Archive

Aviation materials and tecnologes №1, 2018

DOI: 10.18577/2071-9140-2018-0-1-3-8

UDC: 621.785.5

Pages: 3-8

L.I. Kuksenova1, S.A. Gerasimov2, M.S. Alekseeva3, V.I. Gromov3

[1] Institute of Machines Science named after A.A. Blagonravov of the Russian Academy of Sciences,
[2] Bauman Moscow State Technical University,
[3] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

INFLUENCE OF VACUUM CHEMICAL AND THERMAL PROCESSING ON WEAR RESISTANCE OF VKS-7 AND VKS-10 STEELS

Results of influence of complex technology on microhardness and wear resistance heat resistant complex alloyed martensitic steels VKS-7 and VKS-10 are provided. Application of complex technology is based on creation of finely dispersed structure under warm deformation and on processes activation of diffusion saturation during ion plasma nitriding and vacuum cementation.

Keywords: ion plasma nitriding, vacuum cementation, microhardness, wear resistance

Reference List

1. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
2. Kablov E.N. Razrabotki VIAM dlya gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
3. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-loaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. 2011. Spec. vyp.: Perspektivnye konstrukcionnye materialy i tehnologii. S. 13–19.
4. Markova E.S., Yakusheva N.A., Pokrovskaja N.G., Shalkevich A.B. Tehnologicheskie osobennosti proizvodstva martensitostareyushhej stali VKS-180 [Technological features of the production of maraging steel VKS-180] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 01. Available at: http://www.viam-works.ru (accessed: Juny 10, 2017).
5. Petrakov A.F., Shalkevich A.B. Vysokoprochnye stali v aviastroenii [High-strength became in aircraft industry] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 180–191.
6. Gromov V.I., Krotov V.N., Kurpyakova N.A., Sedov O.V., Doroshenko A.V. Vliyanie ostatochnogo austenita na strukturu i svojstva diffuzionnogo sloya stali martensitnogo klassa posle vakuumnoj cementacii [Influence of residual austenite on the structure and properties of diffusion layer of martensitic grade steel after vacuum carburization] // Aviacionnye materialy i tehnologii 2016. №4 (45) S. 3–8. DOI: 10.18577/2071-9140-2016-0-4-3-8.
7. Markova E.S., Pokrovskaya N.G., Shalkevich A.B., Gromov V.I. Martensitostareyushhie stali ‒ novye perspektivnye materialy dlya valov GTD [Maraging became ‒ new perspective materials for GTE shaft] //Aviacionnye materialy i tehnologii. 2012. №S. S. 81–84.
8. Gerasimov S.A., Kuksenova L.I., Lapteva V.G. Struktura i iznosostojkost azotirovannyh stalej i splavov [Structure and wear resistance nitrated steel and alloys]. M.: MGTU im. N.E. Baumana, 2012. 518 s.
9. Gerasimov S.A., Kuksenova L.I., Lapteva V.G., Fahurtdinov R.S., Alekseeva M.S., Danilov V.D., Smirnov A.E., Gromov V.I. Povyshenie harakteristik mehanicheskih svojstv teplostojkih stalej metodom aktivizacii processa azotirovaniya [Increase of characteristics of mechanical properties heatresistant staly method of activation of process of nitriding] // Problemy mashinostroeniya i nadezhnosti mashin. 2014. №2. C. 90–96.
10. Gerasimov S.A., Kuksenova L.I., Lapteva V.G., Fahurtdinov R.S., Danilov V.D., Shherbakov Yu.I., Alekseeva M.S., Smirnov A.E., Gromov V.I. Mehanicheskie svojstva teplostojkih stalej posle aktivizacii processa cementacii [Mechanical properties heatresistant staly after cementation process activation] // Problemy mashinostroeniya i nadezhnosti mashin. 2014. №4. S. 113–119.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Kuksