2016).
8. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
9. Korostashevskij R.V., Zajcev A.M. Aviacionnye podshipniki kacheniya [Aviation bearings of swing]. M.: Oborongiz, 1963. 340 s.
10. Shalkevich A.B., Voznesenskaya N.M., Pokrovskaya N.G., Markova E.S. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali dlya samoletov novogo pokoleniya [High-strength constructional and corrosion-resistant became for airplanes of new generation] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 142–150.
11. Vysokoprochnaya korrozionnostojkaya stal: pat. 2318068 Ros. Federaciya [High-strength corrosion-resistant steel: pat. 2318068 Rus. Federation]; opubl. 21.11.05.
12. Mokrinskij V.I. Proizvodstvo boltov holodnoj obemnoj shtampovkoj [Production of bolts by cold volume forming]. M.: Metallurgiya, 1978. 71 s.
13. Misozhnikov V.M., Grinberg M.Ya. Tehnologiya holodnoj vysadki metalla [Technology of cold upsetting of metal]. M.: Mashgiz, 1951. 310 s.
14. Vysokoprochnaya korrozionnostojkaya stal i izdelie, vypolnennoe iz nee: pat. 2214474 Ros. Federaciya [High-strength corrosion-resistant steel and the product which has been executed of it: pat. 2214474 Rus. Federation]; opubl. 20.10.2003.
15. Tonysheva O.A., Voznesenskaya N.M., Eliseev E.A., Shalkevich A.B. Issledovanie novoj vysokoprochnoj ekonomnolegirovannoj azotosoderzhashhej stali povyshennoj nadezhnosti [Research of new high-strength ekonomnolegirovanny nitrogen-bearing steel of increased reliability] // Vestnik MGTU im. N.E. Baumana. 2011. №SP2. S. 17–20.
16. Tonysheva O.A., Voznesenskaja N.M., Shalkevich A.B., Petrakov A.F. Issledovanie vlijanija vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali pere-hodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] // Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
17. Lukin V.I., Voznesenskaya N.M., Kovalchuk V.G., Golev E.V., Samorukov M.L. Svarka vysokoprochnoj korrozionnostojkoj stali VNS-72 [Welding of high-strength VNS-72 corrosion-resistant steel] // Svarochnoe proizvodstvo. 2012. №10. S. 31–35.
18. Vysokoprochnaya korrozionnostojkaya stal martensitnogo klassa i izdelie, vypolnennoe iz nee: pat. 2291912 Ros. Federaciya [High-strength corrosion-resistant steel of the martensitic class and the product which has been executed of it: pat. 2291912 Rus. Federation]; opubl. 10.11.05.
19 Voznesenskaya N.M., Eliseev E.A., Kapitanenko D.V., Tonysheva O.A. Optimizaciya tehnologicheskih rezhimov polucheniya tonkih listov i lenty iz korrozionnostojkoj stali VNS-9Sh [Optimization of technological modes of receiving thin sheets and tape from VNS-9Sh corrosion-resistant steel] // Metally. 2014. №1. S. 46–52.
20. Krylov S.A., Evgenov A.G., Shherbakov A.I., Makarov A.A. Novaya elektroshlakovaya pech\' pod davleniem DEShP-0,1: osvoenie i perspektivy razvitiya [New pressure electroslag remelting furnace  PESR-0,1: development and prospects for improvement] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 04. Available at: http://www.viam-works.ru (accessed: July 20, 2016). DOI: 10.18577/2307-6046-2016-0-5-4-4.

DOI: 10.18577/2071-9140-2017-0-S-175-185

UDC: 621.98.043:004.94

Pages: 175-185

M.M. Bakradze1, A.V. Skugorev1, V.V. Kucheryaev1, M.V. Bubnov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Computer modeling of technological metal forming processes as effective instrumentfor development of new technologies

In this article is shown the experience of using modern computer modeling methods in developing technologies for production of difficult-to-form nickel-based superalloys forgings. Computer modeling results of isothermal forging in air, that is widely used at FSUE «VIAM» to produce disks billets of small-size gas turbine engines and units are shown. Experience of implementing computer modeling in developing technologies for large-size complex shape forged billets like «disk-shaft» that are used in gross metallurgical factories such as public corporation «Metallurgical Factory «Electrostal» and public corporation «Stupino Metallurgical Company» is shown in this article. Computer modeling allowed to increase metal stock usage up to 10-30% due to decreasing weight of forging and in several cases to reduce number of technological operations that optimized the technology.

Keywords: сomputer modeling, metal forming, pressing, forging, nickel-based superalloys, isothermal deformation.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
3. Stebunov S.A. Bocharov Yu.A. Sertifikaciya aviacionnyh pokovok na osnove modelirovaniya processov v programme QForm [Certification of aviation ingots on the basis of modeling of processes in the QForm program] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2011. №6. S. 33–35.
4. Gladkov Yu.A., Mordvincev P.S. Modelirovanie tehnologicheskih processov shtampovki pri reshenii zadach avia- i dvigatelestroeniya [Modeling of technological processes of punching at the solution of problems of aviation and engine buildings] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2012. №5. S. 38–47.
5. Ospennikova O.G., Bubnov M.V., Kapitanenko D.V. Kompyuternoe modelirovanie processov obrabotki metallov davleniem [Computer modeling of metal working processes by pressure] // Aviacionnye materialy i tehnologii. 2012. №S. S. 141–147.
6. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
7. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
8. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Shtampovka diskov GTD iz zharoprochnykh splavov na izotermicheskikh pressakh [Punching of disks GTD from hot strength alloys on isothermal presses] // Aviacionnye materialy i tekhnologii. 2013. №1. S. 13–16.
9. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Effektivnaya tehnologiya izgotovleniya diskov GTD iz zharoprochnyh nikelevyh splavov // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2013. №10. S. 13–17.
10. Ponomarenko D.A., Skugorev A.V., Sidorov S.A., Strokov V.V. Tehnologicheskie vozmozhnosti specializirovannyh izotermicheskih pressov siloj 6,3 i 16 MN v proizvodstve detalej aviacionnogo naznacheniya [Technological capabilities specialized isothermal presses with a force of 6,3 and 16 MN in production of details of aviation assignment] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2015. №9. S. 36–40.
11. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
12. Ahmedzyanov M.V., Skugorev A.V., Ovsepyan S.V., Mazalov I.S. Razrabotka resursosberegayushhej tehnologii polucheniya holodnokatanogo lista iz vysokozharoprochnogo svarivaemogo splava VZh171 [Development of resource-saving technology of receiving cold-rolled sheet from high-heat resisting welded alloy Vzh171] // Proizvodstvo prokata. 2015. №1. S. 14–17.
13. Skugorev A.V., Shpagin A.S., Vydumkina S.V., Shishkov S.Yu., Sidorov S.A., Lozhkova D.S. Energoeffektivnaya tehnologiya izotermicheskoj deformacii na vozduhe dlya izgotovleniya polufabrikatov detalej aviacionnogo naznacheniya [Power effective technology of isothermal deformation on air for manufacturing of semi-finished products of details of aviation assignment] // Sovremennye zharoprochnye deformiruemye nikelevye i intermetallidnye splavy, metody ih obrabotki: sb. mater. konf. / VIAM. M., 2015. S. 5.

DOI: 10.18577/2071-9140-2017-0-S-186-194

UDC: 669.018.29

Pages: 186-194

V.V. Antipov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering

The main directions of development in the area of aluminium wrought alloys for aerospace engineering are presented in the article. Alloys of new generation with improved chemical composition, technologies of manufacture and thermomechanical processing of semi-finished products are considered. Results of R&D projects focused on development of new high-strength and high-resource aluminum alloys are given. The researches intended to extension of the nomenclature and application scopes of aluminium alloys are shown. Technologies of isothermal forging, manufacturing of the welded wing panel from high-strength aluminum-lithium alloy are developed. The manufacturing technology of cold-deformed thin tubes from hi-tech alloy are developed for hydraulic and air conditioning systems instead of Al-Mg group alloys, and also for the purpose of import substitution of similar designs from alloy 6061. The manufacturing technology of wide (to 3,2 m) sheathing plates is mastering. The R&D projects focused on development of new aluminum alloy on the basis of Al-Mg-(Si) system are conducted to produce metalpowder compositions, applied to manufacture details with the use of the selection laser synthesis.

Keywords:

strategic directions, aluminium alloys, magnesium alloys, titanium alloys,  
metal-polymer composite materials, aluminium fiberglass laminates, anticorrosion protection, friction stir welding, wing panel

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tehnike /pod obshh. red. E.N. Kablova [Aluminum alloys in aerospace equipment / gen. ed. by E.N.Kablova]. M.: Nauka, 2001. 192 s.
3. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
4. Antipov V.V., Senatorova O.G., Tkachenko E.A. Vysokoprochnye alyuminievye splavy [High-strength aluminum alloys ] // Tsvetnye metally. 2013. №9. S. 63–65.
5. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminij-litievye splavy novogo pokoleniya i sloistye alyumostekloplastiki na ih osnove [Aluminum-lithium alloys of new generation and layered aluminum fibreglasses on their basis] // Tsvetnye metally. 2016. №8. S. 86–91.
6. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Svarka i bezopasnost: mater. Vseross. nauch.-praktich. konf., 2012. S. 21–30.
7. Antipov V.V. Tehnologichnyj alyuminij-litievyj splav 1441 i sloistye gibridnye kompozity na ego osnove [Technological aluminum-lithium alloy 1441 and layered hybrid composites on its basis] // Metallurg. 2012. №5. S. 36–39.
8. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye alyumostekloplastiki SIAL 1441 i sotrudnichestvo s AIRBUS i TU DELFT [Layered aluminum fibreglasses  SIAL 1441 f and cooperation with AIRBUS and TU DELFT] // Tsvetnye metally. 2013. №9 (849). S. 50–53.
9. Duyunova V.A., Goncharenko E.S., Muhina I.Yu., Uridiya Z.P., Volkova E.F. Nauchnoe nasledie akademika I.N. Fridlyandera. Sovremennye issledovaniya magnievyh i litejnyh alyuminievyh splavov [Scientific heritage of academician I.N.Fridlyandera. Modern researches of magnesium and cast aluminum alloys] // Tsvetnye metally. 2013. №9. S. 71–78.
10. Volkova E.F., Duyunova V.A. O sovremennyh tendenciyah razvitiya magnievyh splavov [About current trends of development of magnesium alloys] // Tehnologiya legkih splavov. 2016. №3. S. 94–105.
11. Yakovlev A.L., Nochovnaya N.A., Alekseev E.B. Otechestvennye zharoprochnye listovye titanovye splavy [Domestic heat resisting sheet titanium alloys] // Vestnik mashinostroeniya. 2015. №4. S. 57–59.
12. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Perspektivy ispolzovaniya titanovyh splavov v sloistyh kompozicionnyh materialah [Prospects for the use of titanium alloys in laminated composite materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 04. Available at: http://www.viam-works.ru (accessed: March 06, 2017). DOI: 10.18577/2307-6046-2015-0-10-4-4.

DOI: 10.18577/2071-9140-2017-0-S-195-211

UDC: 669.715:669.884

Pages: 195-211

V.V. Antipov1, Yu.Yu. Klochkova1, V.A. Romanenko1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Modern aluminum and aluminum-lithium alloys

The main directions of development in the area of promising aluminum alloys for aerospace engineering are presented in the article. Production alloys as well as alloys of new generation with improved chemical composition, manufacturing techniques and thermomechanical processing of semi-finished products are discussed.

Keywords: strategic directions, aluminum alloys, structure, mechanical properties, corrosion resistance, friction stir welding, wing panel.

Reference List

1. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
2. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 5–20.
3. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Senatorova O.G., Antipov V.V., Bronz A.V., Somov A.V., Serebrennikova N.Yu. Vysokoprochnye i sverhprochnye splavy tradicionnoj sistemy Al–Zn–Mg–Cu, ih rol v tehnike i vozmozhnosti razvitiya [High-strength and heavy-duty alloys of traditional system Al–Zn–Mg–Cu, their role in equipment and possibility of development] // Tehnologiya legkih splavov. 2016. №2. S. 43–49.
6. Mondolfo L.F. Struktura i svojstva alyuminievyh splavov [Structure and properties of aluminum alloys]. M.: Izd-vo inostr. lit., 1962. 238 s.
7. Antipov V.V., Senatorova O.G., Tkachenko E.A. Vysokoprochnye alyuminievye splavy [High-strength aluminum alloys] // Tsvetnye metally. 2013. №9. S. 63–65.
8. Daokui Xu, Paul A. Rometsch, Hua Chen et al. Effect of solution treatment on microstructure and mechanical properties of thick plate aluminum alloy 7150 // Proc. of ICAA-12. Yokohama. Japan. 2010. Р. 1101–1106.
9. Li Jun-peng et al. Microstructure evolution of 7050 aluminum alloy during hot deformation // Trans. Nonferrous Met. Soc. China. 2010. Vol. 20. P. 189−194.
10. Selivanov A.A., Vahromov R.O., Setyukov O.A., Popova O.I. Struktura i svojstva katanyh plit iz vysokoprochnogo alyuminievogo splava 1933 [Structure and properties of katany plates from high-strength aluminum alloy 1933] // Metallovedenie i termicheskaya obrabotka metallov. 2016. №6. C. 41–45.
11. Selivanov A.A., Tkachenko E.A., Popova O.I., Babanov V.V. Vysokoprochnyj alyuminievyj deformiruemyj svarivaemyj splav V-1963 dlya detalej silovogo nabora izdelij sovremennoj aviacionnoj tehniki [High-strength wrought aluminum weldable V-1963 alloy for details of primary structure of modern aviation engineering] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2. St. 01. Available at: http://www.viam-works.ru (accessed: March 6, 2017). DOI: 10.18577/2307-6046-2017-0-2-1-1.
12. Klochkov G.G., Klochkova Yu.Yu., Romanenko V.A. Vliyanie temperatury deformacii na strukturu i svojstva pressovannyh profilej splava V-1341 sistemy Al–Mg–Si [Influence of deformation temperature on structure and properties of extruded products of Al–Mg–Si alloy V-1341] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 01. Available at: http://www.viam-works.ru (data obrashheniya: March 6, 2017). DOI: 10.18577/2307-6046-2016-0-9-1-1.
13. Skornyakov V.I., Antipov V.V. Innovacionnyj harakter sotrudnichestva OAO «KUMZ» i FGUP «VIAM» [Innovative nature of cooperation of JSC «KUMZ» and FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 11–14.
14. Antipov V.V. Tehnologichnyj alyuminij-litievyj splav 1441 i sloistye gibridnye kompozity na ego osnove [Technological aluminum-lithium alloy 1441 and layered hybrid composites on its basis] // Metallurg. 2012. №5. S. 36–39.
15. Prasad N.E., Gokhale A., Wanhill R.J.H. Aluminium-lithium alloys: processing, properties, and applications. 2013. 608 p.
16. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I., Filatov A.A., Popova Yu.A. Perspektiva primeneniya plit iz vysokoprochnogo splava V-1461 ponizhennoj plotnosti v samoletnyh konstrukciyah [Perspective of application of plates from V-1461 high-strength alloy of the lowered density in aircraft designs] // Vse materialy. Enciklopedicheskij spravochnik. 2014. №2. S. 16–22. 
17. Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.A. Promyshlennoe osvoenie vysokoprochnogo splava V-1469 sistemy Al–Cu–Li–Mg [Industrial development of strength alloy V-1469 of Al–Cu–Li–Mg] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №7. St. 01. Available at: http://viam-works.ru (accessed: March 6, 2017). DOI: 10.18577/2307-6046-2014-0-7-1-1.
18. Kolobnev N.I., Hohlatova L.B., Oglodkov M.S., Klochkova Yu.Yu. Vysokoprochnye splavy sistemy Al–Cu–Li s povyshennoj vyazkost\'yu razrusheniya dlya samoletnyh konstrukcij [High-strength alloys of Al–Cu–Li system with the increased fracture toughness for aircraft designs] // Tsvetnye metally. 2013. №9. S. 66–71.
19. Shamraj V.F., Klochkova Yu.Yu., Lazarev E.M., Gordeev A.S., Klochkov G.G., Sirotinkin V.P. Struktura listov splava V-1469 s povyshennymi harakteristikami vyazkosti razrusheniya [Structure of sheets of alloy V-1469 with the raised characteristics of fracture toughness] // Metally. 2015. №1. S. 76–82.
20. Fridlyander I.N. Alyuminievye splavy v letatelnyh apparatah v periody 1970–2000 i 2001–2015 gg. [Aluminum alloys in flight vehicles during the periods 1970–2000 and 2001-2015.] // Tehnologiya legkih splavov. 2002. №4. S. 12–17.
21. Bois-Brochu A., Tchitembo Goma F.A., Blais C. et al. Al–Li alloy 2099-T83 extrusions: static mechanical properties, microstructure and texture // Advanced Materials Research. 2012. Vol. 409. Р. 29–34.
22. Hohlatova L.B., Lukin V.I., Kolobnev N.I., Ioda E.N. i dr. Perspektivnyj alyuminievo-litievyj splav 1424 dlya svarnyh konstrukcij izdelij aviakosmicheskoj tehniki [Perspective aluminum-lithium alloy 1424 for welded designs of products of aerospace equipment] // Svarochnoe proizvodstvo. 2009. №3. S. 7–10.
23. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Svarka i bezopasnost: mater. Vseross. nauch.-praktich. konf., 2012. S. 21–30.
24. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Vliyanie termicheskoj obrabotki na harakteristiki svarnyh soedinenij vysokoprochnyh alyuminijlitievyh splavov [Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 06. Available at: http://www.viam-works.ru (accessed: March 6, 2017). DOI: 10.18577/2307-6046-2015-0-4-6-6.
25. Romanenko V.A., Klochkova Yu.Yu., Klochkov G.G., Burlyaeva I.P. Pressovannaya panel iz alyuminij-litievogo splava V-1469 [Extruded panel from aluminum-lithium alloy V-1469] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8. St. 01. Available at: http://www.viam-works.ru (accessed: March 6, 2017). DOI: 10.18577/2307-6046-2016-0-8-1-1.
26. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminij-litievye splavy novogo pokoleniya i sloistye alyumostekloplastiki na ih osnove [Aluminum-lithium alloys of new generation and layered alyumostekloplastiki on their basis] // Tsvetnye metally. 2016. №8. S. 86–91.
27. Antipov V.V., Klochkova Yu.Yu. Perspektivnye svarivaemye alyuminij-litievye splavy tret\'ego pokoleniya [Perspective welded aluminum-lithium alloys of the third generation] // Materialy i tehnologii novogo pokoleniya dlya perspektivnyh izdelij aviacionnoj i kosmicheskoj tehniki: dokl. II Mezhdunar. nauch.-tehnich. konf. M.: VIAM, 2015. S. 2.
28. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: March 6, 2017).
29. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: March 6, 2017). DOI: 10.18577/2307-6046-2015-0-2-2-2.
30. Thijs L., Kempen K., Kruth J.-P. Humbeeck J. Van. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder // Acta Mater. 2013. Vol. 61. P. 1809–1819.
31. Bremen S., Meiners W., Diatlov A. Selective Laser Melting // Laser Technik Journal. 2012. Vol. 9. No. 2. P. 33–38.
32. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components // Science. 2003. Vol. 301(5637). P. 1225–1227.
33. Guan K., Wang Z. M., Gao M. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel // Materials & Design. 2013. Vol. 50. P. 581–586.
34. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tehnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s. 
35. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
36. Read N., Wang W., Essa K. et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development // Materials & Design. 2015. Vol 65. P. 417–424.
37. Ryabov D.K., Zajcev D.V., Dynin N.V., Ivanova A.O. Izmenenie struktury splava AK9ch., poluchennogo selektivnym lazernym spekaniem, v processe termicheskoj obrabotki [Alternation of structure of selective laser melted aluminum alloy AK9ch during heat treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 03. Available at: http://www.viam-works.ru (accessed: March 6, 2017). DOI:10.18557/2307-6046-2016-0-9-3-3.

DOI: 10.18577/2071-9140-2017-0-S-212-224

UDC: 669.018.29

Pages: 212-224

V.V. Antipov1, N.Yu. Serebrennikova1, V.V. Shestov1, V.V. Sidelnikov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Laminated hybrid materials on basis of Al-Li alloy sheets

Creation of metal-polymeric laminates is a logical step in development of the idea, technology and experience of wide application of adhesive laminates and structures possessing a higher survivability and reliability. They appeared to be a new family of structural hybrid sheet materials, designated, first of all, for a usage in primary components of aircraft. They include thin metallic sheets and intermediate thin interlayers of polymeric composites, consisting of thermosetting or thermoplastic binders with high-strength reinforced fibers. The unique combination of fiber metal laminates (FML) characteristics (high crack resistance and specific static strength, good fatigue, corrosion, impact performances, fire resistance) makes this material as the advanced one for future generation of aviation structures in comparison with monolithic aluminium sheets.

Keywords: fiber metal laminates, hybrid material, high-strength Al–Li alloy.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
3. Antipov V.V., Senatorova O.G. Novyj klass gibridnyh konstrukcionnyh materialov [New class of hybrid constructional materials] // Metally Evrazii. 2015. №2. S. 54–55.
4. Kablov E.N. VIAM: Prodolzhenie puti [Way continuation] // Nauka v Rossii. 2012. №11. S. 16–21.
5. Antipov V.V., Senatorova O.G., Lukina N.F., Sidelnikov V.V., Shestov V.V. Konstrukcionnye sloistye materialy SIAL [SIAL constructional layered materials] // Klei. Germetiki. Tehnologii. 2012. №6. S. 13–17.
6. Shestov V.V., Antipov V.V., Senatorova O.G., Sidelnikov V.V. Konstrukcionnye sloistye alyumostekloplastiki 1441-SIAL [Constructional layered aluminum fibreglasses 1441-SIAL] // MiTOM. 2013. №9. S. 28–32.
7. Antipov V.V., Lavro N.A., Suhoivanenko V.V., Senatorova O.G. Opyt primeneniya Al–Li splava 1441 i sloistogo materiala na ego osnove v gidrosamoletah [Experience of application of Al-Li of alloy 1441 and layered material on its basis in seaplanes] // Tsvetnye metally. 2013. №8. S. 46–50.
8. Vlot Ad. GLARE history of the development of a new aircraft material. Kluwer Academic Publishers, 2001. 222 p.
9. Shestov V.V., Antipov V.V., Serebrennikova N.Yu., Nefedova Yu.N. Vysokoprochnyj sloistyj material na osnove listov iz alyuminij-litievogo splava [High-strength layered material on the basis of sheets from aluminum-lithium alloy] // Tehnologiya legkih splavov. 2016. №1. S. 119–123.
10. Antipov V.V., Serebrennikova N.Yu., Senatorova O.G., Morozova L.V., Lukina N.F., Nefedova Yu.N. Gibridnye sloistye materialy s nebolshoj skorostyu razvitiya ustalostnoj treshhiny [Hybrid layered materials with small speed of development of fatigue crack] // Vestnik mashinostroeniya. 2016. №12. S. 45–49.
11. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Lukina N.F., Shestov V.V. Ispolzovanie kleevyh prepregov v sloistyh gibridnyh konstrukciyah na osnove alyuminij-litievyh splavov i SIALa [Use of glue prepregs in layered hybrid designs on basis aluminum-lithium alloys and SIAL] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 03. Available at: http://www.materialsnews.ru (accessed: November 24, 2016).
12. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminij-litievyh splavov primenitelno k panelyam kryla samoleta [Hybrid multilayer materials based on aluminum-lithium alloys applied to panels of plane wing] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 3–8. DOI: 10.18577/2071-9140-2016-0-3-3-8.
13. Antipov V.V., Oreshko E.I., Erasov V.S., Serebrennikova N.Yu. Gibridnye materialy dlya primeneniya v usloviyah Severa [Hybrid materials for application in the conditions of the North] // Mehanika kompozitnyh materialov. 2016. №5. S. 1–18.
14. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminij-litievye splavy novogo pokoleniya i sloistye alyumostekloplastiki na ih osnove [Aluminum-lithium alloys of new generation and layered aluminum fibreglasses on their basis] // Tsvetnye metally. 2016. №8. S. 86–91.
15. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Sloistye metallopolimernye materialy v elementah konstrukcii vozdushnyh sudov [Layered metalpolymeric materials in elements of design of air vehicles] // Perspektivnye materialy. 2016. №10. S. 5–19.

DOI: 10.18577/2071-9140-2017-0-S-225-241

UDC: 669.018.28

Pages: 225-241

V.A. Duyunova1, E.F. Volkova1, Z.P. Uridiya1, A.V. Trapeznikov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Dynamics of the development of magnesium and cast aluminum alloys

The results of investigation and development of forging technology for producing of middleweight forgings from new magnesium heat-resistant VMD16 alloy are presented in the paper. The features of structure, phase composition are considered, the advantages of main characteristics of VMD16 forgings are shown in comparison with the same of alloys-analogs. Also mold castings made from modern cast aluminum alloys VAL20, AL4MS and cast magnesium alloys VML18, VML20 shaped in cold box and molds made by 3D-print are presented. New heat resistant cast alloy VML25 of Mg-RE-Zr system with increased ultimate tensile strength for applications at temperatures from 20 up to 250°С is described. The work is executed within implementation of the complex scientific direction 8.4. «High strength corrosion-resistant weld magnesium and cast aluminum alloys for aerospace techniques of new generation » and 10.10. «Power-efficient, resource-saving and additive technologies for production of deformable semi-finished products and mold castings from magnesium and aluminum alloys» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: development of forging technology, aluminum and magnesium shaped castings, cold-box expendable molds, molds made by 3D-print, heat-resistant magnesium-based alloy, phase composition, mechanical properties.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520‒530.
4. Volkova E.F., Antipov V.V. Magnievye deformiruemye splavy [Magnesium deformable alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 20–26.
5. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
6. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: September 14, 2016). 
7. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
8. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
9. Volkova E.F., Rohlin L.L., Becofen S.Ya., Akinina M.V. Issledovanie vliyaniya RZE ittrievoj i cerievoj podgrupp na svojstva magnievyh splavov [Research of influence of RZE of yttric and ceric subgroups on properties of magnesium alloys] // Tehnologiya legkih splavov. 2014. №2. S.42–48.
10. Volkova E.F. Analiz i itogi Mezhdunarodnoj konferencii «Magnij–21. Novye gorizonty» (obzor) [The analysis and results of the International conference «Magnesium–21. Broad horizons» (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 86–94. DOI: 10.18577/2071-9140-2016-0-1-86-94.
11. Volkova E.F. Some Regular Features of Formation of Phase Composition in a Magnesium Alloy of the Mg–Zn–Zr–Y System // Metal Science and Heat Treatment, 2014. Vol. 55. No. 9–10. Р. 477–482.
12. Volkova E.F., Muhina I.Yu. Novye materialy na magnievoj osnove i vysokoresursnye tehnologii ih proizvodstva [New materials on magnesian basis and high-resource technologies of their production] // Tehnologiya legkih splavov. 2007. №2. S. 28–34.
13. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: October 07, 2016). DOI: 10.18577/2307-6046-2014-0-4-2-2.
14. Goncharenko E.S., Alyabev I.P., Trapeznikov A.V., Ogorodov D.V. Poluchenie otlivok iz splava VAL20 putem optimizacii konstrukcii detalej izdelij OAO «Tupolev» [Obtaining of Costs from VAL20 Alloy by Optimization the Design of Elements of JSC «Tupolev»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 01. Available at: http://www.viam-works.ru (accessed: January 25, 2016). DOI: 10.18577/2307-6046-2014-0-8-1-1.
15. Leonov A.A., Duyunova V.A., Stupak E.V., Trofimov N.V. Lite magnievyh splavov v razovye formy, poluchennye novymi metodami [Casting of magnesium alloys in disposable moulds produced by new methods] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 01. Available at: http://www.viam-works.ru (accessed: October 07, 2016). DOI: 10.18577/2307-6046-2014-0-12-1-1.
16. Uridiya Z.P., Muhina I.Yu., Duyunova V.A., Kosarina E.I. Kontrol kachestva litya iz magnievyh splavov i sposoby vosstanovleniya germetichnosti otlivok [Quality control of magnesium alloy casting and methods of restoration of cast products impermeability] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 04. Available at: http://www.viam-works.ru (accessed: October 07, 2016). DOI: 10.18577/2307-6046-2014-0-12-4-4.
17. Goncharenko E.S., Alyab\'ev I.P., Trapeznikov A.V., Ogorodov D.V. Tehnologii polucheniya fasonnyh otlivok iz tehnologichnogo germetichnogo splava AL4MS [Technologies of receiving mold castings from technological tight alloy AL4MS] // Litejshhik Rossii. 2014. №7. S. 12–16.
18. Muhina I.Yu. Struktura i svojstva novyh litejnyh magnievyh splavov [Structure and properties of new cast magnesium alloys] // Litejnoe proizvodstvo. 2011. №12. S. 12–14.
19. Rohlin L.L. Magnievye splavy, soderzhashhie redkozemelnye metally [The magnesium alloys containing rare earth metals]. M.: Nauka, 1980. 192 s.
20. Muhina I.Yu., Duyunova V.A., Frolov A.V., Uridiya Z.P. Vliyanie legirovaniya RZM na zharoprochnost\' litejnyh magnievyh splavov [Influence of alloying of RZM on thermal stability of cast magnesium alloys] // Metallurgiya mashinostroeniya. 2014. №5. S. 34–38.

DOI: 10.18577/2071-9140-2017-0-S-242-263

UDC: 621.357:621.794.62

Pages: 242-263

S.S. Vinogradov1, A.A. Nikiforov1, S.A. Dyomin1, D.V. Chesnokov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Protection against corrosion of carbon steel

Galvanothermal (thickness of 6-12 micrometers) and inorganic composition (thickness of 45-60 micrometers) coatings developed in VIAM for corrosion protection of carbon steels significantly exceed all known coatings of the anode type in protective ability and for the first time they become comparable with cadmium coatings in properties: more than 8000 h in the salt spray environment. The technology of removal of corrosion products of inorganic composition coating and steel basis and local application of this coating developed in VIAM allows to recover anticorrosion coating without dismantling of parts, in «field» conditions that increases service life of steel parts in 1,5 times. Work is executed within implementation of the complex scientific direction 17.2. «slip, gaz-dinamicand combined coatings for partsfrom carbon steels, including high-strength steels» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: galvanothermal coating, inorganic composition coating, zinc, tin, phosphates, aluminum powder, microstructure, mechanical tests, repair, protective ability.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2 Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Dyachenko S.S., Ponomarenko I.V., Dub S.N. Rol sostoyaniya poverhnostnogo sloya stalnyh izdelij v ih povedenii pri deformacii [Role of condition of surface layer of steel products in their behavior at deformation] // Metallovedenie i termicheskaya obrabotka metallov. 2015. №5 (719). S. 3–11.
5. Yanyushevich Z., Gulishya Z., Mihajlovich M., Patarich A. Vliyanie otpuska na mehanicheskie svojstva i mikrostrukturu vysokoprochnoj nizkolegirovannoj stali [Influence of issue on mechanical properties and microstructure of high-strength low-alloy steel] // Metallovedenie i termicheskaya obrabotka metallov. 2014. №2 (704). S. 23–25.
6. Farber V.M., Selivanova O.V., Arabej A.B., Poluhina O.N., Mamatnazarov A.S. Vliyanie termicheskoj obrabotki na kompleks mehanicheskih svojstv stalej klassa prochnosti K65 (H80) [Influence of thermal processing on complex of mechanical properties steels class of durability К65 (Х80)] // Metallovedenie i termicheskaya obrabotka metallov. 2014. №8 (710). S. 53–55.
7. Tetyueva T.V., Ioffe A.V., Vybojshhik M.A., Knyazkin S.A., Trifonova E.A., Zyryanov A.O. Vliyanie modificirovaniya, mikrolegirovaniya i termicheskoj obrabotki na korrozionnuyu stojkost i mehanicheskie svojstva stali 15H5M [Influence of modifying, microalloying and thermal processing on corrosion resistance and mechanical properties of steel 15H5М] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №10 (688). S. 15–22.
8. Yurshev V.I., Mukatdarov R.I., Yurshev I.V. Poverhnostnoe uprochnenie instrumenta naneseniem piroliticheskogo karbidohromovogo pokrytiya [Surface strengthening of the tool putting pyrolitic carbidechrome plating] // Metallovedenie i termicheskaya obrabotka metallov. 2015. №2 (716). S. 48–52.
9. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osinceva A.L. Formirovanie iznosostojkogo hromonikelevogo pokrytiya s osobo vysokim urovnem teplostojkosti kombinirovannoj lazerno-termicheskoj obrabotkoj [Forming of anti wear chrome-nickel coating with especially high level of heat resistance the combined laser and thermal processing] // Metallovedenie i termicheskaya obrabotka metallov. 2015. №3 (717). S. 39–46.
10. Budinovskij S.A., Muboyadzhyan S.A., Gayamov A.M., Matveev P.V. Razrabotka ionno-plazmennyh zharostojkih metallicheskih sloev teplozashhitnyh pokrytij dlya ohlazhdaemyh rabochih lopatok turbin [Development of ion-plasma heat resisting metal layers of heat-protective coverings for cooled working blades of turbines] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №12 (702). S. 16–21.
11. Vinogradov S.S. Ekologicheski bezopasnoe galvanicheskoe proizvodstvo / pod red. prof. V.N. Kudryavceva. 2-e izd., pererab. i dop. [Vinogradov S. S. Ecologically safe galvanic production / under the editorship of V. N. Kudryavtsev. 2nd ed., proc. and add.]. M.: Globus, 2002. 352 s.
12. Vyacheslavov P.M. Elektroliticheskoe osazhdenie splavov [Electrolytic deposition of alloys]. L.: Mashinostroenie, 1986. 112 s.
13. Elinek T.V. Uspehi galvanotehniki. Obzor mirovoj literatury za 1997–98 gg. [Successes of galvanotechnics. The overview of the world literature for 1997–98.] // Galvanotehnika i obrabotka poverhnosti. 1999. T. 7. №2. S. 16–19.
14. Taranceva K.R., Nikolotov A.D. Elektroosazhdenie splava olovo-cink iz stabilizirovannogo pirofosfatnogo elektrolita kak alternativa kadmievomu pokrytiyu [Alloy electrosedimentation tin-zinc from the stabilized feast of phosphatic electrolit as alternative to cadmic covering] // Korroziya: materialy, zashhita. 2014. №3. S. 27–30.
15. Celujkin V.N., Koreshkova A.A. O korrozionnyh svojstvah kompozicionnyh pokrytij cink–uglerodnye nanotrubki [About corrosion properties of composition coverings zinc–carbon nanotubes] // Korroziya: materialy, zashhita. 2014. №3. S. 31–34.
16. Zhirnov A.D., Karimova S.A., Ovsyannikova L.V., Gubenkova O.A. Novye zashhitnye pokrytiya dlya stal\'nyh detalej vmesto kadmievyh [New protecting covers for steel details instead of the cadmic] // Metallovedenie i termicheskaya obrabotka metallov. 2003. №1. S. 21–24.
17. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v usloviyah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 02. Available at: http://www.viam-works.ru (accessed: September, 08 2016).
18. Corrosion resistant coating system and method: pat. 6613452 US; publ. 02.09.03.
19. Sposob polucheniya na stali dvuhslojnyh galvanicheskih pokrytii cink-olovo: pat. 5365230 Yaponiya [Way of receiving on steel two-layer galvanic covering zinc-tin: pat. 5365230 Japan]; zayavl. 25.11.76; opubl.10.06.78.
20. Vinogradov S.S., Nikiforov A.A., Balakhonov S.V. Zamena kadmiya. Etap 1. Povyshenie zashhitnoj sposobnosti cinkovyh pokrytij: termoimmersionnoe i modificirovannoe pokrytiya
 [Cadmium replacement. Part 1. Improving of protective property of zinc coatings: thermo-immersed and modified coatings] // Aviacionnye materialy i tehnologii. 2015. №4. S. 53–60. DOI: 10.18577/2071-9140-2015-0-4-53-60.
21. Nikiforov A.A., Zakirova L.I., Vinogradov S.S. Termoimmersionnoe pokrytie cink+olovo kontaktnoe [Thermoimmersion covering zinc+tin the contact] // Korroziya: materialy, zashhita. 2016. №8. S. 34–41.
22. GOST 9.005–72. Dopustimye i nedopustimye kontakty metallov. Obshhie trebovaniya [State Standard 9.005–72. Admissible and inadmissible contacts of metals. General requirements]. M., 1972. 27 s.
23. Diagrammy sostoyaniya dvojnyh metallicheskih sistem: spravochnik v 3 t. / pod obshh. red. N.P. Lyakisheva [Charts of condition of double metal systems: the directory in 3 vol. / gen. ed. by N.P. Lyakishev]. M.: Mashinostroenie, 2000. T. 3, kn. 2. S. 340–341.
24. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Perspektivnye pokrytiya dlya zashhity ot korrozii uglerodistyh stalej [Perspective coverings for corrosion protection of carbon steels] // Stal. 2016. №6. S. 70–81.
25. Prodan E.A., Prodan L.I., Ermolenko N.F. Tripolifosfaty i ih primenenie [Threepolyphosphates and their application]. Minsk: Nauka i tehnika, 1969. 536 s.
26. Inorganic coating and bonding composition: pat. 3248251 US; publ. 26.04.66.
27. Coated Part, Coating Therefor and Method of Forming Same: pat. 4564555 US; publ. 14.01.86.
28. Coating composition containing undissolved hexavalent chromium salt: pat. 4889558 US; publ. 26.12.89.
29. Coating compositions containing unreacted hexavalent chromium, a method of applying and an article: pat. 4975330 US; publ. 04.12.90.
30. Flake materials in coating compositions: pat. 5066540 US; publ. 19.11.91.
31. Phosphate bonding composition: pat. 5968240 US; publ. 19.10.99.
32. Environmentally friendly coating compositions, bonding solution, and coated parts: pat. 5652064 US; publ. 29.01.97.
33. Phosphate bonded aluminum coatings: pat. 6074464 US; publ. 13.11.00.
34. Sposob naneseniya zashhitnyh pokrytij: pat. 1560621 Ros. Federaciya [Way of drawing protecting covers: pat. 1560621 Rus. Federation]; opubl. 30.04.90.
35. Sposob naneseniya zashhitnogo pokrytiya na detali: pat. 2036978 Ros. Federaciya [Way of drawing protecting cover on detail: pat. 2036978 Rus. Federation]; opubl. 09.06.95.
36. Sostav dlya naneseniya zashhitnogo pokrytiya na detali, izgotovlennye iz zharoprochnyh nikelevyh splavov: pat. 1773078 Ros. Federaciya [Structure for drawing protecting cover on the details made of heat resisting nickel alloys: pat. 1773078 Rus. Federation]; opubl. 10.11.00.
37. Sychev M.M. Neorganicheskie klei. 2-e izd., pererab. i dop. [Inorganic glues. 2nd ed., proc. and add.]. L.: Himiya, 1986. 152 s.
38. Sostav dlya polucheniya zashhitnogo pokrytiya na stalnyh detalyah: pat. 2480534 Ros. Federaciya [Structure for receiving protecting cover on steel details: pat. 2480534 Rus. Federation]; opubl. 27.04.13.
39. Sposob naneseniya zashhitnogo pokrytiya na stalnye detali: pat. 2510716 Ros. Federaciya [Way of drawing protecting cover on steel details: pat. 2510716 Rus. Federation]; opubl. 10.04.14.
40. Vinogradov S.S., Demin S.A. Termostojkoe zashhitnoe neorganicheskoe kompozicionnoe pokrytie [Heat-resistant protective inorganic composition coating] // Perspektivnye materialy. 2013. №12. S. 19–24.
41. Demin S.A., Gubenkova O.A., Karimova S.A., Vinogradov S.S. Termostojkoe kompozicionnoe pokrytie na osnove fosfatov dlya zashhity vysokoprochnyh stalej ot korrozii [Heat-resistant composition covering on the basis of phosphates for protection high-strength staly from corrosion] // Stal. 2013. №6. S. 77–79.
42. Vinogradov S.S., Demin S.A., Balahonov S.V., Kirillova O.G. Neorganicheskie kompozicionnye pokrytiya – perspektivnoe napravlenie v oblasti zashhity ot korrozii uglerodistyh stalej [Inorganic composite coatings – a perspective direction in the field of anticorrosive protection of carbon steels] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 76–87. DOI: 10.18577/2071-9140-2016-0-2-76-87.
43. Vinogradov S.S., Balahonov S.V., Demin S.A., Kirillova O.G. Vliyanie shlifovaniya kompozicionnogo pokrytiya na ego elektrohimicheskoe povedenie v korrozionnoj srede [Influence of grinding of composition covering on its electrochemical behavior in the corrosion environment] // Korroziya: materialy, zashhita. 2016. №1. S. 39–47.

DOI: 10.18577/2071-9140-2017-0-S-264-271

UDC: 629.7:66.017

Pages: 264-271

D.V. Grashchenkov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Strategy of development of non-metallic materials, metal composite materials and heat-shielding

The article is presented analysis of development of science and technologies at abroad. There is shown that for creation of complex technical systems of different function, including new generation of products of aviation and space engineering, propulsion and energy units, in the field of materials science are actively developed metal, ceramic and ceramic-metal composite materials, and also functional heat-protective, heatinsulating materials and fibrous components on the basis of high-melting connections and technologies of their processing.

Keywords: metal, ceramic and ceramic-metal composite materials; functional heat-protective, heatinsulating materials; high-melting connections.

Reference List

1. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastyanov V.G. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
7. Grashhenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaganova M.L. Osobennosti spekaniya tugoplavkoj keramiki na osnove HfB2 metodom iskrovogo plazmennogo spekaniya [Features of agglomeration of high-melting ceramics on the basis of HfB2 method of spark plasma agglomeration] // Zhurnal prikladnoj himii. 2015. T. 88. Vyp. 3. S. 162–169.
8. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2.  St. 05. Available at: http://www.viam-works.ru (accessed: June 25, 2016).

DOI: 10.18577/2071-9140-2017-0-S-272-289

UDC: 678.6:62-762

Pages: 272-289

Yu. A. Ivahnenko1, B.V. Baruzdin1, N.M. Varrik1, V.G. Maksimov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

High-temperature fibrous sealing materials

Now one of demanded types of materials is sealing materials for work at high temperatures. The materials for high-temperature seals developed both abroad and in Russia, in particular in Federal State Unitary Enterprise VIAM are presented in the article. Properties of materials, methods of their manufacturing and a scope of use are considered.

Keywords: seals, ceramic fibers, cords, refractory oxides.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
4. Tinyakova E.V., Grashhenkov D.V. Teploizolyacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Heatinsulating material on the basis of mullit-corundum and quartz fibers] // Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
5. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: May 16, 2016).
6. Kablov E.N., Shhetanov B.V. Voloknistye teploizolyacionnye i teplozashhitnye materialy: svojstva, oblasti primeneniya [Fibrous heatinsulating and heat-protective materials: properties, scopes] // Fundamentalnye problemy vysokoskorostnyh techenij: sb. tez. dokl. Mezhdunar. nauch.-tehnich. konf. Zhukovskij, 2004. S. 95–96.
7. Shnur: pat. 2233356 Ros. Federaciya [Cord: pat. 2233356 Rus. Federation]; zayavl. 31.10.02; opubl. 27.04.04, Byul. №21. 4 s.
8. Available at: http://www.ifi-techproduction.cn (accessed: October 07, 2016).
9. Method and apparatus for blending ceramic fibers with carrier fibers: pat. 3012289 US; publ. 12.12.61. 7 p.
10. Heat resistant fibrous products containing ceramic fibers and method of making the: pat. 3090103 US; publ. 21.05.63. 5 p.
11. Available at: http://www.unifrax.com (accessed: October 07, 2016).
12. Glass fibre yarn: pat. 2497239 FR; publ. 02.07.82. 6 p.
13. Ceramic fibre yarn with high thermal resistance, mechanical strength and chemical inertia, corresponding production process and manufactured articles manufactured using the said yarn: pat. 1278097 IT; publ. 17.11.97. 34 p.
14. Inorganic oxide fibres and their production: pat. 4792478 US; publ. 20.12.88. 14 p.
15. High-temperature, flexible, thermal barrier seal: pat. 5014917 US; publ. 14.05.91. 7 p.
16. High-temperature, bellows hybrid seal: pat. 5332239 US; publ. 26.06.94. 8 p.
17. Resilient braided rope seal: pat. 6039325 US; publ. 21.03.00. 12 p.
18. Maksimov V.G., Varrik N.M. Vysokotemperaturnaya keramicheskaya teploizolyaciya (obzor) [High temperature ceramic heat insulation (review)] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 09. Available at: http://www.materialsnews.ru (accessed: October 07, 2016).
19. Ivakhnenko Yu.A., Varrik N.M. Materialy dlya vysokotemperaturnykh uplotneniy (obzor) [Materials for high-temperature sealants (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №6. St. 02. Available at: http://viam-works.ru (accessed: October 07, 2016). DOI: 10.18577/2307-6046-2015-0-6-2-2.
20. Zimichev A.M., Varrik N.M., Sumin A.V. Niti iz tugoplavkih oksidov dlya uplotnitelnoj teploizolyacii [Threads of refractory oxides for sealing thermal insulation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 05. Available at: http://www.viam-works.ru (accessed: October 07, 2016). DOI: 10.18577/2307-6046-2015-0-6-5-5.
21. Zimichev A.M., Varrik N.M. K voprosu primeneniya diskretnyh volokon iz tugoplavkih oksidov dlya formirovaniya serdechnika termostojkih uplotnitelnyh shnurov [On the issue of application of discrete fibers of refractory oxides to form cores of heat-resistant sealing cords] //Trudy VIAM: elektron. nauch.-tehnich. zhurn.  2015. №2. St. 07. Available at: http://www.viam-works.ru (accessed: October 07, 2016). DOI: 10.18577/2307-6046-2015-0-2-7-7.
22. Shcheglova T.M., Zimichev A.M., Varrik N.M. Issledovanie obrazcov shnura iz volokon Fiberfrax [Research of samples of the cord from «Fiberfrax» fibers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 05. Available at: http://www.viam-works.ru (accessed: October 07, 2016). DOI: 10.18577/2307-6046-2014-0-9-5-5.

DOI: 10.18577/2071-9140-2017-0-S-290-305

UDC: 621.763

Pages: 290-305

D.V. Grashchenkov1, M.L. Vaganova1, N.E. Shchyogoleva1, A.S. Chainikova1, Yu.E. Lebedeva1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

High-temperature glass crystal material of barium aluminosilicate structure, received using sol-gel of synthesis and composite materials on its basis

Elevated operation temperatures, influence of corrosive environments and dynamic loads are one of the hardest operating conditions of modern designed materials, used in engine building and mechanical engineering, aircraft and space engineering, power engineering. Glass-crystalline, glass-ceramic and ceramic materials are thermodynamically stable. The materials have high corrosion resistance, low value of the coefficient of thermal expansion and are promising for application in wide fields of industries. However, they don’t work properly under the influence of mechanical loads owing to high fragility. One of the solution of this problem is the production of composite materials, reinforced with different types of fibers, defining the level of mechanical propertiesof final material. Glass-crystalline materials of SiO2-Al2O3-RO aluminum silicate systems (RO: MgO, SrO, BaO and their combinations) are very perspective for high temperature materials production, because predominant crystalline phases, released during the heat treatment, have high melting temperature. But production of this type of material, using traditional glass or ceramic technologies is associated with the use of high temperatures (˃1600°С). This disadvantage is absent in low temperature methods of material production, for example, the sol-gel synthesis is widely used, the main advantages of which are the temperature reduction of synthesis and the possibility of obtaining a material with predetermined phase composition. The issues of glass-crystalline material production with silica-barium-alumina composition with the use of the sol-gel synthesis are considered in this article, the results of the study of gel formation processes, structural transformations at all stages of transition «sol→gel→crystalline phase» are shown. The promising application of the glass-crystalline material with silica-barium-alumina composition as the matrix of high-temperature composite materials, reinforced with oxide and not oxide continuous fibers are illustrated.

Keywords: the sol-gel synthes, glass-crystalline materials, silica-barium-alumina composition (BAS), composite materials, hot pressing.

Reference List

1. SiON low dielectric constant ceramic nanocomposite: pat. 5677252 US; publ. 14.10.91.
2. Modified cordierite glass ceramic composite: pat. 4711860 US; publ. 08.12.87.
3. Chin R.E., Haun M.J., Kim C.Y., Rice D.B. Microstructures and properties of 3 composites of aluminia, mullite and monoclinic SrAl2Si2O8 // Journal of the American Ceramic Society. 2000. Vol. 83. Issue 11. P. 2668–2672.
4. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastyanov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlya perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
5. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastyanov V.G. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
6. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Yu.E., Colncev S.St. Funkcionalnye kompozity na osnove steklo/steklokristallicheskih matric i diskretnyh napolnitelej: svojstva i oblasti primeneniya (obzor) [Functional composites based on glass/glass-ceramics matrixes and discrete fillers: properties and possible applications] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 52–58. DOI: 10.18577/2071-9140-2014-0-s6-52-58.
7. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Yu.E., Solncev S.St. Dispersnouprochnennye kompozity na osnove steklo/steklokristallicheskih matric: svojstva i oblasti primeneniya (obzor) [Dispersion reinforced composites based on glass/glassceramics matrixes: properties and possible applications (review)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 45–54. DOI: 10.18577/2071-9140-2014-0-3-45-54.
8. Grashhenkov D.V., Solncev S.St., Shhegoleva N.E., Naumova A.S., Gaponov B.N. Steklokeramicheskij kompozicionnyj material [Glass-ceramic composite material] // Aviacionnye materialy i tehnologii. 2012. №S. S. 368–372.
9. Hristov C.I. Zol-gel tehnologiya silikatnyh materialov [Sol-gel technology of silicate materials]. M.: RHTU, 1995. 232 s.
10. Dislish H. Sol-gel: science, processes and products // J. Non-Cryst. Solids. 1986. Vol. 80. P. 115–116.
11. Semchenko G.D. Zol-gel process v keramicheskoj tehnologii [Sol-gel process in ceramic technology]. Harkov: BI, 1997. 144 s.
12. Andrianov N.T. Zol-gel metod v tehnologii oksidnyh materialov [Sol-gel method in technology of oxide materials] // Steklo i keramika. 2003. №10. C. 17–22.
13. Winter W. Characterization of BaO–Al2O3–SiO2 gels during heat – treatment // J. Mat. Science. 1996. Vol. 31. P. 3087–3094.
14. Feng Ye, Gu J.C., Zhou Y., Iwasa M. Synthesis of BaAl2Si2O8 glass-ceramic by a sol-gel method and the fabrication of SiCpl / BaAl2Si2O8 composites // J. of European Cer. Soc. 2003. Vol. 23. Р. 2203–2209.
15. Simonenko E.P., Simonenko N.P., Sevastyanov V.G., Grashhenkov D.V., Kuznecov N.T., Kablov E.N. Funkcionalno gradientnyj kompozicionnyj material SiC/(ZrO2–HfO2–Y2O3), poluchennyj s primeneniem zol-gel metoda [Functionally gradient SiC/(ZrO2–HfO2–Y2O3) composite material received using sol-gel of method] // Kompozity i nanostruktury. 2011. №4. S. 52–64.
16. Kablov E.N., Grashhenkov D.V., Uvarova N.E. Issledovaniya metodom infrakrasnoj spektroskopii strukturnyh izmenenij gelej v processe termicheskoj obrabotki pri poluchenii vysokotemperaturnyh steklokeramicheskih materialov po zol-gel tehnologii [Researches by method of infrared spectroscopy of structural changes of gels in heat treatment process when receiving high-temperature glassceramic materials on technology sol-gel] // Aviacionnye materialy i tehnologii. 2011. №2. S. 22–25.
17. Lebedeva Yu.E., Grashhenkov D.V., Popovich N.V., Orlova L.A., Chajnikova A.S. Razrabotka i issledovanie termostabilnyh pokrytij, poluchennyh zol-gel metodom v sisteme Y2O3–Al2O3–SiO2, dlya SiC-soderzhashhih materialov [Development and research of the thermostable coverings, received sol-gel method in Y2O3–Al2O3–SiO2system, for SiC-containing materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2013. №12. St. 03. Available at: http://www.viam-works.ru (accessed: October 8, 2016).
18. Lebedeva Yu.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytiya dlya kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2013. №2. St. 06. Available at: http://www.viam-works.ru (accessed: October 8, 2016).
19. Dislich H. History and principles of the sol-gel process and some multicomponent oxide coating // J. of Non-Crystalline Solids. 1982. Vol. 48. Р. 11–16.
20. Shabanova N.A., Sarkisov P.D. Osnovy zol-gel tehnologii nanodispersnogo kremnezema [Bases sol-gel of technology nanodisperse kremnezy]. M.: Akademkniga, 2004. 208 s.
21. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.

DOI: 10.18577/2071-9140-2017-0-S-306-317

UDC: 621.762.5

Pages: 306-317

M.L. Vaganova1, O.Yu. Sorokin1, I.V. Osin1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Joining of ceramic materials by the method of spark plasma sintering

The possibility of silicon-carbide ceramic joining by using the method of spark plasma sintering was studied. Temperature increase of SPS/FAST process and additive of SiC and B powdersinto base composition for С-Si joining allow significantly to improve homogeneity of joining and enhance its thermal shock resistance of brazed construction. It was established, that introduction of boron additive into the composition for joining allows to minimize content of free silicon in the braze, that is unobtainable with its absence as a part of composition The work is executed within the implementation of the complex scientific direction 14.2 «Novel technologies for obtaining very high-temperature ceramic composites and coatings» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: spark plasma sintering (SPS/FAST), silicone carbide joining, thermal shock resistance.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: October 14, 2016). DOI: 10.18577/2307-6046-2014-0-6-8-8.
3. David P., Audubert F., Chaumat V. et al. SiC/SiC composites for GFR fuel claddings // CLEFS CEA. 2010. No. 59. P. 26–30.
4. Available at: http://www.ge.com (accessed: October 1, 2016).
5. Lacombe A., Spriet P., Allaria A., Bouillon E., Habarou G. Ceramic matrix composites to make breakthroughs in aircraft engine performance // 50th Conference «Structures, Structural Dynamics, and Materials» (May 4–7, 2009). USA, California, Palm Springs, 2009. P. 1–11. DOI: 10.2514/6.2009-2675.
6. Sorokin O.Yu. K voprosu o mehanizme vzaimodejstviya uglerodnyh materialov s kremniem (obzor) [On the issue of the mechanism of interaction between carbon materials and Si melt (review)] //Aviacionnye materialy i tehnologii. 2015. №1. S. 65–70.
7. Rylnikov V.S. Voprosy po pajke, reshennye v processe izgotovleniya izdeliya «Buran» [Some problems of brazing solved in the course of manufacture of «Buran»  reusable spaceship] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 33–34.
8. Gnesin G.G. Karbidokremnievye materialy [Carborundum materials]. M.: Metallurgiya, 1977. 216 s.
9. Solntsev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklokeramicheskie pokrytiya i kompozicionnye materialy [The high-temperature glass ceramic coatings and composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 359–368.
10. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
11. Katoh Y., Snead L.L., Cheng T. et al. Relation-tolerant joining technologies for silicon carbide ceramics and composites // J. Nuc. Mat. 2014. No. 448. P. 497–511.
12. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastyanov V.G. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
13. Singh M. Microstructure and mechanical properties of reaction-formed joints in reaction-bonded silicon carbide ceramics // J. Mater. Sci. 1998. P. 5781–5787.
14. Rylnikov V.S., Afanasev-Hodykin A.N., Krasikov M.I. Issledovanie remontnoj tehnologii ispravleniya defektov payanyh soedinenij toplivnyh kollektorov [Research of repair technology of defects correction of soldered joints of fuel collector] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 02. Available at: http://www.viam-works.ru (accessed: October 13, 2016).
15. Zheng J. Green state joining of silicon carbide using polymer precursors: Ph.D. Dissertation. Iowa State University, 2000. 128 p.
16. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastyanov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlya perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
17. Advances in brazing: science, technology and applications / ed. by D.P. Sekulić. 2003. 619 p.
18. Rylnikov V.S., Lukin V.I. Pripoi, primenyaemye dlya pajki materialov aviacionnogo naznacheniya [Solders used for soldering materials aviation applications] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 02. Available at: http://viam-works.ru (accessed: October 13, 2016).
19. Grashhenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaganova M.L. Osobennosti spekaniya tugoplavkoj keramiki na osnove HfB2 metodom iskrovogo plazmennogo spekaniya [Features of agglomeration of high-melting ceramics on the basis of HfB2 method of spark plasma agglomeration] // Zhurnal prikladnoj himii. 2015. T. 88. Vyp. 3. S. 162–169.
20. Tarabanov A.S., Kostikov V.I. Silicirovannyj grafit [Siliconized graphite]. M.: Metallurgiya, 1977. 208 s.
21. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspective high-temperature ceramic composite materials // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. P. 986–991.
22. Shurshakov A.N., Dergunova V.S., Meerson G.A., Sizov B.A. Issledovanie vliyaniya dobavok bora na nauglerozhivanie kremniya [Research of influence of additives of boron on silicon carburizing] // Konstrukcionnye materialy na osnove grafita. M.: Metallurgiya, 1971. Vyp. 6. S. 124–131.

DOI: 10.18577/2071-9240-2017-0-S-318-328

UDC: 669.018.95

Pages: 318-328

D.V. Grashchenkov1, I.Yu. Efimochkin1, A.N. Bolshakova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds

The article describes the results, obtained in the framework of implementation «The strategic directions of development of materials and technologies of their processing for the period till 2030» (direction 12. «Polimatrix and metal-matrix composite materials») [1] for the development of metal composite materials (MCM) - based on Mo, Nb, Fe, Ni matrixes, reinforced with particles and fibers of refractory compounds. Variants of barrier coatings and methods for applying them are presented for fibers of refractory compounds used for reinforcement of metal composite materials . The technology of spheroidizing composite grains in a thermal plasma flow is presented for metal composite materials reinforced with particles of refractory compounds in order to adapt powders for use in additive technologies

Keywords: composite materials, dispersion strengthening, mechanical alloying, powder metallurgy.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
3. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. Vysokotemperaturnye Nb–Si-kompozity [High-temperature Nb-Si-composites] // Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.E. Bauman. Ser.: Mashinostroenie. 2011. №SP2. S. 164–173.
4. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2.  St. 05. Available at: http://www.viam-works.ru (accessed: June 25, 2016).
5. Shhetanov B.V., Grashhenkov D.V., Efimochkin I.Yu., Shheglova T.M. Monokristallicheskie volokna oksida alyuminiya dlya vysokotemperaturnyh (do 1400°C) kompozicionnyh materialov [Single-crystal fibers of aluminum oxide for high-temperature (to 1400°С) composite materials] // Tehnologiya mashinostroeniya. 2014. №10 (148). S. 5–9.
6. Menon E.S.K., Mendiratta M.G., Dimiduk D.M. Oxidation of complex niobium based alloys // International Symposium Niobium; science & technology (December 2–5, 2001). Orlando, Florida. P. 121–146.
7. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
8. Weiping Hu, Hao Chen, Yonlong Zhong, Jia Song, Gunter Gottstein. Investigations NiAl composites fabricated by matrix coated single crystalline Al2O3-fibers with and without hBN interlayer // Mater. Sci. China. 2008. Vol. 2 (2). P. 182–193.
9. Bowman R.R., Misra A.K., Arnold S.M. Processing and Mechanical Properties of Al2O3 Fibwe-Reinforced NiAl Composites // Metallurgical and Materials Transactions, 1995. Vol. 26A. P. 615–628.
10. Babich B.N., Vershinina E.V., Glebov V.A. i dr. Metallicheskie poroshki i poroshkovye materialy: spravochnik [Metal powders and powder materials: directory]. M.: EKOMET, 2005. 520 s.
11. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
12. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlya lit\'ya lopatok s napravlennoj i monokristallicheskoj strukturoj. Ch. II [Nickel hot strength alloys for molding of blades with the directed and single-crystal structure. P. II] // Materialovedenie. 1997. №5. S. 14–16.
13. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // MiTOM. 1999. №1. S. 32–34.
14. Babich B.N. Zharoprochnye dispersnouprochnennye kompozicionnye materialy dlya raboty pri temperaturah do 1300–1350°C [The heat resisting dispersion strengthened composite materials for work at temperatures to 1300-1350°C]// Aviacionnye materialy i tehnologii. M.: VIAM, 2003. №1. S. 158–165.
15. Portnoj K.I., Babich B.N. Dispersnouprochnennye materialy [Dispersion  strengthened materials]. M.: Metallurgiya, 1974. S. 200.
16. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.

DOI: 10.18577/2071-9140-2017-0-S-329-343

UDC: 629.7.023.224

Pages: 329-343

St.S. Solntsev1, V.S. Denisova1, V.A. Rosenenkova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Reaction cure - the new direction in technology ofhigh-temperature composite coatings and materials

The principles of development and properties of high-temperaturecomposite materials and coatings, produced by reaction cure are considered.. The possibility for production of high level of characteristics of composite materials and coatings is explained by the unique structure of material as the result of chemical oxidation reactions of material’s components by atmospheric oxygen and subsequent glass-formation. The work is executed within the implementation of the complex scientific direction 14.2. «New technologies of receiving very high-temperature ceramic and metal composite materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: coating, reactionary curing glass, silicon tetraboride, nickel alloys, carbon ceramic composite material.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. inform. materi. 3-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: collection of information materials. 3rd ed., rev. and add.]. M.: VIAM, 2015. 720 s.
3. Kablov E.N., Solntsev S.S. Oksitermosintez – novyj shag k materialam dlya perspektivnoj aviakosmicheskoj tehniki [Oxithermosynthesis – new step to materials for perspective aerospace equipment] // Aviacionnye materialy. Izbrannye trudy VIAM 1932–2002: yubil. nauch.-tehnich. sb. M.: VIAM, 2002. S. 131–137.
4. Goldstein Н.В. et al. Reaction cured borosilicate glass coatings for low-density fibrous insulation // Borate glasses. Structure, properties, application: plenum press. New-York, 1978. Р. 623–634.
5. Garofalini S.H., Banas R., Creedon J. Development of high viscosity coatings for advanced Space Shuttle application // 11-th National SAMPE technical conference. Boston, 1979. P.114–124.
6. Solntsev S.S. Nekotorye osobennosti pokrytij dlya plitok mnogorazovoj teplozashhity orbitalnyh kosmicheskih korablej [Some features of coatings for tiles reusable heat-protection orbiting spacecraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 01. Available at: http://www.viam-works.ru (accessed: April 7, 2016). DOI: 10.18577/2307-6046-2014-0-2-1-1.
7. Eremenko L.P. Vysokotemperaturnye pokrytiya dlya zashhity materialov v ekstremalnyh usloviyah ekspluatacii [High temperature coatings for protection of materials in extreme operating conditions] // Sovremennye problemy neorganicheskoj himii. SPb.: Art-Ekspress, 2016. S. 188–200.
8. Toropov N. A. Barakovskij V. K. Lapini V. V. i dr. Diagrammy sostoyaniya silikatnyh sistem: spravochnik [Charts of condition of silicate systems: directory]. L.: Nauka, 1972. Vyp. 3. Trojnye silikatnye sistemy. 448 s.
9. Solntsev S.S. Zashhitnye tehnologicheskie pokrytiya i tugoplavkie emali. 2-e izd., dop. [Protective technological coverings and high-melting enamels. 2nd ed., add.]. M.: Lenand, 2016. 252 s. 
10. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
11. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii ekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] // Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
12. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
13. Kablov E.N., Solntsev S.S., Rozenenkova V.A., Mironova N.A. Sovremennye polifunkcionalnye vysokotemperaturnye pokrytiya dlya nikelevyh splavov, uplotnitelnyh metallicheskih materialov i berillievyh splavov [Modern multifunctional high temperature coatings for nickel alloys, sealing metal materials and beryllium alloys] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://www.materialsnews.ru (accessed: April 04, 2016).
14. Kablov E.N., Ospennikova O.G., Kucheryaev V.V., Rozenenkova V.A., Mironova N.A., Kapitanenko D.V. Termomehanicheskoe povedenie intermetallidnyh splavov sistem Ni–Al–Co i Ni–Al–Nb pri izotermicheskoj deformacii // Pisma o materialah. 2016. T. 6. №3. S. 189–194. DOI: 10.22226/2410-3535-2016-3-189-194.
15. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V., Shvec N.I., Yamshhikova G.A. Termoarmiruyushhie pokrytiya dlya teplozvukopoglashhayushhih materialov [Thermoreinforcing coverings for heat and sound absorbing materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 04. Available at: http://www.viam-works.ru (accessed: April 07, 2016).
16. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
17. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: October, 20 2016).
18. Kablov E., Minakov V., Solntsev S., Rosenenkova V., Shvets N. Advanced inorganic structural fiber composites // CIMTEC 2002, 2002. VI. P. 163–167.
19. Karimbaev T.D., Afanasev D.V., Danshin K.A., Nikolaeva M.P., Solntsev S.S., Rozenenkova V.A., Mironova N.A. Issledovanie kvaziplastichnyh vysokotemperaturnyh uglerod-keramicheskih nanokompozitov dlya «goryachih» detalej aviacionnyh dvigatelej [Research quasiflexible high-temperature carbon - ceramic nanocomposites for «hot» details of aircraft engines] // Sb. tr. Mezhdunar. nauch.-tehn. konf. «Aviadvigateli XXI veka». M., 2010. S. 371–390.

DOI: 10.18577/2071-9140-2017-0-S-344-348

UDC: 678.8

Pages: 344-348

A.E. Raskutin1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Development strategy of polymer composite materials

Polymer composite materials (PCM) of new generation through the use of new binders can provide all increasing requirements as to the elastic-strength characteristics necessary to ensure operability of designs and manufacturability. PCM of new generation are developed taking into account structural and technological features of manufacture of components and structural elements i.e. the concept of unity is implemented, which FSUE «VIAM» put forward when developing materials - «material-technology-design».

Keywords: polymer composite material, carbon fiber reinforced plastic, glass fiber reinforced plastic, organic plastic, basic properties of PСM.

Reference List

1. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation are base of innovations, technological leadership and national security of Russia] // Intellekt & Tehnologii. 2016. №2. S. 41–46.
5. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
8. Gulyaev I.N., Vlasenko F.S., Zelenina I.V., Raskutin A.E. Napravleniya razvitiya termostojkih ugleplastikov na osnove poliimidnyh i geterociklicheskih polimerov [Development Directions of heat-resistant carbon–fiber–reinforced–plastics based on polimide and heterocyclic polymers] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 04. Available at: http://www.viam-works.ru (accessed: October 12, 2016). DOI: 10.18577/2307-6046-2014-0-1-4-4.
9. Zheleznyak V.G., Muhametov R.R., Chursova L.V. Issledovanie vozmozhnosti sozdaniya termoreaktivnogo svyazujushhego na rabochuju temperaturu do 400°C [Study of possibility of thermoset binder creation for operating temperature up to 400°C] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 58–61.
10. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatel» [Materials and VIAM technologies for «Aviadvigatel»] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
11. Kablov E.N. O nastoyashhem i budushhem VIAM i otechestvennogo materialovedeniya: intervyu [About the real and future VIAM and domestic materials science: interview] // Rossijskaya akademiya nauk. 2015. 19 yanvarya. S. 10–15.
12. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.

DOI: 10.18577/2071-9140-2017-0-S-349-367

UDC: 678.8

Pages: 349-367

A.E. Raskutin1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions

The article presents the basic physical and mechanical properties of developed PCM from glass and carbon reinforcing fibers in combination with polymeric bindings on the basis of epoxy, cyano-ether, phtalonitrile and vinyl ester resins, including in comparison with their foreign analogs. PCM of new generation on the basis of melt type bindings were developed taking into account constructional and technological features of manufacturing of details and elements of constructions, i. e. the concept put forward at VIAM is implemented when developing the new materials «material-technology-construction» that allows to reduce significantly terms and expense for development and implementation of PCM of new generation.

Keywords: polymer composite material, carbon fiber, fiberglass, organic plastics, prepreg, basic properties of PCM.

Reference List

1. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation are base of innovations, technological leadership and national security of Russia] // Intellekt & Tehnologii. 2016. №2. S. 41–46.
5. Davydova I.F., Kavun N.S. Stekloplastiki ‒ mnogofunkcionalnye kompozicionnye materialy [Fibreglasses ‒ multipurpose composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 253–260.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
8. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
9. Gulyaev I.N., Vlasenko F.S., Zelenina I.V., Raskutin A.E. Napravleniya razvitiya termostojkih ugleplastikov na osnove poliimidnyh i geterociklicheskih polimerov [Development Directions of heat-resistant carbon–fiber–reinforced–plastics based on polimide and heterocyclic polymers] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 04. Available at: http://www.viam-works.ru (accessed: October 12, 2016). DOI: 10.18577/2307-6046-2014-0-1-4-4.
10. Polimernoe svyazuyushhee i prepregi na ego osnove: pat. 2510408 Ros. Federaciya [Polymeric binding and prepregs on its basis: pat. 2510408 Rus. Federation]; opubl. 27.03.2014.
11. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatel» [Materials and VIAM technologies for «Aviadvigatel»] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
12. Kablov E.N. O nastoyashhem i budushhem VIAM i otechestvennogo materialovedeniya: intervyu [About the real and future VIAM and domestic materials science: interview] // Rossijskaya akademiya nauk. 2015. 19 yanvarya. S. 10–15.
13. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39. 
14. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] // Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
15. Zheleznyak V.G., Muhametov R.R., Chursova L.V. Issledovanie vozmozhnosti sozdaniya termoreaktivnogo svyazujushhego na rabochuju temperaturu do 400°C [Study of possibility of thermoset binder creation for operating temperature up to 400°C] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 58–61.
16. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obchsh. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM. 2012. S. 349–380.
17. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.

DOI: 10.18577/2071-9140-2017-0-S-368-378

UDC: 678.83

Pages: 368-378

G.F. Zhelezina1, I.N. Gulyaev1, N.A. Solovyova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Aramide organic plastics of new generation for aviation designs

The article describes the properties of the new aramid organic plastics with improved mechanical and operational characteristics: VKO-19L - for waterproof and resistant to moisture absorption, erosion impacts of sheathings of helicopters; VKO-20 - for structures that provide protection against mechanical shock and high-intensity waves. It is necessary to use organic plastics to ensure erosion resistant of aircraft elements structures in dusty conditions, including in the manufacture of dustproof device for perspective helicopter engine. It is shown the possibility of further improvement of the properties of organic plastics (water absorption - no more than 1,5%) due to the use of new Rusar NT aramid fiber type in order to ensure the stability of the operation characteristics of structural members of helicopters and aircrafts in all weather conditions and maritime climate. Work is executed within implementation of the complex scientific direction 13.2. «Constructional PCM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: aramid fibers, organic plastics, layered polymer composites.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are the base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials is a security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
5. Gunyaev G.M., Krivonos V.V., Rumyancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukciyah letatelnyh apparatov [Polymeric composite materials in designs of flight vehicles] // Konversiya v mashinostroenii. 2004. №4 (65). S. 65–69.
6. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: October 25, 2016).
7. Shuldeshova P.M., Deev I.S., Zhelezina G.F. Osobennosti razrusheniya aramidnyh volokon SVM i konstrukcionnyh organoplastikov na ih osnove [Features of destruction of SVM aramide fibers and structural organoplastics on their basis] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 11. Available at: http://www.viam-works.ru (accessed: October 25, 2016). DOI 10.18577/2307-6046-2016-0-2-11-11.
8. Zhelezina G.F. Osobennosti razrusheniya organoplastikov pri udarnyh vozdejstviyah [Features of destruction organoplastikov at shock influences] // Aviacionnye materialy i tehnologii. 2012. №S. S. 272–277.
9. Tikhonov I.V., Tokarev A.V., Shorin S.V. et al. Russian aramid fibres: past–present–future // Fibre Chemistry. 2013. No. 5. P. 1–8.
10. Li C.-S., Zhan M.-S., Huag X.-C., Zhou H., Li Y. Hydrothermal aging mechanisms of aramid fibers via synchrotron small-angle X-ray scattering and dynamic thermal mechanical analysis // Journal of Applied Polymer Science. 2013. Vol. 128. No. 2. P. 1291–1296.
11. Zhelezina G.F., Vojnov S.I., Chernyh T.E., Chernyh K.Yu. Novye aramidnye volokna Rusar NT dlya armirovaniya konstrukcionnyh organoplastikov [New aramide fibers Rusar NT for reinforcing constructional organoplastikov] // Voprosy materialovedeniya. 2015. №1 (81). S. 60–72.
12. Zhelezina G.F., Shuldeshova P.M. Konstrukcionnye organoplastiki na osnove plenochnyh kleev [Constructional organoplasty on the basis of film glues] // Klei. Germetiki. Tehnologii. 2014. №2. S. 9–14.
13. Shuldeshova P.M., Zhelezina G.F. Vliyanie atmosfernyh uslovij i zapylennosti sredy na svojstva konstrukcionnyh organoplastikov [An influence of atmospheric condition and dust loading on properties of structural organic plastics] // Aviacionnye materialy i tehnologii. 2014. №1. S. 64–68. DOI: 10.18577/2071-9140-2014-0-1-64-68.
14. Kucherovskij A.I., Shul\'deshova P.M., Zhelezina G.F., Gulyaev I.N. Razrabotka sistemy zashhity setchatoj konstrukcii fyuzelyazha ot negativnyh vozdejstvij vneshnih faktorov [Development of the system of protection of mesh design of fuselage from negative impacts of external factors] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №9. S. 29–35.
15. Shuldeshova P.M., Zhelezina G.F. Aramidnyj sloisto-tkanyj material dlya zashhity ot ballisticheskih i udarnyh vozdejstvij [The aramid layered and woven material for protection against impact and ballistic influences] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 06. Available at: http://www.viam-works.ru (accessed: June 22, 2016). DOI: 10.18577/2307-6046-2014-0-9-6-6.
16. Zhelezina G.F., Soloveva N.A., Orlova L.G., Vojnov S.I. Ballisticheski stojkie aramidnye sloisto-tkanye kompozity dlya aviacionnyh konstrukcij [Ballistic resistant aramide layered and woven composites for aviation designs] // Vse materialy. Enciklopedicheskij spravochnik. Kompozicionnye materialy. 2012. №12. S. 23–26.

DOI: 10.18577/2071-9140-2017-0-S-379-387

UDC: 621.792.053

Pages: 379-387

K.E. Kutsevich1, L.A. Dementeva1, N.F. Lukina1, T.Yu. Tyumeneva1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Adhesive prepregs as promising materials for parts and assemblies from polymeric composite materials

The properties of composite adhesive materials (CAM) on basis of a wide range of ad-hesive prepregs based on glass- and carbon fillers are presented. The information about the benefits and features of the technological process of manufacturing PCM elements from ad-hesive prepregs are provided. The purpose of CAM is a production of parts from PCM, in-cluding the honeycomb structure of single or double curvature intended for working at tem-peratures -130÷+120°C is shown. Scientific research is executed within implementation of the complex scientific direc-tion 13.2. «Constructional polymer composite materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: composite materials, adhesive prepregs, adhesive matrix, carbon- and glass fillers, strength characteristics, honeycomb structure.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [What the future to make of? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
4. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Kleyashhie materialy. Germetiki: spravochnik [Gluing materials. Hermetics: directory]. SPb.: Professional, 2008. S. 589.
5. Kutsevich K.E., Dementeva L.A., Lukina N.F. Svojstva i naznachenie polimernyh kompozicionnyh materialov na osnove kleevyh prepregov [Properties and application of polymer composite materials based on glue prepregs] // Trudy VIAM elektron.-nauch.-tehnich. zhurn. 2016. №8. St. 07. Available at: http://www.viam-works.ru (accessed: February 7, 2017). DOI: 10.18577/2307-6046-2016-0-8-7-7.
6. Lukina N.F., Dementeva L.A., Kutsevich K.E. Kleevye prepregi na osnove tkanej Porcher – perspektivnye materialy dlya detalej i agregatov iz PKM [Adhesive prepregs based on tissue Porsher – perspective materials for parts and units out of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 10. Available at: http://www.viam-works.ru (accessed: February 7, 2017). DOI: 10.18577/2307-6046-2014-0-6-10-10.
7. Petrova A.P., Lukina N.F. Vliyanie adgezionnyh gruntov na resursnye harakteristiki kleevyh soedinenij [Influence of adhesive soil on resource characteristics of glued joints] // Klei. Germetiki. Tehnologii. 2015. №11. S. 20–23.
8. Petrova A.P., Lukina N.F., Dementeva L.A., Avdonina I.A., Tyumeneva T.Yu., Zhadova N.S. Klei dlya aviacionnoj tehniki // RZhH. 2010. T. LIV. №1. C. 46–52.
9. Kablov E.N., Minakov V.T., Anihovskaya L.I. Klei i materialy na ih osnove dlya remonta konstrukcij aviacionnoj tehniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviacionnye materialy i tehnologii. 2002. №1. S. 61–65.
10. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kutsevich K.E., Petrova A.P. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite materials on the basis of glue prepregs] // Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
11. Anihovskaya L.I., Minakov V.T. Klei i kleevye prepregi dlya perspektivnyh izdelij aviakosmicheskoj tehniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tehnich. sb. M.: MISiS–VIAM, 2002. S. 315–325.
12. Lukina N.F., Dement\'eva L.A., Petrova A.P., Tyumeneva T.Yu. Svojstva kleev i kleyashhih materialov dlya izdelij aviacionnoj tehniki [Properties of glues and gluing materials for products of aviation engineering] // Klei. Germetiki. Tehnologii. 2009. №1. S. 14–24.
13. Dementeva L.A., Lukina N.F., Serezhenkov A.A., Kutsevich K.E. Osnovnye svojstva i naznachenie PKM na osnove kleevyh prepregov [The main properties and PCM assignment on the basis of glue prepregs] // Konstrukcii i tehnologiya polucheniya izdelij iz nemetallicheskih materialov: tez. dokl. XIX Mezhdunar. nauch.-tehnich. konf. Obninsk: Tehnologiya, 2010. S. 11–12.
14. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Kleyashhie materialy v konstrukcii lopastej vertoletov [Gluing materials in the design of blades of helicopters] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 07. Available at: http://www.viam-works.ru (accessed: February 7, 2017). DOI: 10.18577/2307-6046-2016-0-7-7-7.
15. Morozov B.B. Primenenie polimernyh kompozicionnyh materialov v izdeliyah razrabotki OKB Suhogo [Application of polymeric composite materials in products of development of Sukhoi Design Bureau] // Kleyashhie materialy aviacionnogo naznacheniya: sb. dokl. konf. M.: VIAM, 2013. S. 31–36.
16. Hrychev Yu.I., Shkodinova E.P., Dementeva L.A. Razrabotka tehnologicheskogo processa izgotovleniya radioprozrachnogo obtekatelya iz kleevyh prepregov tipa KMKS-2m.120 [Development of technological process of manufacturing of radio transparent fairing from glue prepregs of the KMKS-2M.120 type] // Ibid. S. 43–47.
17. Lukina N.F., Dementeva L.A., Petrova A.P., Kirienko T.A., Chursova L.V. Kleevye svyazuyushhie dlya detalej iz PKM sotovoj konstrukcii [Glue binding for details from PKM of cellular design] // Klei. Germetiki. Tehnologii. 2016. №5. S. 12–16.
18. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
19. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Anihovskaya L.I., Lukina N.F. Kompozicionnye materialy kleevye na osnove steklyannyh i uglerodnyh napolnitelej [Composite materials glue on the basis of glass and carbon fillers] // Klei. Germetiki. Tehnologii. 2009. №1. S. 24–27.
20. Prepreg i izdelie, vypolnennoe iz nego: pat. 2427594 Ros. Federaciya [Prepreg and the product which has been executed of it: pat. 2427594 Rus. Federation]; opubl. 23.07.13.
21. Lukina N.F., Dementeva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidelnikov V.V., Kutsevich K.E. Adhesive prepregs and composite materials on their basis // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. С. 1022–1024.

DOI: 10.18577/2071-9140-2017-0-S-388-392

UDC: 678.8

Pages: 388-392

B.Ph. Pavlyuk1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

The main directions in the field of development of polymeric functional materials

Functional materials are wide class of substances which are used in the most various areas of modern life and possess certain physical and chemical properties. Extralight heat-protective and encapsulating materials, electric insulating and antifriction materials, noise-absorbing and self-adhesive coatings and laying, anaerobic compositions and others find broad application in mechanical engineering, railway transport, shipbuilding and aircraft, in electronics and radio engineering. The basic functional purpose of polymers are their mechanical properties - durability, rigidity, elasticity, cracks resistance, this circumstance defines science development about polymers for many years. Strength properties play important role when manufacturing products intended for operation at action of considerable mechanical loadings in different conditions - high humidity, action of aggressive substances, environment temperature. Importance of polymeric materials is defined by variety of their properties - mechanical, electric, optical, ability to cooperate with radiations of different energy. On electrical properties modern polymeric materials overcover all range from dielectrics to semiconductors. Some polymers (photosensitive) under the influence of ultra-violet and visible light are exposed to the chemical changes, being accompanied by change of physicochemical behavior. For use of polymers as isolating materials their important characteristics are dielectric permittivity and dielectric loss tangent, thermal and radiation resistance. Development of optimum material requires strengthening or suppression of any properties in already available material and it is impossible without attraction of modern experimental and theoretical approaches.

Keywords: functional materials, paint coatings, glues, thermoplastic polymers, noise reduction, weathering resistance, ecological safety.

Reference List

1. Kablov E.N. Rol himii v sozdanii materialov novogo pokoleniya dlya slozhnyh tehnicheskih sistem [Chemistry role in creation of materials of new generation for complex technical systems] // Tez. dokl. XX Mendeleevskogo sezda po obshhej i prikladnoj himii. Ekaterinburg: UrO RAN, 2016. S. 25–26.
2. Bilibin A.Yu. Funkcionalnye svojstva polimerov [Functional properties of polymers]. SPb.: Izd-vo S.-Peterb. un-ta, 1998. 136 s.
3. Kerber M.L. Polimernye kompozicionnye materialy. Struktura. Svojstva. Tehnologii [Polymeric composite materials. Structure. Properties. Technologies]. SPb.: Professiya, 2008. 560 s.
4. Matrenin S.V., Ovechkin B.B. Kompozicionnye materialy i pokrytiya na polimernoj osnove [Composite materials and coverings on polymeric basis]. Tomsk, 2008. 197 s.
5. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Perspektivnye tehnologii polucheniya funkcionalnyh materialov konstrukcionnogo naznacheniya na osnove nanokompozitov s UNT (obzor) [Prospective producing methods for functional structural materials based on CNT-filled nanocomposites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 07. Available at: http://www.viam-works.ru (accessed: March 23, 2017). DOI: 10.18577/2307-6046-2016-0-3-7-7.
6. Krutko E.T. Prokopchuk N.R. Himiya i tehnologiya lakokrasochnyh materialov i pokrytij [Chemistry and technology of paint and varnish materials and coverings]. Minsk: BGTU, 2004. 314 s.
7. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Kleyashhie materialy v konstrukcii lopastej vertoletov [Gluing materials in the design of blades of helicopters] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 07. Available at: http://www.viam-works.ru (accessed: March 23, 2017). DOI: 10.18577/2307-6046-2016-0-7-7-7.
8. Dementeva L.A., Kucevich K.E., Lukina N.F., Rubcova E.V., Petrova A.P. Svojstva epoksidnyh konstrukcionnyh plenochnyh kleev, modificirovannyh polisulfonami [Properties of the epoxy constructional film glues modified by polysulphones] // Klei, germetiki, tehnologii. 2016. №11. S. 14.
9. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polimernye kompozicionnye materialy na termoplastichnoj matrice [Polymeric composite materials on thermoflexible matrix] // Izvestiya vysshih uchebnyh zavedenij. Ser.: Himiya i himicheskaya tehnologiya. 2016. T. 59. №10. S. 61–71.
10. Kraev I.D., Shuldeshov E.M., Platonov M.M., Yurkov G.Yu. Obzor kompozicionnyh materialov, sochetayushhih zvukozashhitnye i radiozashhitnye svojstva [Composite materials combining acoustic and radio shielding properties] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 60–67. DOI: 10.18577/2071-9140-2016-0-4-60-67.
11. Melnikov B.P. Perspektivy sozdaniya maloshumnyh samoletov grazhdanskoj aviacii [Perspectives of creation of low annoyance aircrafts of civil aviation] // Bezopasnost v tehnosfere. 2010. №2. S. 32.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.

DOI: 10.18577/2071-9140-2017-0-S-393-404

UDC: 667.64

Pages: 393-404

N.I. Nefedov1, L.V. Semenova1, V.A. Kuznetsova1, N.P. Vereninova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration

Information about new paint materials, their properties and application technology as anticorrosion, protective-decorative and functional coatings of traditional materials, and new metallic and non-metallic, including polymer composite materials used in aircraft structures, engines and devices is shown in the article . FSUE «VIAM» has currently developed coatings, reducing the optical contrast in the visible and IR wavelength ranges, resistant to UV radiation, with thermal resistance up to 600°C, low moisture permeability and high dielectric properties.

Keywords: рaint coatings, anticorrosion primers, thermal resistance, atmosphere resistant materials, polymer composite materials.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kondrashov E.K., Semenova L.V., Kuznetsova V.A., Malova N.E., Lebedeva T.A. Razvitie aviacionnyh lakokrasochnyh materialov [Development of aviation paint and varnish materials] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 49–54.
3. Kondrashov E.K., Kuznecova V.A., Lebedeva T.A., Malova N.E. Antikorrozionnye, termoreguliruyushhie, termostojkie i vlagozashhitnye pokrytiya MKS «Buran» [Anticorrosion, temperature-controlled, heat-resistant and vlagozashchitny coatings of ISS «Buran»] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 137–141.
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are the base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Dospehi dlya «Burana». Materialy i tehnologii VIAM dlya MKS «Energiya–Buran» / pod obshh. red. E.N. Kablova [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya–Buran» / gen. ed. by E.N. Kablov]. M.: Nauka i zhizn, 2013. 128 s.
7. Kondrashov E.K., Kuznecova V.A., Lebedeva T.A., Semenova L.V. Osnovnye napravleniya povysheniya ekspluatacionnyh svojstv, tehnologicheskih i ekologicheskih harakteristik lakokrasochnyh pokrytij dlya aviacionnoj tehniki [The main directions of increase of operational properties, technical and ecological characteristics of paint coatings for aviation engineering] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 96–102.
8. Gurevich M.M., Icko E.F., Seredenko M.M. Opticheskie svojstva lakokrasochnyh pokrytij. 2-e izd., pererab. [Optical properties of paint coatings. 2nd ed., rev.] SPb.: Professiya, 2010. S. 68–95; 150–152.
9. Kraska s nizkim izlucheniem: pat. 8187503 SShA [Paint with low radiation: pat. 8187503 USA]; opubl. 29.05.12.
10. Kamuflyazhnoe pokrytie: pat. 20140004279 SShA [Camouflage covering: pat. 20140004279 USA]; opubl. 2.01.14.
11. Kamuflyazh v blizhnem ultrafioletovom spektre: WO 2011094381 SShA [Camouflage in near ultra-violet range: WO of 2011094381 USA]; opubl. 4.08.11.
12. Pustynnyj kamuflyazh: WO 2009052609 Kanada [Desert camouflage: WO 2009052609 Canada]; opubl. 30.04.09.
13. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytiya [Paint and varnish materials and coatings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
14. Yakovlev A.D. Himiya i tehnologiya lakokrasochnyh pokrytij. 3-e izd., pererab. [Chemistry and technology of paint coatings. 3rd ed., rev.]. SPb.: Himizdat, 2008. S. 448.
15. Bejder E.Ya., Donskoj A.A., Zhelezina G.F., Kondrashov E.K., Sytyj Yu.V., Surnin E.G. Opyt primeneniya ftorpolimernyh materialov v aviacionnoj tehnike [Experience of application fluorine polymeric materials in aviation engineering] // Rossijskij himicheskij zhurnal. 2008. T. LII. №3. S. 30–44.
16. Kuznetsova V.A., Kondrashov E.K., Semenova L.V., Kuznetsov G.V. O vliyanii formy chastic oksida cinka na ekspluatacionnye svojstva polimernyh pokrytij [About influence of particle shape of zinc oxide on operational properties of polymer coatings] // Materialovedenie. 2012. №12. S. 12–14.
17. Semenova L.V., Nefedov N.I. Primenenie epoksidnyh modificirovannyh gruntovok v sistemah LKP [Application of modified epoxy primers in the painting systems] // Aviacionnye materialy i tehnologii. 2014. №3. S. 38–44. DOI: 10.18577/2071-9140-2014-0-3-38-44.
18. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
19. Semyonova L.V., Bejder E.Ya., Petrova G.N., Nefedov N.I. Elektroizolyacionnye svojstva polimernyh pokrytij [Electro-insulative properties of polymer coatings] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2014. №8. St. 07. Available at: http://www.viam-works.ru (accessed: October 12, 2016). DOI: 10.18577/2307-6046-2014-0-8-7-7.
20. Panin S.V., Kurs M.G. Primenenie lakokrasochnyh pokrytij dlya remonta stroitelnyh konstrukcij, ekspluatiruyushhihsya v zhestkih klimaticheskih usloviyah [Paint-and-lacquer coating for repair of building structures operating in severe climatic conditions] // Aviacionnye materialy i tehnologii. 2014. №2. S. 68–71. DOI: 10.18577/2071-9140-2014-0-2-68-71.

DOI: 10.18577/2071-9140-2017-0-S-405-419

UDC: 678.8

Pages: 405-419

S.V. Kondrashov1, K.A. Shashkeev1, G.N. Petrova1, I.V. Mekalina1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Constructional polymer composites with functional properties

Here some data are given to present development of VIAM in the field of carbon nanotube-filled electrically conductive polymer composites. It has been found that hybrid polymer composite materials (HPCM) can be made hydrophobic. The paper provides data on electrical conductivity and wetting angle of some HPCM. As matrices of these materials both thermosetting epoxy binders and thermoplastic binders based on polyarylsulfone have been used. Samples of HPCM with different types of lightning-proof coatings are discussed. The results of complex work on development of a technological process of production of bird- and abrasive-resistant curved multilayer polymer glasses with embedded electrical heaters are also presented.

Keywords: hybrid polymer composites, hydrophobic properties, lightning-proof coatings, carbon nanotubes, polymer glass.

Reference List

1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 2-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials]. M.: VIAM, 2013. 544 s.
4. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Lubineau G., Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements // CARBON. 2012. Vol. 50. P. 2377–2395.
6. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Fiziko-mehanicheskie svojstva nanokompozitov s UNT (obzor) [Mechanical properties of CNT nanocomposites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 08. Available at: http://www.viam-works.ru (accessed: November 01, 2016). DOI: 10.18577/2307-6046-2016-0-5-8-8.
7. Kondrashov S.V., Gunyaeva A.G., Shashkeev K.A., Barinov D.Ya., Soldatov M.A., Shevchenko V.G., Muzafarov A.M. Elektroprovodyashhie gibridnye polimernye kompozicionnye materialy na osnove nekovalentno funkcionalizirovannyh uglerodnyh nanotrubok [Electrically-conductive  hybrid polymer composite materials on the basis of noncovalent functional carbon nanotubes] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 10. Available at: http://www.viam-works.ru (accessed: November 01, 2016). DOI: 10.18577/2307-6046-2016-0-2-10-10.
8. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Perspektivnye tehnologii polucheniya funkcionalnyh materialov konstrukcionnogo naznacheniya na osnove nanokompozitov s UNT (obzor) [Prospective producing methods for functional structural materials based on CNT-filled nanocomposites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 07. Available at: http://www.viam-works.ru (accessed: November 01, 2016). DOI: 10.18577/2307-6046-2016-0-3-7-7.
9. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 28–42.
10. Gunyaev G.M., Chursova L.V., Raskutin A.E., Gunyaeva A.G. Molniestojkost sovremennyh polimernyh kompozitov [Lightning firmness of modern polymeric composites] // Aviacionnye materialy i tehnologii. 2012. №2. S. 36–42.
11. Popkov O.V., Yurkov G.Y., Fionov A.S. Stabilization of nanoparticles on the surface of detonation nanodiamond // Physics, chemistry and application of nanostructures. Singapore: World Scientific, 2009. P. 369–372.
12. Kiryuhin D.P., Kim I.P., Buznik V.M. i dr. Radiacionno-himicheskij sintez telomerov tetraftoretilena i ih ispolzovanie dlya sozdaniya tonkih zashhitnyh ftorpolimernyh pokrytij [Radiation chemical synthesis of telomeres of tetrafluorethylene and their use for creation of thin protective ftorpolimerny coverings] // Rossijskij himicheskij zhurnal. 2008. T. 52. №3. S. 66–71.
13. Li Chen, Xiu-Jiang Pang, Zuo-Long Yu. Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing // Materials Science and Engineering A. 2007. Vol. 457. P. 287–291.
14. Eitan A., Fisher F.T., Andrews R. at al. Reinforcement mechanisms in MWCNT-filled polycarbonate // Composites Science and Technology. 2006. Vol. 66. P. 1159–1170.
15. Chin Yuan-Chen. Design and Fabrication of Transparent Polycarbonate/Carbon Nanotube Composite Films // Electronic Theses, Treatises and Dissertations. 2007. Paper 3811.

DOI: 10.18577/2071-9140-2017-0-S-420-436

UDC: 678.073

Pages: 420-436

G.N. Petrova1, S.A. Larionov1, M.M. Platonov2, D.N. Perfilova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,
[2] Limited Liability Company «Himprodukt»,

Thermoplastic materials of new generation for aviation

The article presents the most significant achievements of the All-Russian Scientific-Research Institute of Aviation Materials (FSUE «VIAM» SSC RF) for the period of 2012-2016 in the field of development of polymeric functional materials for aircraft, implemented in the framework of the «The strategic directions of development of materials and technologies of their processing for the period till 2030» [1-3]. The main developments in the field of thermoplastic materials are described: injection molding material VTP-7 with high antistatic properties, thermoplastic heat-resistant composite material BKU-44 and new self-extinguishing material based on polycarbonate for additive FDM-technology. The main properties of the developed thermoplastic materials and recommendations for their application are presented.

Keywords: thermoplastics, injection molding, extrusion, pressing, processing, binder, filler, thermoplastic composite material, carbon nanotubes, 3D-printing, fused deposition modeling (FDM).

Reference List

1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. inform. mater. 3-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: collection of information materials 3rd ed., rev. and add]. M.: VIAM, 2015. 720 s.
4. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2011. S. 32–33.
5. Petrova G.N., Bejder E.Ya., Starostina I.V. Litvye termoplasty dlya izdelij aviacionnoj tehniki [Molding thermoplastics for products of aviation engineering] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №6. S. 10–15.
6. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya Yu.V. Tehnicheskie svojstva polimernyh materialov [Engineering properties of polymeric materials]. SPb.: Professiya, 2005. 240 c.
7. Petrova G.N., Beider E.Ya., Perfilova D.N., Rumyantseva T.V. Pozharobezopasnye litevye termoplasty i termojelastoplastyv [Fire safety of injection molding thermoplastics and TPE materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 02. Available at: http://www.viam-works.ru (accessed: February 07, 2017).
8. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy na ih osnove [Heat-resistant polymers and polymeric materials on their basis] // Polimernye materialy. 2005. №4. S. 29–32.
9. Komarov G.A. Sostoyanie, perspektivy i problemy primeneniya PKM v tehnike [Condition, perspectives and problems of application of PCM in equipment] // Polimernye materialy. 2009. №2. S. 5–9.
10. Petrova G.N., Beider E.Yа. Construction materials based on reinforced thermoplastics Chemistry and Materials Science // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. Р. 1001–1007.
11. Sudarushkin Yu.K., Gudimov M.M., Romanov D.S., Sokolov M.Yu. Primenenie litevyh polikarbonatov v aviapriborostroenii [Application of molding polycarbonates in avionics] // Aviacionnaya promyshlennost. 2003. №2. S. 48–52.
12. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy [Heat-resistant polymers and polymeric materials]. SPb.: Professiya, 2006. S. 29–30.
13. Petrova G.N. Napravlennaya modifikaciya polisulfonov i sozdanie na ih osnove litevyh i kompozicionnyh materialov: avtoref. dis. … kand. tehn. nauk [The directed updating weed sulphones and creation on their basis of lityevy and composite materials: thesis, Cand. Sc. (Tech.)]. M.: VIAM, 2011. S. 10–27.
14. Nikolaev A.F. Termostojkie polimery [Heat-resistant]. L.: LTI im. Lensoveta, 1988. S. 3–11.
15. Petrova G.N, Zhuravleva P.L., Iskhodzhanova I.V., Beider E.Ya. Influence of Carbon Fillers on Properties and Structure of Polyethylene-Based Polymer Composites // Nanotechnologies in Russia. 2014. Vol. 9. No. 5–6. Р. 305–310.
16. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional carbon the plastics modified by nanoparticles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
17. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional carbonplastics carbon nanoparticles] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
18. Li J., Kim J.K., Sham M.L., Marom G. Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites // Composites Science and Technology. 2007. Vol. 67. Р. 296–305.
19. Sham M.L., Li J., Ma P.C., Kim J.K. Cleaning and functionalizaton of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: a review // Journal of Composite Materials. 2009. Vol. 43. Р. 1537–1564.
20. Blajt E.R., Blur D. Elektricheskie svojstva polimerov. Per s angl. [Electrical properties of polymers. Trans from Engl.]. M.: Fizmatlit, 2008. 376 s.
21. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: March 16, 2016). DOI: 10.18577/2307-6046-2014-0-7-6-6.
22. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polimernye kompozicionnye materialy na termoplastichnoj matrice [Polymeric composite materials on thermoflexible matrix] // Izvestiya vuzov. Ser.: Himiya i himicheskaya tehnologiya. 2016. T. 59. №10. S. 61–71.
23. Petrova G.N., Bejder E.Ya. Konstrukcionnye materialy na osnove armirovannyh termoplastov [Constructional materials on the basis of the reinforced thermoplastics] // Rossijskij himicheskij zhurnal. 2010. T. LІV. №1. S. 30–40.
24. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
25. Beider E.Ya., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and foam polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 01. Available at: http://www.viam-works.ru (accessed: February 07, 2017).
26. Beider E.Ya., Petrova G.N., Dykun M.I. Appretirovanie uglerodnyh volokon-napolnitelej termoplastichnyh karboplastikov [Dressing of carbon fibers – fillers of thermoplastic carbon reinforced plastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 03. Available at: http://www.viam-works.ru (accessed: March 14, 2016). DOI: 10.18577/2307-6046-2014-0-10-3-3.
27. Varshavskij V.Ya. Uglerodnye volokna [Carbon fibers]. M.: VINITI, 2005. 498 s.
28. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy [Construction polymeric composite materials]. SPb.: Nauchnye osnovy i tehnologii, 2008. 822 s.
29. Bejder E.Ya., Petrova G.N. Termoplastichnye svyazuyushhie dlya polimernyh kompozicionnyh materialov [The thermoplastic binder for polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 05. Available at: http://viam-works.ru. (accessed: March 15, 2016). DOI: 10.18577/2307-6046-2015-0-11-5-5.
30. Golovkin G.S. Regulirovanie mehanicheskih svojstv PKM metodami celenapravlennogo formirovaniya mezhfaznoj zony [Regulation of the PCM mechanical properties by methods of purposeful forming of interphase zone] // Polimernye materialy. 2009. №11. S. 26–28.
31. Aviacionnoe oborudovanie / pod red. Yu.P. Dobrolenskogo [Aviation equipment / ed. by Yu.P. Dobrolenskiy]. M.: Voenizdat, 1989. 248 s.
32. Postnov V.I., Pletin I.I., Veshkin E.A., Starostina I.V., Strelnikov S.V. Tehnologicheskie osobennosti proizvodstva tonkolistovyh obshivok lopastej vertoleta iz konstrukcionnogo stekloplastika VPS-53K [Technological features of production of thin sheet coverings of blades of the helicopter from constructional VPS-53K fibreglass] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2016. T. 18. №4 (3). S. 619–627.
33. Smirnov O.I., Skorodumov S.V. Modelirovanie tehnologii poslojnogo sinteza pri razrabotke izdelij slozhnoj formy [Modeling of technology of level-by-level synthesis when developing products of difficult form] // Sovremennye naukoemkie tehnologii. 2010. №4. S. 83–87.
34. Novakova-Marcincinova L., Kuric I. Basic and Advanced Materials for Fused Deposition Modeling Rapid Prototyping Technology // Manufacturing and Industrial Engineering. 2012. Vol. 11 (1). P. 24–27.
35. Croccolo D., De Agostinis M., Olmi G. Experimental characterization and analytical modelling of the mechanical behavior of fused deposition processed parts made of ABS-M30 // Computational Materials Science. 2013. Vol. 79. P. 506–518. DOI: 10.1016/j.commatsci.2013.06.041.
36. Turner B., Strong R., Gold S. A review of melt extrusion additive manufacturing processes: I. Process design and modeling // Rapid Prototyping Journal. 2014. No. 20/3. P. 192–204. DOI: 10.1108/RPJ-01-2013-0012.
37. Petrova G.N., Platonov M.M., Bolshakov V.A., Ponomarenko S.A. Issledovanie kompleksa harakteristik bazovyh materialov dlya FDM tehnologii additivnogo sinteza. Fiziko-mehanicheskie i teplofizicheskie svojstva [Research of complex of characteristics of base materials for FDM technology of the additive synthesis. Physicomechanical and heatphysical properties] // Plasticheskie massy. 2016. №5–6. S. 53–59.
38. Petrova G.N., Rumyanceva T.V., Beyder E.Ya. Vliyanie modificiruyushhih dobavok na pozharobezopasnye svojstva i tehnologichnost polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 06. Available at: http://www.viam-works.ru (accessed: February 08, 2017).
39. Petrova G.N., Starostina I.V., Rumyanceva T.V. Issledovanie vozmozhnosti markirovki detalej iz polikarbonata [Study of the possibility of marking parts of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 11. Available at: http://www.viam-works.ru (accessed: February 08, 2017). DOI: 10.18577/2307-6046-2016-0-10-11-11.
40. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Polimernaya kompoziciya na osnove polidodekalaktama dlya tehnologii 3D-pechati rasplavlennoj polimernoj nityu [Polymer composition on the basis of polydodecanolactam for 3D-printing technology by melted polymer string] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 09. Available at: http://www.viam-works.ru (accessed: February 08, 2017). DOI: 10.18577/2307-6046-2016-0-10-9-9.

DOI: 10.18577/2071-9140-2017-0-S-437-451

UDC: 678.4

Pages: 437-451

O.A. Eliseev1, I.S. Naumov1, D.N. Smirnov1, Ya.A. Bryk1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Rubbers, sealants, fireproof and heat-shielding materials

In article practical results in the field of development of new elastomeric materials of different chemical nature for special purpose are provided: thermo-cold-resistant organic silicon rubbers of the lowered combustibility of VR-38M and VR-42 brands, fuel-resistant polysulfide sealant with the improved frost resistance of VITEF-1Bm brand, fire- and heat-protective material of TZR-5MP brand with higher fire-prevention characteristics on the basis of chlorine-sulphonated polyethylene. Results of physical-mechanical tests of the developed materials, including exposed to different climatic conditions are given. Results of research of technological properties of polysulfide sealant VITEF-1Bm, combustibility and frost resistance of VR-38M and VR-42 rubbers are provided as well as extended complex of properties of fire- and heat-protective material TZR-5MP: burnout test, thermogravimetric and thermal-physical characteristics, water and moisture absorptions, elastic and strength properties after the accelerated climatic tests, thermocycling and effect of salt spray.

Keywords: organic silicon rubber, flame retardant, magnesium hydroxide, combustibility, polysulphide sealant, frost resistance, fire-heat-protective material, fire safety.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istoriya aviacionnogo materialovedeniya. VIAM ‒ 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM ‒ 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 346–348.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of old-resistant rubbers on the basis on different unvulcanized rubbers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 04. Available at: http://www.viam-works.ru (accessed: February 8, 2017).
7. Naumov I.S., Petrova A.P., Eliseev O.A., Barbotko S.L. Eksperimentalnye issledovaniya v oblasti sozdaniya kremnijorganicheskih rezin s ponizhennoj goryuchestyu [Experimental research in the field of development of organic silicon rubbers with low flammability] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 09 Available at: http://www.viam-works.ru (accessed: February 9, 2017). DOI: 10.18577/2307-6046-2015-0-10-9-9.
8. Naumov I.S., Petrova A.P., Barbotko S.L., Eliseev O.A. Reziny s ponizhennoj goryuchestyu [Rubbers with the lowered combustibility] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №4. S. 27–33.
9. Chajkun A.M., Naumov I.S., Petrova A.P. O vozmozhnosti ispolzovaniya rezin v Arkticheskih usloviyah [About possibility of use of rubbers in the Arctic conditions] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №5. S. 13–22.
10. Naumov I.S., Petrova A.P., Barbotko S.L., Guliaev A.I. Reziny s ponizhennoi goriuchestiu na osnove etilenpropilen-dienovogo kauchuka [Rubbers with the lowered combustibility on basis of ethylenepropylene-diene rubber] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 09. Available at: http://www.viam-works.ru (accessed: February 10, 2017). DOI: 10.18577/2307-6046-2016-0-2-9-9.
11. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Osobennosti receptur rezin na osnove etilenpropilenovyh kauchukov i ih primenenie v izdeliyah specialnogo naznacheniya (obzor) [Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
12. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
13. Zajceva E.I., Chursova L.V. Issledovanie mikrobiologicheskoj stojkosti polisulfidnogo germetika s novymi antisepticheskimi dobavkami [Research of microbiological firmness of polysulphide hermetic with new antiseptic additives] // Klei. Germetiki. Tehnologii. 2012. №1. S. 16–20.
14. Zaitseva E.I., Donskoj A.A.. Sealants Based on Polysulfide Elastomers // Polymer Science. Ser. D. 2008. Vol. 1. Issue 4. P. 289–297.
15. Zajceva E.I., Donskoj A.A.. Novye polisulfidnye germetiki dlya aviacionnoj promyshlennosti [New polysulphide hermetics for the aviation industry] // Klei. Germetiki. Tehnologii. 2009. №3 S. 18–23.
16. Zajceva E.I., Chursova L.V., Smirnov D.N. Perspektivy snizheniya plotnosti polisul\'fidnyh germetikov [Perspectives of decrease in density of polysulphide hermetics] // Klei, Germetiki. Tehnologii. 2012. №5. S. 10–14.
17. Krasnov L.L., Kirina Z.V. Materialy, obespechivayushhie zashhitu konstruktivnyh elementov ot teplovogo vozdejstviya v processe ih kratkovremennoj i dlitelnoj ekspluatacii pri temperature 260°C [The materials providing protection of constructive elements from thermal influence in the course of their short-term and long operation at temperature 260°С] // Aviacionnye materialy i tehnologii. 2010. №1. S. 3–7.

DOI: 10.18577/2071-9140-2017-0-S-452-459

UDC: 665.939.5

Pages: 452-459

N.F. Lukina1, A.P. Petrova1, R.R. Muhametov1, A.S. Kogtyonkov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

New developments in the field of adhesive aviation materials

The properties and applications of new adhesive materials for aviation are provided: high strength adhesives VK-36T, VK-97, VK-98 for adhesive joints, including honeycomb structures and adhesive VKR-96 designed for bonding of polyurethane material with heat-reflective coating. Information about the technology of bonding of wear-resistant polyurethane material VTP-1V and materials for the blades of helicopters with application of a combination of adhesives VKR-95 and VK-93 (as adhesive sublayer) is provided.

Keywords: adhesive, adhesive joints, technology of adhesive joints, honeycomb structure, polyurethane material, wear-resistant material.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
4. Dementeva L.A., Kucevich K.E., Lukina N.F., Petrova A.P. Svojstva epoksidnyh konstrukcionnyh kleev, modificirovannyh polisulfonami [Properties of the epoxy constructional glues modified by polysulphones] // Klei. Germetiki. Tehnologii. 2016. №11. S. 13–18.
5. Petrova A.P., Dementeva L.A., Lukina N.F., Anihovskaya L.I. Plenochnye konstrukcionnye klei [Film constructional glues] // Klei. Germetiki. Tehnologii. 2014. №10. S. 7–12.
6. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
7. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Kleyashhie materialy. Germetiki: spravochnik [Gluing materials. Hermetics: directory]. SPb.: Professional, 2008. 589 s.
8. Kablov E.N., Chursova L.V., Lukina N.F., Kucevich K.E., Rubcova E.V., Petrova A.P. Issledovanie epoksidno-polisulfonovyh sistem kak osnovy vysokoprochnyh kleev aviacionnogo naznacheniya [Research of epoxy and polysulfonic systems as bases of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
9. Rubtsova E.V., Sharova I.A., Petrova A.P. Vysokoprochnyj plenochnyj klej VK-36T na osnove epoksidno-polisulfonovoj sistemy [High-strength adhesive film based epoxy-polysulfon system] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №6. St. 08. URL: http://www.materialsnews.ru (data obrashheniya: 10.02.2017).
10. Merkulova Yu.I., Muhametov R.R., Zheleznyak V.G., Safronov A.M. Modificirovannye matrichnye poliizocianaty [The modified matrix polyisocyanates] // Klei. Germetiki. Tehnologii. 2014. №10. S. 2–6.
11. Kablov E.N., Minakov V.T., Anihovskaya L.I. Klei i materialy na ih osnove dlya remonta konstrukcij aviacionnoj tehniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviacionnye materialy i tehnologii. M.: VIAM. 2002. №1. S. 61–65.
12. Tyumeneva T.Yu., Zhadova N.S., Lukina N.F. Razrabotki FGUP «VIAM» v oblasti kleev rezinotehnicheskogo naznacheniya i samokleyashhihsya materialov [Development of VIAM Federal State Unitary Enterprise  in the field of adhesives of industrial rubber assignment and being self-glued materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 04. Available at: http://www.viam-works.ru (accessed: February 10, 2017). DOI: 10.18577/2307-6046-2014-0-7-4-4.
13. Avdonina I.A., Lukina N.F. Bystrootverzhdayushhijsya epoksidnyj klej VK-93 holodnogo otverzhdeniya [Quickly hardening epoxy VK-93 glue of cold curing] // Klei. Germetiki. Tehnologii. 2009. №3. S. 14–17.
14. Sharova I.A., Lukina N.F., Aleksashin V.M., Antyufeeva N.V. Vliyanie sostava na kineticheskie i prochnostnye svojstva bystrootverzhdayushhihsya epoksidnyh kleevyh kompozicij [Influence of structure on kinetic and strength properties of quickly hardening epoxy glue compositions] // Klei. Germetiki. Tehnologii. 2015. №2. S. 1–5.
15. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tehnologii dlya vremennogo operativnogo remonta aviacionnoj tehniki [Perspective technologies for field repair if aviation engineering] // Aviacionnye materialy i tehnologii. 2013. №2. S. 67–70.
16. Sharova I.A., Zhadova N.S., Lukina N.F. Kleyashhie materialy i tehnologii dlya vremennogo operativnogo remonta sotovyh agregatov iz polimernyh kompozicionnyh materialov [Gluing materials and technologies for temporary operational repair of cellular units from polymeric composite materials] // Klei. Germetiki. Tehnologii. 2012. №5. S. 36–39.

DOI: 10.18577/2071-9140-2017-0-S-460-468

UDC: 620.1

Pages: 460-468

A.N. Lutsenko1, N.S. Perov1, E.B. Chabina1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

The new stages of development of Testing Center

The current state of Testing Center FSUE «VIAM» are reviewed. The main development trend of Testing Center (ТC) for the next few years will be further increase in complexity of the integrated tests and studies of the relationship «composition-structure-property» of materials at subatomic, nano-, micro-, meso- and macrolevels. TC plans to develop methods for testing of products and materials, created with the use of novel additive and spark plasma sintering technologies. The work has been performed within the framework of an integrated research areas 2. «Fundamentally oriented research, qualification of materials, non-destructive testing» and 18. «Environmental testing for safety and protection against corrosion, aging and biodegradation of materials, structures and complex technical systems in natural environments» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: aviation materials test, fundamental research, structure, aging, high temperature, composites, ceramics.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
3. Letov A.F., Karachevtsev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznacheniya [Development of standard samples of structure of alloys of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №S. S. 393–398.
4. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
7. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.E., Ilin V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PCM] // Sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviacii «Gidroaviasalon–2012». 2012. S. 122–123.
8. Erasov V.S., Yakovlev N.O., Avtaev V.V. Sovremennoe sostoyanie laboratorii imeni professora S.I. Kishkinoj [Contemporary state of laboratory after the named of professor S.I. Kishkina] //Aviacionnye materialy i tehnologii. 2014. №S4. S. 136–139. DOI: 10.18577/2071-9140-2014-0-s4-136-139.
9. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: October 31, 2016).
10. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
11. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.

DOI: 10.18577/2071-9140-2017-S-469-482

UDC: 620.179

Pages: 469-482

V.V. Murashov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Application of options of the acoustic impedance method for control of parts from PCM and multilayer glued structures

The principle of acoustic impedance control method of glued structures and products from polymer composite materials (PСM) is considered. Operation capabilities of two main options of the impedance method are specified. It is shown that the scope of this method can be significantly expanded when applying new options of the method: at operation of the defectoscope in self- vibration mode, at electromagnetic-acoustic initiation of elastic fluctuations in the object of control and when using spectral option of the impedance method.

Keywords: acoustic impedance method, options of the method, self-vibration mode, electromagnetic-acoustic mode (EMA), elastic fluctuations, spectral option.

Reference List

1. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. M.: VIAM, 2001. Vyp.: Metody ispytanij i kontrolya kachestva metallicheskih i nemetallicheskih materialov. S. 3–8.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
4. Petrova A.P., Lukina N.F. Klei dlya mnogorazovoj kosmicheskoj sistemy [Glues for reusable space system] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 04. Available at: http://www.viam-works.ru (accessed: October 28, 2016).
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
7. Nerazrushayushhij kontrol: spravochnik / pod obshh. red. V.V. Klyueva [Non-destructive testing: directory / gen. ed. by V.V. Kluev]. M.: Mashinostroenie, 2006. T. 3. Ultrazvukovoj kontrol / I.N. Ermolov, Yu.V. Lange. 864 s. 
8. Lange Yu.V. Akusticheskie nizkochastotnye metody i sredstva nerazrushayushhego kontrolya mnogoslojnyh konstrukcij [Acoustic low-frequency methods and means of non-destructive testing of multi-layer designs]. M.: Mashinostroenie, 1991. 272 s. 
9. Murashov V.V., Kosarina E.I., Generalov A.S. Kontrol kachestva aviacionnyh detalej iz polimernyh kompozicionnyh materialov i mnogoslojnyh kleevyh konstrukcij [Quality control of aviation parts made from polymer composite materials and multilayers adhered constructions] // Aviacionnye materialy i tehnologii. 2013. №3. S. 65–70.
10. Murashov V.V., Generalov A.S. Kontrol mnogoslojnyh kleenyh konstrukcij nizkochastotnymi akusticheskimi metodami [Control of multilayer adhesive structures operating in severe climatic condition] // Aviacionnye materialy i tehnologii. 2014. №2. S. 59–67.
11. Murashov V.V. Nerazrushayushhij kontrol zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala dlya mnogorazovogo kosmicheskogo korablya «Buran» [Non-destructive testing of preparations and details from carbon - carbon composite material for the reusable «Buran» spacecraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 05. Available at: http://www.viam-works.ru (accessed: October 28, 2016).
12. Murashov V.V. Kontrol kleenyh konstrukcij // Klei. Germetiki. Tehnologii. 2005. №1. S. 21–27.
13. Murashov V.V. Nondestructive Testing of Glued Joints // Polymer Science. Series D. Glues and Sealing Materials. 2009. Vol. 2. No. 1. Р. 58–63.
14. Murashov V.V., Rumyancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyyavleniya. Chast 2. Metody vyyavleniya defektov monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov [Defects of monolithic details and multi-layer designs from polymeric composite materials and methods of their identification. Part 2. Methods of detection of defects of monolithic details and multi-layer designs from polymeric composite materials] // Kontrol. Diagnostika. 2007. №5. S. 31–42.
15. Murashov V.V., Rumyancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyyavleniya. Chast 1. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov [Defects of monolithic details and multi-layer designs from polymeric composite materials and methods of their identification. Part 1. Defects of monolithic details and multi-layer designs from polymeric composite materials] // Kontrol. Diagnostika. 2007. №4. S. 23–32.
16. Murashov V.V., Rumyancev A.F., Ivanova G.A., Fajzrahmanov N.G. Diagnostika struktury, sostava i svojstv polimernyh kompozicionnyh materialov [Diagnostics of structure, structure and properties of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2008. №1. S. 17–24. 
17. Karabutov A.A., Murashov V.V., Podymova N.B., Oraevsky A.A. Nondestructive characterization of layered composite materials with a laser optoacoustic sensor // Proceedings of SPIE. International Society for Optical Engineering Nondestructive Evaluation of Materials and Composites II. TX. San Antonio, 1998. P. 103–111.
18. Murashov V.V., Rumyancev A.F. Diagnostika sostava i svojstv polimernyh kompozitov v detalyah i konstrukciyah [Diagnostics of structure and properties of polymeric composites in details and designs] // Kontrol. Diagnostika. 2008. №8. S. 13–17. 
19. Murashov V.V. Attestation of Glued Articles by Acoustic Impedance Method // Polymer Science. Series D: Glues and Sealing Materials. 2010. Vol. 3. No. 4. Р. 267–273.
20. Feldman L.S. Nerazrushayushhij kontrol kachestva kleesvarnyh soedinenij [Non-destructive testing of quality glued and welded connections]. Kiev: Tehnika, 1973. 188 s. 
21. Pribory dlya nerazrushayushhego kontrolya materialov i izdelij: spravochnik v 2-h kn. / pod red. V.V. Klyueva [Devices for non-destructive testing of materials and products: the directory in 2 books / ed. by V.V. Kluev]. M.: Mashinostroenie, 1976. Kn. 2. S. 91–99.
22. Remizov V.B., Shkarlet Yu.М. Increase of efficiency of electromagnetic acoustic instruments by means of division of exciting frequencies and reception // 10th World Conference on Non-destructive Testing. Moscow, 1982. Report 1А-33. 
23. Murashov V.V. Control of Laminated Structures by the Acoustic Free Vibration Method // Polymer Science. Series D. Glues and Sealing Materials. 2012. Vol. 5. No. 4. Р. 341–345.
24. Hsu D.K., Barnard D.J., Roach D.P. Dot method of control of adhesive joints in multilayer structures // Materials Evaluation. 2009. Vol. 67. No. 7. P. 785–791.
25. Skuchik E. Osnovy akustiki. Per. s angl. [Acoustics bases. Trans. from Engl.]. M.: Mir, 1976. T. 1, 2. 1066 s. 
26. Skuchik E. Prostye i slozhnye kolebatelnye sistemy [Simple and complex vibrating systems]. M.: Mir. 1971. S. 309.
27. Shrajber D.S. Ultrazvukovaya defektoskopiya [Ultrasonic defects scope]. M.: Metallurgiya, 1965. S. 158.

DOI: 10.18577/2071-9140-2017-0-S-483-497

UDC: 669.018.44:669.245

Pages: 483-497

F.N. Karachevtsev1, A.V. Alekseev1, A.F. Letov1, R.M. Dvoretskov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Plasma methods of nickel alloys elemental chemical composition analysis

The paper deals with the use of atomic emission and mass spectrometry with inductively coupled plasma analysis techniques to control the chemical composition of heat-resistant nickel alloys. The conditions for the sample preparation of heat-resistant nickel alloys samples are determined: mixture of acid, temperature and dissolution time. Selection of analytical lines of alloying elements and impurities in the mass-controlled nickel alloys has been made. The methods of measurement of the chemical composition by atomic emission and mass spectrometry with inductively coupled plasma analysis have been developed. Kits of reference samples with harmful impurities (Zn, As, Se, Ag, Cd, Sn, Sb, Te, Tl, Pb, Bi) in a range of mass fractions from 0,0001 to 0,005% wt. rare earth elements from 0, 0001 to 0,1% wt. and other impurities (P, B, Fe, Si, V, Ru, Zr, Hf, Ca, Mg) from 0,0001 to 0,5% wt. have been manufactured and certified to calibrate the optical emission spectrometers, mass spectrometers with laser sampling or glow discharge.

Keywords: plasma analysis techniques, heat-resistant nickel alloys, measurement technique, certified reference materials.

Reference List

1. Dvoretskov R.M., Karachevtsev F.N., Zagvozdkina T.N., Mehanik E.A. Opredelenie himicheskogo sostava vysokolegirovannyh nikelevyh splavov aviacionnogo naznacheniya metodom AES-ISP v sochetanii s mikrovolnovoj probopodgotovkoj [Definition of chemical composition of high-alloy nickel alloys of aviation assignment by nuclear power plant-ISP method in combination to microwave preparation of tests] // Zavodskaya laboratoriya. Diagnostika materialov. 2013. T. 79. №9. S. 6–9.
2. Karachevtsev F.N., Dvoretskov R.M., Zagvozdkina T.N. Mikrovolnovaya probopodgotovka nikelevyh splavov dlya opredeleniya legiruyushhih elementov metodom AES-ISP [Microwave probe preparation of nickel alloys for determination of alloying elements using ICP-AES method] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 11. Available at: http://www.viam-works.ru (accessed: November 01, 2016). DOI: 10.18577/2307-6046-2014-0-11-11-11.
3. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №10. St. 02. Available at: http://viam-works.ru (accessed: November 01, 2016). DOI: 10.18577/2307-6046-2014-0-10-2-2.
4. Yakimovich P.V., Alekseev A.V. Opredelenie galliya, germaniya, myshyaka i selena v zharoprochnyh nikelevyh splavah, mikrolegirovannyh RZM, metodom ISP-MS [Determination of gallium, germanium, arsenic and selenium contents in heat-resistant nickel alloys microalloyed by REM using ICP-MS] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 09. Available at: http://viam-works.ru (accessed: November 01, 2016). DOI: 10.18577/2307-6046-2015-0-3-9-9.
5. Zagvozdkina T.N., Karachevtsev F.N., Dvoretskov R.M. Primenenie modelnyh rastvorov v atomno-absorbcionnom analize [Application of model solutions for ICP-AES procedures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 10. Available at: http://www.viam-works.ru (accessed: November 01, 2016). DOI: 10.18577/2307-6046-2015-0-3-10-10.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
7. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
8. Kablov E.N., Logunov A.V., Sidorov V.V. Mikrolegirovanie RZM – sovremennaya tehnologiya povysheniya svojstv litejnyh zharoprochnyh nikelevyh splavov [REM microalloying – modern technology of increase of properties of cast heat resisting nickel alloys] // Perspektivnye materialy. 2001. №1. S. 23–34.
9. Letov A.F., Karachevtsev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznacheniya // Aviacionnye materialy i tehnologii. 2012. №S. C. 393–398.
10. Kolyadov E.V., Gerasimov V.V., Visik E.M. O poluchenii obrazcov dlya ekspress-analiza himsostava zharoprochnyh splavov [About receiving samples for the express analysis of chemical composition of hot strength alloys] // Metallurgiya mashinostroeniya. 2012. №3. S. 27–29.
11. Letov A.F., Karachevtsev F.N. Opyt razrabotki standartnyh obrazcov aviacionnyh splavov [Experience of development of standard samples of aviation alloys] // Mir izmerenij. 2012. №8. S. 31–35.
12. Karachevtsev F.N., Letov A.F., Procenko O.M., Yakimova M.S. Razrabotka standartnyh obrazcov sostava aviacionnyh splavov [Experience of development of standard samples of aviation alloys] // Standartnye obrazcy. 2013. №4. S. 30–34.
13. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
14. Karachevtsev F.N., Rassohina L.I., Gerasimov V.V., Visik E.M. Poluchenie standartnyh obrazcov dlya ekspress-analiza zharoprochnyh nikelevyh splavov [Receiving standard samples for the express analysis of heat resisting nickel alloys] // Metallurgiya mashinostroeniya. 2013. №6. S. 18–19.
15. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: November 01, 2016). DOI: 10.18577/2307-6046-2014-0-5-4-4.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.

DOI: 10.18577/2071-9140-2017-0-S-498-515

UDC: 620.186:620.187

Pages: 498-515

O.A. Bytsenko1, V.B. Grigorenko1, E.A. Lukina1, L.V. Morozova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Development of methods for metal-physical research: methodological issues and practical significance

The paper shows the efficiency of a complex approach to the solution of metal-physical tasks. The following are examples of such studies: analysis of the causes of destruction and formation of defects during exploitation of parts and components; study of features of fracture of Al-Li alloys; a comprehensive examination of the structure during the development of manufacture technology of Nickel superalloy with the use of selective laser synthesis (SLS).

Keywords: physics of metals, electron microscopy, x-ray analysis, fractography, structure-phase state, microstructure research.

Reference List

1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: October 17, 2016).
6. Panin V.E. Fizicheskaya mezomehanika materialov [Physical mesomechanics of materials]. Tomsk: Izd. dom Tomskogo gos. un-ta, 2015. 920 s.
7. Panin V.E., Kablov E.N., Pochivalov Yu.I., Panin S.V., Kolobnev N.I. Vliyanie nanostrukturirovaniya poverhnostnogo sloya alyuminij-litievogo splava 1424 na mehanizmy deformacii, tehnologicheskie harakteristiki i ustalostnuyu dolgovechnost. Povyshenie plastichnosti i tehnologicheskih harakteristik [Influence of nanostructuring surface layer aluminum-lithium alloy 1424 on deformation mechanisms, technical characteristics and fatigue life. Increase of plasticity and technical characteristics] // Fizicheskaya mezomehanika. 2012. T. 15. №6. S. 107–111.
8. Belikova A.F., Buravova C.N., Gordopolov Yu.A. Lokalizaciya deformacii i sv yaz ee s deformirovannym sostoyaniem materiala [Localization of deformation and its communication with the deformed condition of material] // Zhurnal tehnicheskoj fiziki. 2013. T. 83. №2. S. 153–155.
9. Khokhlatova L.B., Kolobnev N.I., Antipov V.V. i dr. Vliyanie korrozionnoj sredy na skorost\' rosta treshhiny ustalosti v alyuminievyh splavah [Influence of the corrosion environment on the growth rate of crack of fatigue in aluminum alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 05. Available at: http://www.viam-works.ru (accessed:  October 17, 2016).
10. Morozova L.V., Zhegina I.P., Grigorenko V.B. Osobennosti deformacionnogo povedeniya splava V-1469 v usloviyah sovmestnogo vozdejstviya prilozhennoj nagruzki i korrozionno-aktivnoj sredy [Particular properties of deformation behavior of alloy V-1469 in conditions of joint influence of applied loading and active corrosion environment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 10. Available at: http://viam-works.ru (accessed:  October 17, 2016). DOI: 10.18577/2307-6046-2016-0-9-10-10.
11. Grigorenko V.B., Morozova L.V., Zhegina I.P., Fomina M.A. Osobennosti nakopleniya povrezhdenij v poverhnostnyh sloyah alyuminij-litievyh splavov 1441 i V-1469 pri vozdejstvii korrozionnoj sredy i prilozhennoj nagruzki [Features of accumulation of damages to aluminum-lithium alloys 1441 and V-1469 surface layers depending on corrosion environment and applied load] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 01. Available at: http://viam-works.ru (accessed:  October 17, 2016). DOI: 10.18577/2307-6046-2016-0-7-1-1.
12. Kablov E.N., Lukina E.A., Sbitneva S.V., Hohlatova L.B., Zajcev D.V. Formirovanie metastabilnyh faz pri raspade tverdogo rastvora v processe iskusstvennogo stareniya Al-splavov [Forming of metastable phases at disintegration of solid solution in the course of artificial aging of Al-alloys] // Tehnologiya legkih splavov, 2016. №3. S. 7–17.
13. Evgenov A.G., Lukina E.A., Aslanyan I.R. Struktura i svojstva splavov na osnove nikelya, poluchennyh metodom SLS [Structure and properties of alloys on the basis of the nickel, received by SLS method] // Additivnye tehnologii: nasto yashhee i budushhee: sb. mater. 2-oj Mezhdunar. konf. M.: VIAM, 2016. St. 01.
14. Lukina E.A., Bazaleeva K.O., Petrushin N.V., Cvetkova E.V. Osobennosti formirovaniya struktury zharoprochnogo nikelevogo splava ZhS6K-VI pri selektivnom lazernom splavlenii [Features of forming of structure of heat resisting ZhS6K-VI nickel alloy at the selection laser fusing] // Tsvetnye metally. 2016. №3. S. 57–63.
15. Klevcov G.V., Botvina L.R., Klevcova N.A., Limar L.V. Fraktodiagnostika razrusheniya metallicheskih materialov i konstrukcij: ucheb. posobie dl ya vuzov [Fractal diagnostic of destruction of metal materials and designs: the manual for higher education institutions]. M.: MISiS, 2007. 264 s.
16. Orlov M.R., Grigorenko V.B., Morozova L.V., Naprienko S.A. Issledovanie ekspluatacionnyh razrushenij podshipnikov metodami opticheskoj, rastrovoj elektronnoj mikroskopii i rentgenospektralnogo mikroanaliza [Research of operational damages of bearings by methods of optical microscopy, scanning electron microscopy and Х-ray microanalysis] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 09. Available at: http://viam-works.ru (accessed:  October 17, 2016). DOI: 10.18577/2307-6046-2016-0-1-9-9.

DOI: 10.18577/2071-9140-2017-0-S-516-526

UDC: 620.1:699.81

Pages: 516-526

S.L. Barbotko1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Development of the fire safety test methods for aviation materials

One of the most important properties of materials are characteristics of fire safety. The increase in application of polymeric materials in aerostructures requires improvement of testing regulations. In article the analysis of existing requirements for fire safety is carried out and description of works executed in VIAM on improvement of testing regulations in recent years is provided.

Keywords: fire safety, test methods, fire resistant, flammability, heat release.

Reference List

1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials are basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Cherry R.G.W. Thermal Acoustic Insulation Contamination Research // Technical Report DOT/FAA/TC-14/24. U.S. Department of Transportation Federal Aviation Administration Transport Airplane Directorate, ANM-115. 2014. 114 p.
5. Ochs R.I. Evaluation of Carbon Fiber Composite Flammability: Effect of Sample Thickness and External Ambient Conditions on Inboard Surface Flame Propagation // Technical Report DOT/FAA/TC-TN15/1. U.S. Department of Transportation William J. Hughes Technical Center, 2015. 29 p.
6. Quintiere J.G., Crowley S., Walters R.N., Lyon R.E., Blake D. Fire Hazards of Lithium Batteries // Technical Report DOT/FAA/TC-TN15/17. U.S. Department of Transportation Federal Aviation Administration, 2016. 50 p.
7. Barnett B., Ofer D., Sriramulu S., Stringfellow R. Lithium-Ion Batteries, Safety //in Batteries for Sustainability. New York: Springer, 2013. P. 285–318.
8. Normy letnoj godnosti samoletov transportnoj kategorii [Standards of the flight validity of airplanes of transport category]: AP-25. 3-e izd., s popravkami 1–7: utv. Postanovleniem 28-j sessii Soveta po aviacii i ispolzovaniyu vozdushnogo prostranstva 11.12.2008. M.: Aviaizdat, 2014. 278 s.
9. Federal Register. 14 CFR Part 25 – Airworthiness standards. Transport category airplanes // Federal Aviation Administration //http:www.faa.gov/regulations_policies/faa_regulations; http:www.ecfr.gov/cgi-bin/text-idx (дата обращения: 07.11.2016).
10. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS–25. Amendment 15. European Aviation Safety Agency, 2014. 921 p.
11. Advisory Circular AC 20-135 Powerplant installation and propulsion system component fire protection test methods, standards, and criteria. US Department of Transportation, Federal Aviation Administration, 1990. 18 p.
12. Technical Standard Order TSO-C69c. Emergency evacuation slides, ramps, ramp/slides, and slide/rafts. Department of Transportation Federal Aviation Administration, 1999. 47 p.
13. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
14. Barbotko S.L., Kirillov V.N., Shurkova E.N. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov aviacionnogo naznacheniya [Assessment of fire safety of polymeric composite materials of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №3. S. 56–63.
15. Kirienko O.A., Shurkova E.N., Volnyj O.S., Barbotko S.L. Issledovanie vliyaniya razlichnyh zashhitnyh pokrytij na harakteristiki pozharnoj bezopasnosti teplovoj akusticheskoj izolyacii fyuzelyazha [Study of various coatings on the characteristics of fire safety thermal acoustic insulation fuselage] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 07. Available at: http://www.viam-works.ru (accessed: November 07, 2016). DOI: 10.18577/2307-6046-2014-0-10-7-7.
16. Kirienko O.A., Shurkova E.N., Volnyj O.S., Barbotko S.L. Ocenka pozharnoj bezopasnosti PKM pri rasprostranenii plameni po gorizontalnoj poverhnosti v usloviyah teplovogo potoka peremennoj intensivnosti [Assessment of fire safety of PCM at flame distribution on horizontal surface under condi-tions of heat flow of variable intensity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 11. Available at: http://www.viam-works.ru (accessed: November 07, 2016). DOI: 10.18577/2307-6046-2015-0-6-11-11.
17. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: November 07, 2016).
18. Kirillov V.N., Efimov V.A., Barbot\'ko S.L., Nikolaev E.V. Metodicheskie osobennosti provedeniya i obrabotki rezultatov klimaticheskih ispytanij polimernyh kompozicionnyh materialov [Methodical features of carrying out and processing of results of climatic tests of polymeric composite materials] // Plasticheskie massy. 2013. №1. S. 37–41.
19. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
20. Skryljov N.S., Volnyj O.S., Postnov V.I., Barbotko S.L. Issledovanie vliyaniya teplovyh faktorov klimata na izmenenie harakteristik pozharobezopasnosti polimernyh kompozicionnyh materialov [Research of influence of environment’s thermal  factors on fire safety characteristics drift of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 05. Available at: http://viam-works.ru (accessed: November 07, 2016).
21. Skrylev N.S., Volnyj O.S., Abramov D.V., Shurkova E.N. Issledovanie vliyaniya teplovlazhnostnyh faktorov na izmenenie harakteristik pozharnoj bezopasnosti PKM, podverzhennyh klimaticheskim vozdejstviyam [Research the influence of temperature and humidity factors on change of fire safety characteristics for polymeric composite materials which are subject to climatic aging] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 12. Available at: http://viam-works.ru (accessed: November 07, 2016). DOI: 10.18577/2307-6046-2014-0-7-12-12.
22. Lyon R.E. Thermal Dynamics of Bomb Calorimeters // Technical Report DOT/FAA/TC-TN16/16. Federal Aviation Administration Technical Centre, 2016. 20 p.
23. Walters R.N., Lyon R.E. Measuring Energy Release of Lithium-ion Battery Failure Using a Bomb Calorimeter // Technical Report DOT/FAA/TC-15/40. Aviation Research Division Federal Aviation Administration Technical Center, 2016. 20 p.

DOI: 10.18577/2071-9140-2017-0-S-527-546

UDC: 620.1

Pages: 527-546

A.N. Lutsenko1, A.V. Slavin1, V.S. Erasov1, K.K. Khvatskiy1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Strength tests and researches of aviation materials

Tests of elements of aircraft and building structures have been carried out for static and cyclic power loading on the test bench in Gelendzhik climatic testing center. This example of the full-scale tests, combined with climatic, shows that the benches and power floor of Gelendzhik climatic testing center have unique capabilities for simultaneous in situ mechanical and climatic tests of large structures. In the construction of a model of vertical column, beams construction and structurally similar model of a hybrid welded wing panel tested by NDT methods significant damages have not been revealed, that confirmed the high quality of the elements from metal and polymer composite materials as well as provision of resource and strength characteristics of structures specified in the design. Evaluation of stiffness of all tested structural elements have shown that damages caused by load or climatic factors which would influence on the bearing capacity have not been identified. In this paper High-Cycle Fatigue (HCF) characteristics of several heat resistant titanium alloys were investigated . The value of fatigue limit, shape of the S-N curve and others were accepted as characteristics of HCF. Influence of such factors as test temperature and stress concentration was considered. The work is executed within the implementation of the complex scientific direction 2. «Fundamental the oriented researches, qualification of materials, non-destructive testing» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: mechanical tests, full-scale climatic testing, testing of structural elements, corrosion, high cycle fatigue (HCF), fatigue limit, testing parameters, heat resistance titanium alloys.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kolganov I.M., Dubrovskij P.V., Arhipov A.N. Tehnologichnost aviacionnyh konstrukcij, puti povysheniya: ucheb. posobie [Technological effectiveness of aviation designs, increase ways: manual]. Ulyanovsk: UlGTU, 2003. Ch. 1. 148 s.
3. Panin V.F., Gladkov Yu.A. Konstrukcii s zapolnitelem: spravochnik [Designs with filler: directory]. M.: Mashinostroenie, 1991. 272 s.
4. Krysin V.N., Krysin M.V. Tehnologicheskie processy formovaniya, namotki i skleivaniya konstrukcij [Technological processes of formation, winding and pasting of designs]. M.: Mashinostroenie, 1989. 240 s.
5. GOST 9.906–87. Edinaya sistema zashhity ot korrozii i stareniya. Stancii klimaticheskie ispytatelnye. Obshhie trebovaniya [State standard 9.906–87. Uniform system of corrosion protection and aging. Stations the climatic test. General requirements]. M.: IPK Izdatelstvo standartov, 2003. 22 s.
6. Kablov E.N., Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Razrabotka opytno-promyshlennoj tehnologii izgotovleniya polufabrikatov iz psevdo-α-titanovogo splava VT41 [Development of trial manufacturing techniques of semi-finished products from pseudo-α-titanium alloy BT41] // Titan. 2016. №2. S. 33–42.
7. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Povyshenie prochnostnyh harakteristik zharoprochnyh psevdo-α-titanovyh splavov [Strengthening of high-temperature near-α-titanium alloys] // Aviacionnye materialy i tehnologii. 2014. №S5. C. 73–80. DOI: 10.18577/2071-9140-2014-0-s5-73-80.
8. Belyaev M.S., Gorbovec M.A., Kashapov O.S., Hodinev I.A.  Mehanicheskie svojstva i struktura titanovogo splava VT41 [Mechanical properties and BT41 titanium alloy structure] // Tsvetnye metally. 2014. №8. S. 66–71.
9. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Vliyanie soderzhaniya zheleza na mehanicheskie svojstva pokovok iz zharoprochnogo titanovogo splava VT41 [Effect of iron content on mechanical properties of forgings from heat-resistance titanium alloy VТ41] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 01. Available at: http://www.viam-works.ru (accessed: July 21, 2016). DOI: 10.18577/2307-6046-2015-0-10-1-1.
10. Kashapov O.S., Pavlova T.V., Nochovnaya N.A. Vliyanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlya lopatok KVD [Influence of modes of thermal processing on structure and property of heat resisting titanium alloy for KVD blades] // Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
11. Troshhenko V.T., Sosnovskij L.A. Soprotivlenie ustalosti metallov i splavov: spravochnik [Resistance of fatigue of metals and alloys: directory]. Kiev: Naukova dumka, 1987. Ch. 1. 512 s.
12. Belyaev M.S., Gorbovec M.A., Komarova T.I. Sposob ispytanij i raschetnoe opredelenie predela vynoslivosti dlya gorizontalnogo uchastka krivoj ustalosti [Way of tests and rated definition of limit of endurance for horizontal site of curve fatigue] // Aviacionnye materialy i tehnologii. 2012. №3. S. 50–55.
13. Nicholas T. High Cycle Fatigue. Ohio: Elsevier, 2006. 642 p.
14. Lvovskij E.N. Statisticheskie metody postroeniya empiricheskih formul [Statistical methods of creation of empirical formulas]. M.: Vysshaya shkola, 1988. 240 s.
15. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PKM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
16. Pavlova T.V., Kashapov O.S., Kondrateva A.R., Kalashnikov V.S.Vozmozhnosti po rasshireniyu oblasti primeneniya splava VT8-1 dlya diskov i rabochih koles kompressora [Opportunities to expand the VT8-1 alloy application for disks and compressor rotor wheels] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 05. Available at: http://www.viam-works.ru (accessed: July 21, 2016). DOI: 10.18577/2307-6046-2016-0-3-5-5.
17. Kablov E.N. Razrabotki VIAM dlya gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
18. Kashapov O.S., Novak A.V., Nochovnaya N.A., Pavlova T.V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnyh titanovyh splavov dlya detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTE details] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 02. Available at: http://www.viam-works.ru (accessed: July 21, 2016).

DOI: 10.18577/2071-9140-2017-0-S-547-561

UDC: 620.1

Pages: 547-561

A.B. Laptev1, S.L. Barbotko1, E.V. Nikolaev1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

The main research areas of the persistence properties of materials under the influence of climatic and operational factors

The article presents the results obtained in recent years for implementation of the following strategic directions: - assessment of economic losses from aggressive climatic factors and development of measures to reduce them; - change of the aggressiveness of natural environment due to industrial emissions and waste, increasing the volume of operating equipment and infrastructure, as well as global changes in the Earth's climate; - urgency of the tasks related to climatic factors stated in the «Strategic directions of development of materials and technologies of their reprocessing for the period till 2030», developed by FSUE «VIAM»; - сomprehensive study of the processes of bio-corrosion in maritime climate from the point of view of their influence on the performance characteristics of materials; - predicting changes in performance of materials, structures and complex technical systems taking into account climatic and operational factors; - updating the Russian regulatory base for the assessment of the impact of external influencing factors and working loads on the performance characteristics of materials, structures and complex technical systems harmonized with international standards; - сreation of climatic stations in climate zones which are absent in the Russian Federation; - prospects of the further development directions of scientific and practical investigations of the climatic resistance of materials for the period up to 2030.

Keywords: corrosion, aging, biodeterioration, polymer composite materials, environmental testing.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Bedrickij A.I. Rezultaty issledovanij klimata dlya strategii ustojchivogo razvitiya Rossijskoj Federacii [Results of researches of climate for strategy of sustainable development of the Russian Federation]. M.: Viva-Star, 2005. 178 s. 
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
4. Ibragimov N.G., Laptev A.B., Hafizov A.R. i dr. Oslozhneniya v neftedobyche [Complications in oil production]. Ufa: Monografiya, 2003. 302 s.
5. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Yakovenko T.V. Ispytaniya na mikrobiologicheskuyu stojkost v usloviyah teplogo i vlazhnogo klimata [Microbiological resistance tests under conditions of warm and damp climate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 06. Available at: http://www.viam-works.ru (accessed: April 05, 2016). 
6. Koch G.H., Brongers M.P.H., Thompson N.G. et al. Corrosion Costs and Preventive Strategies in the United States // NACE Corrosion Wrap-Up report, 2010. 19 р. Publication No. FWHA-RD-01-156. Available at: http://www.nace.org (accessed: April 05, 2016).
7. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials is security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. M.: VIAM, 2001. Vyp.: Metody ispytanij i kontrolya kachestva metallicheskih i nemetallicheskih materialov. S. 3–8.
8. SNiP 28.13330.2012. Zashhita stroitelnyh konstrukcij ot korrozii [Sanitary standards and rules 28.13330.2012. Protection of construction designs against corrosion]. M., 2012. 54 s.
9. Rukovodyashhij dokument po zashhite ot korrozii mehanicheskogo oborudovaniya i specialnyh stalnyh konstrukcij gidrotehnicheskih sooruzhenij [The leading document on corrosion protection of mechanical equipment and special steel designs of hydraulic engineering constructions]: RD GM-01-02: utv. M-vom energetiki Ros. Federacii 21.03.2002. Available at: http://ohranatruda.ru/ot_biblio/normativ/data_normativ/46/46115/ (accessed: April 05, 2016).
10. Ahiyarov R.Zh., Bugaj D.E., Laptev A.B. Problemy podgotovki oborotnyh i stochnyh vod predpriyatij neftedobychi [Problems of preparation reverse and drain waters of the enterprises of oil production] // Neftepromyslovoe delo. 2008. №9. S. 61–65.
11. Ahiyarov R.Zh., Laptev A.B., Ibragimov I.G. Povyshenie promyshlennoj bezopasnosti ekspluatacii obektov neftedobychi pri biozarazhenii i vypadenii solej metodom kompleksnoj obrabotki plastovoj vody [Increase of industrial safety of operation of objects of oil production at bioinfection and loss of salts by method of complex processing of formation water] // Neftepromyslovoe delo. 2009. № 3. S. 44–46.
12. Ahiyarov R.Zh., Matveev Yu.G., Laptev A.B., Bugaj D.E. Resursosberegayushhie tehnologii predotvrashheniya biozarazheniya plastovyh vod predpriyatij neftedobychi [Resource-saving technologies of prevention of bioinfection of formation waters of the enterprises of oil production] // Neftegazovoe delo. 2011. №5. S. 232–242. Available at: http://ogbus.ru/article/resursosberegayushhie-texnologii-predotvrashheniya-biozarazheniya-plastovyx-vod-predpriyatij-neftedobychi/ (accessed: April 05, 2016).
13. Laptev A.B., Lucenko A.N., Kurs M.G., Buharev G.M. Opyt issledovanij biokorrozii metallov [Experience of researches of biocorrosion of metals] // Praktika protivokorrozionnoj zashhity. 2016. №2 (80). S. 36–57.
14. Mihajlov A.A., Zhirnov A.D., Zhilikov V.P. i dr. Korrozivnost primorskih atmosfer [Corrosion activity of the seaside atmospheres] // Korroziya: materialy, zashhita. 2009. №9. S. 1–6.
15. Mihajlov A.A., Panchenko Yu.M., Igonin T.N. i dr. Atmosfernaya korroziya uglerodistoj stali: modelirovanie i kartografirovanie territorii Rossijskoj Federacii [Atmospheric corrosion of carbon steel: modeling and mapping of the territory of the Russian Federation] // Korroziya: materialy, zashhita. 2010. №11. S. 1–10.
16. Kokorin A.O. Izmenenie klimata: obzor Pyatogo ocenochnogo doklada MGEIK [Climate change: overview of the Fifth evaluation report IPCC]. M.: Vsemirnyj fond dikoj prirody, 2014. 80 s.
17. Lutsenko A.N., Kurs M.G., Laptev A.B. Obosnovanie srokov naturnyh klimaticheskih ispytanij metallicheskih materialov v atmosfere chernomorskogo poberezhya [Justification of terms of natural climatic tests of metal materials in the atmosphere of the Black Sea coast] // Voprosy materialovedeniya, 2016. №3 (87). S. 126–137.
18. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
19. Melamedov I.M. Fizicheskie osnovy nadezhnosti [Physical bases of reliability]. L.: Energiya. 1970. 152 s.
20. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
21. Kablov E., Murashov V., Rumyantsev A. Diagnostics of Polymer Composites by Acoustic Methods // Ultrasound. Kaunas: Tecnologija. 2006. №2. Р. 7–10.
22. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri naturno-uskorennyh ispytaniyah. Chast 1 [Research of corrosion destruction of deformable aluminum alloys at natural accelerated tests. Part 1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–126.
23. Laptev A.B., Lutsenko A.N., Perov N.S., Buharev G.M. Opyt issledovanij biokorrozii metallov [Experience of researches of biocorrosion of metals] // Praktika protivokorrozionnoj zashhity. №2 (80). 2016. S. 36–57.
24. Laptev A.B., Navalihin G.P. Povyshenie bezopasnosti ekspluatacii promyslovyh nefteprovodov [Increase of safety of operation of trade oil pipelines] // Neftepromyslovoe delo. 2006. №1. S. 48–52.
25. Laptev A.B., Movenko D.A. Issledovanie prichin korrozionnogo razrusheniya mednyh trubok sistemy holodosnabzheniya [Research of the reasons of corrosion destruction of copper tubes of system of supply by cold] // Praktika protivokorrozionnoj zashhity. №3 (81). 2016. S. 29–35.
26. Ahiyarov R.Zh., Laptev A.B., Movenko D.A., Belova N.A. Issledovanie anomalno nizkoj korrozionnoj stojkosti trubnoj stali teploobmennoj apparatury dlya neftepererabotki [Research of abnormally low corrosion resistance of pipe steel of heat-exchanging equipment for oil refining] // Neftyanoe hozyajstvo. 2016. №1. S. 118–121.
27. Erasov V.S., Nuzhnyj G.A., Grinevich A.V., Terehin A.L. Treshhinostojkost aviacionnyh materialov v processe ispytaniya na ustalost [Crack growth resistance of aviation materials in fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 06. Available at: http://www.viam-works.ru (accessed: February 29, 2016).
28. Arabej T.I., Beloglazov S.M. Uluchshenie zashhitnogo dejstviya grunta-modifikatora rzhavchiny na stal, korrodiruyushhuyu v morskoj vode i pod dejstviem Aspergillus niger [Improvement of protective effect of soil modifier of rust on the steel corroding in sea water and under the influence of Aspergillus niger] // Praktika protivokorrozionnoj zashhity. 2010. Vyp. 1 (55). S. 17–22.
29. Reformatskaya I.I., Podobaev A.N., Ashheulova I.I. i dr. Lokalnaya korroziya stalej v usloviyah ekvipotencialnosti poverhnosti [Local corrosion of staly surface in the conditions of equipotentiality] // Praktika protivokorrozionnoj zashhity. 2011. Vyp. 3 (61). S. 55–63.
30. Gerasimenko A.A. Biokorroziya i zashhita metallokonstrukcij. 2. Mikrobnaya korroziya oborudovaniya neftyanoj promyshlennosti [Biocorrosion and protection of metalwork. 2. Microbic corrosion of the equipment of oil industry] // Praktika protivokorrozionnoj zashhity. 2001. №2. S. 35–36.
31. Laptev A.B., Lutsenko A.N., Perov N.S., Buharev G.M. Opyt FGUP «VIAM» po issledovaniyu biokorrozii v morskoj vode [Experiment of FSUE «VIAM» on biocorrosion research in sea water] // Truboprovodnyj transport (teoriya i praktika). 2016. №4 (56). S. 28–31.
32. Laptev A.B., Barbotko S.L., Nikolaev E.V., Skirta A.A. Obrabotka rezultatov klimaticheskih ispytanij stekloplastikov [Processing of results of climatic tests of fibreglasses] // Plasticheskie massy. 2016. №3–4. S. 58–62.
33. Erasov V.S., Grinevich A.V., Senik V.Ya., Konovalov V.V., Trunin Yu.P., Nesterenko G.I. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
34. Erasov V.S. Fiziko-mehanicheskie harakteristiki kak osnovnye integralnye pokazateli kachestva aviacionnyh konstrukcionnyh materialov: metod. posobie [Physicomechanical characteristics as main integral figures of merit of aviation constructional materials: methodical grant]. M.: VIAM, 2011. 16 s.
35. Tejlor Dzh. Vvedenie v teoriyu oshibok [Introduction in the theory of mistakes]. M.: Mir, 1985. 272 s.
36. Aviacionnye materialy: spravochnik v 13 t. / pod red. E.N. Kablova. 7-e izd., dop. i pererab. [Aviation materials: directory in 13 vol. / gen. ed. by E.N. Kablov. 7th ed., rev. and add.]. M.: VIAM, 2015. T. 13: Klimaticheskaya i mikrobiologicheskaya stojkost nemetallicheskih materialov. 270 s.
37. Drejper N., Smit G. Prikladnoj regressionnyj analiz [Applied regression analysis]. Nyu-Jork: Vilyams, 2007. 912 s.
38. Adler Yu.P., Markova E.V., Granovskij Yu.V. Planirovanie eksperimenta pri poiske optimalnyh uslovij [Experiment planning by search of optimum conditions]. M.: Nauka, 1976. 279 s.

DOI: 10.18577/2071-9140-2017-0-S-562-574

UDC: 620.179

Pages: 562-574

E.I. Kosarina1, O.A. Krupnina1, A.A. Demidov1, E.M. Turbin1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Digital radiography in nondestructive testing of aerostructures

This article represents the results of testing and introduction of nondestructive control by means of digital radiography. The mechanism of formation of optical image on the detector and its differences from the conventional radiography is shown, the conditions of selection of optimal radiation energy are determined. It is shown that the main characteristics of digital detectors are the spatial resolution, contrast sensitivity, range of acceptable dose rates. The types of digital detectors according to possibility of their use in non-destructive testing of products from aluminum, magnesium, titanium, high temperature alloys and steels have been selected.

Keywords: x-ray non-destructive testing, digital radiography, signal-to-noise ratio, image confusion, image contrast.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials is a security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
4. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
5. Stepanov A.V., Kosarina E.I., Savvina N.A., Usachev V.E. Makro- i mikroporistost v splavah na osnove alyuminiya i nikelya, obnaruzhenie ee rentgenoskopicheskimi metodami nerazrushayushhego kontrolya [The macro- and microporosity in alloys on the basis of aluminum and nickel, detection by its x-ray methods of non-destructive testing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 423–430.
6. Stepanov A.V., Kosarina E.I., Demidov A.A. Kompyuternaya rentgenografiya s primeneniem fotostimulirovannyh plastin [Computer radiograghy using photostimulated plates] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 79–85. DOI: 10.18577/2071-9140-2015-0-4-79-85.
7. Lozhkova D.S., Stepanov A.V., Kosarina E.I. Kompyuternaya radiografiya, rezultaty prakticheskih issledovanij i vozmozhnost\' zameny plenochnyh tehnologij [Computer radiography, results of practical researches and possibility of replacement of film technologies] // Vestnik MEI. 2011. №3. S. 57–62.
8. Majorov A.A. Cifrovye tehnologii v nerazrushayushhem kontrole [Digital technologies in non-destructive testing] // Sfera Neftegaz. 2009. №9. S. 26–37.
9. Yaffe M.J., Rowlands J.A. X-ray detectors for digital radiography // Phys. Med. Biol. 1997. Vol. 42. P. 1–39.
10. Moreira E., Fritz M., H. Simoes Flat-panel detectors are accepted for digital radiography in place of conventional radiography in pipeline weld inspection // Proceedings of the 4th Conferencia Panamericana de END. 2007. Available at: http://www.ndt.net/article/panndt2007/papers/127.pdf (accessed: November 22, 2016).
11. Bavendiek K., Heike U., Meade W. D., Zscherpel U., Ewert U. New Digital Radiography Procedure Exceeds Film Sensitivity Considerably in Aerospace Applications // 9th ECNDT (Berlin. September 25‒29, 2006). Available at: http://www.ndt.net/article/ecndt2006/doc/Th.3.2.1.pdf (accessed: November 22, 2016).
12. Klyuev V.V., Sosnin F.R. Teoriya i praktika radiacionnogo kontrolya: ucheb. posobie dlya studentov vuzov [Theory and practice of radiation monitoring: the manual for students of higher education institutions]. M.: Mashinostroenie, 1998. 170 s.
13. Dobromyslov V.A. Radiacionnye metody nerazrushayushhego kontrolya [Radiation methods of non-destructive testing]. M.: Mashinostroenie, 1999. 104 s.
14. Kosarina E.I., Stepanov A.V., Demidov A.A. i dr. Ispytanie radiograficheskih plenok dlya opredeleniya vozmozhnosti ih primeneniya dlya NK izdelij aviacionnoj tehniki [Testing of radiographic films for definition of possibility of their application for the Tax Code of products of aviation engineering] // V mire nerazrushayushhego kontrolya. 2016. T. 19. №2. S. 61–65.

DOI: 10.18577/2071-9140-2017-0-S-575-595

UDC: 536:620.1

Pages: 575-595

A.V. Zuev1, Yu.V. Loshchinin1, D.Y. Barinov1, P.S. Marakhovskiy1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

Computational and experimental investigations of thermophysical properties

This article describes the experience of using of high temperature coatings for thermal conductivity measurements of ceramic molds and cores materials for casting of gas turbine engines (GTE) blades and also to measure specific heat of heat-resistant nickel and intermetallic alloys (ZhS36, VZhM4,VKNA-25) by laser flash method. The results of measurements of their thermophysical properties in the temperature range from 20 to 1350°C are represented. The effect of the state of solid solution and γ'-phase on properties of alloys is shown. The using of the ratio of Wiedemann-Franz-Lorentz law for calculation of the thermal conductivity according to the electrical resistance is estimated. Examples of the calculation of thermal conductivity of composite materials using the developed models of the structure, which allows calculating the temperature field during the curing of composite materials, are given. The high informative value of the results of measurements and calculation of thermophysical properties for the analysis of processes in the material, correction of process parameters and prediction of material behavior under operating conditions is shown. The research is carried out in the framework of research directions 2. «Fundamentally-oriented researches, qualification of materials, nondestructive testing» and the research direction 3. «Computer methods for modeling the structure and properties of materials at their creation and operation in construction» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: thermo- and electrophysical properties, thermal conductivity, electrical resistivity, specific heat, structure model, laser flash method.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: August 18, 2016).
3. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
4. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
5. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
6. Kablov E.N., Bondarenko Yu.A., Surova V.A. Osobennosti vysokogradientnoj napravlennoj kristallizacii i oborudovanie dlya litya monokristallicheskih obrazcov i turbinnyh lopatok iz zharoprochnyh splavov, soderzhashhih renij [Features of the high-gradient directed crystallization and the equipment for molding of single-crystal samples and turbine blades from the hot strength alloys, containing rhenium] // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina: nauch.-tehnich. sb. M.: Nauka, 2006. S. 194–205.
7. Mills K.C., Youssef Y.M., Zushu Li. The effect of aluminium content on thermophysical properties of Ni-based superalloys // ISIJ International. 2006. Vol. 46. No. 1. P. 50–57.
8. Ouested P.N., Brooks R.F., Chapman L., Morrell R., Youssef Y., Mills K.C. Mesurement and estimation of thermophysical properties of nickel based superalloys // Materials and Technology. 2009. Vol. 25. No. 2. P. 154–162.
9. Wilthan B., Preis K., Tanzer R., Schützenhöfer W., Pottlacher G. Thermophysical properties of the Ni-based alloy Nimonic 80A up to 2400 K, II // Journal of Alloys and Compounds. 2008. Vol. 452. P. 102–104.
10. Hazotte A., Perrot B., Archambault P. High temperature thermal diffusivity of nickel-based superalloys and intermetallic compounds // Journal de Physique IV. 1993. Vol. 3. No. 11. P. 351–354.
11. Chehovskoj V.Ya., Peleckij V.E. Teplofizicheskie svojstva zharoprochnogo nikelevogo splava HN55VMTKYu [Heatphysical properties of heat resisting HN55VMTKYu nickel alloy] // Teplofizika vysokih temperatur. 2005. T. 43. №1. S. 51–56.
12. ASTM E 1461-01. Standard Test Method for Thermal Diffusivity by the Flash Method. 2001. P. 1–13.
13. Loshhinin Yu.V. , Folomejkin Yu.I., Rykova T.P., Marahovskij P.S., Pahomkin S.I. Teplofizicheskie svojstva materialov keramiki form i sterzhnej dlya litya lopatok GTD iz zharoprochnyh splavov [Heat physical properties of materials of ceramics of forms and rods for molding of blades of GTD from hot strength alloys] // Materialovedenie. 2014. №3 (204). S. 47–52.
14. Kablov E.N., Petrushin N.V. Komp\'yuternyj metod konstruirovaniya litejnyh zharoprochnyh nikelevyh splavov // Litejnye zharoprochnye splavy. Effekt S.T. Kishkina: nauch.-tehnich. sb. […]. M.: Nauka, 2006. S. 56–78.
15. Bazyleva O.A., Unchikova M.V., Turenko E.Yu., Bagetov V.V., Shestakov A.V. Issledovanie vliyaniya termicheskoj obrabotki na mikrostrukturu, parametry dendritnoj likvacii i vremya do razrusheniya intermetallidnogo renijsoderzhashhego splava na osnove Ni3Al [Study of heat treatment effect on structure, dendritic liquation parameters and time to failure of Ni3Al-based alloy containing Re] // Trudy VIAM: elektr. nauch.-tehnich. zhurn. 2016. №10. St. 04. Available at: http://www.viam.ru (accessed: November 02, 2016) DOI: 10.18577/2307-6046-2016-0-10-4-4.
16. Loshhinin Yu.V., Folomejkin Yu.I., Pahomkin S.I. Izmerenie teploemkosti obrazcov s pokrytiem metodom lazernoj vspyshki [Computer method of designing of cast heat resisting nickel alloys] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T.81. №9. S. 40–44.
17. Ryabcev L.A., Kornilov I.I., Pryahina L.I. Zharoprochnost i fiziko-himicheskie svojstva mnogokomponentnyh nikelevyh splavov [Thermal stability and physical and chemical properties of multicomponent nickel alloys] // Struktura i svojstva zharoprochnyh metallicheskih materialov. M.: Nauka, 1967. 143 s.
18. Kovalev A.I., Logunov A.V., Hacinskaya I.M., Zverev A.F. Teplofizicheskie svojstva zharoprochnyh nikelevyh splavov [Heat physical properties of heat resisting nickel alloys] // Teplofizicheskie i elektricheskie svojstva metallov i splavov: sb. statej. M.: VIAM, 1973. 13 s.
19. Kovalev A.I., Bronfin M.B., Loshchinin Yu.V., Vertogradskii V.A. Heat capacity of the Ni3Al intermetallide and its change upon alloying with refractory transition metals // High Tempertures – High Pressures. 1976. Vol. 8. P. 581–584.
20. Logunov A.V., Petrushin N.V., Hacinskaya I.M. Temperatury rastvoreniya uprochnyayushhih intermetallidnyh faz v zharoprochnyh nikelevyh splavah [Temperatures of dissolution of strengthening intermetallidny phases in heat resisting nickel alloys] // Metallovedenie i termicheskaya obrabotka metallov. 1977. №6. S. 67–68.
21. Epishin A.I., Svetlov I.L., Petrushin N.V., Loshchinin Yu.V., Link T. Segregation in Single-Crystal Nickel-Vase Superalloys // Trans. Tech Publications. Switzerland, 2011. R. 121–125.
22. Chudnovskij A.F. Teplofizicheskie harakteristiki dispersnyh materialov [Heat physical characteristics of disperse materials]. M.: Fizmatgiz, 1962, 456 s.
23. Dulnev G.N., Zarichnyak Yu.P. Teploprovodnost smesej i kompozicionnyh materialov: spravochnaya kniga [Heat conductivity of mixes and composite materials: reference book]. L.: Energiya, 1974. 264 s.
24. Dulnev G.N., Novikov V.V. Processy perenosa v neodnorodnyh sredah [Transfer processes in heterogeneous environments]. L.: Energoatomizdat, 1991. 248 s.
25. Alifanov O.M. Obratnye zadachi teploobmena [Return problems of heat exchange]. M.: Mashinostroenie, 1988. 280 s.
26. Zuev A.V., Prosuncov P.V., Majorova I.A. Raschetno-eksperimentalnoe issledovanie processov teploperenosa v vysokoporistyh voloknistyh teploizolyacionnyh materialah [Rated pilot study of processes of heattransfer in high-porous fibrous heatinsulating materials] // Teplovye processy v tehnike. 2014. T. 6. №9. S. 410–419.
27. Zuev A.V., Prosuncov P.V. Model struktury voloknistyh teploizolyacionnyh materialov dlya analiza processov kombinirovannogo teploperenosa [Model of structure of fibrous heatinsulating materials for the analysis of processes of the combined heattransfer] // Inzhenerno-fizicheskij zhurnal. 2014. T. 87. №6. S. 1319–1329.
28. Reznik S.V., Prosuncov P.V., Zuev A.V. Osobennosti primeneniya obratnyh zadach dlya opredeleniya teploperedachi v vysokoporistyh materialah pri vysokih skorostyah nagrevaniya [Features of application of return tasks for heat transfer definition in high-porous materials at high speeds of heating] // Obratnye zadachi, proektirovanie i optimizaciya: tr. II Mezhdunar. simpoziuma. SShA, 2007. S. 657–665.
29. Prosuncov P.V., Reznik S.V. Ispolzovanie dannyh po koefficientu teploprovodnosti poluprozrachnyh rasseivayushhih materialov v teplovyh raschetah [Use of data on thermal conductivity coefficient of translucent disseminating materials in thermal calculations] // Gagarinskie nauchnye chteniya po kosmonavtike i aviacii. M.: MATI im. K.E. Ciolkovskogo, 1990. S. 17.
30. Prosuntsov P.V. Parametric Identification of Thermophysical Properties of Highly Porous Partially Transparent Materials Based on the Solution of a Two-Dimensional Problem of Radiative-Conductive Heat Transfer // Heat Transfer Research. 2005. No. 6. Р. 481–500.
31. Dospehi dlya «Burana». Materialy i tehnologii VIAM dlya MKS «Energiya–Buran» / pod obshh. red. E.N. Kablova [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya–Buran» / gen. ed. by E.N. Kablov]. M.: Nauka i zhizn, 2013. 128 s.
32. Prosuncov P.V., Zuev A.V. Primenenie metoda lazernoj vspyshki dlya kompleksnoj parametricheskoj identifikacii teplofizicheskih i opticheskih svojstv chastichno prozrachnyh materialov [Application of method of laser flash for complex parametrical identification of heatphysical and optical properties of partially transparent materials] // 6-oj Minskij mezhdunarodnyj forum po teplomassoobmenu. Minsk, 2008. S. 379–381.
33. Prosuncov P.V., Majorova I.A., Zuev A.V. Ispolzovanie modelej kombinirovannogo teploperenosa dlya analiza temperaturnogo sostoyaniya elementov teplovoj zashhity mnogorazovyh kosmicheskih apparatov [Use of models of the combined heattransfer for the analysis of temperature condition of elements of thermal protection of reusable spacecrafts] // Teplovye processy v tehnike. 2014. T. 6. №7. S. 317–323.
34. Majorova I.A. Prosuncov P.V., Zuev A.V. Optimalnoe teplovoe proektirovanie multiekrannoj sistemy teplovoj zashhity mnogorazovyh kosmicheskih apparatov [Optimum thermal design of multiscreen system of thermal protection of reusable spacecrafts] // Inzhenerno-fizicheskij zhurnal. 2016. T. 89. №2. S. 1–6.
35. Dmitriev O.S., Mishhenko S.V., Shapovalov A.V., Kirillov V.N. Matematicheskoe modelirovanie processa otverzhdeniya izdelij iz polimernyh kompozicionnyh materialov metodom vakuumnogo avtoklavnogo formovaniya v tehnologicheskom pakete [Mathematical modeling of process of curing of products from polymeric composite materials method of vacuum autoclave formation in technological package] // Vestnik TGTU. 2001. T. 7. №1. S. 7–19.
36. Dmitriev O.S., Kirillov V.N., Kavun N.S., Zuev A.V. Opredelenie optimalnyh rezhimov otverzhdeniya tolstostennyh izdelij iz polimernyh kompozitov [Definition of optimum modes of curing of thick-walled products from polymeric composites] // Teplovye processy v tehnike. 2013. №10. S. 467–475.
37. Barinov D.Ya., Majorova I.A., Marahovskij P.S., Zuev A.V., Kucevich K.E., Lukina N.F. Matematicheskoe modelirovanie temperaturnyh polej pri otverzhdenii tolstostennoj plity stekloplastika [Mathematical modeling of temperature fields when curing thick-walled plate of fibreglass] // Perspektivnye materialy. 2015. №4. S. 5–14.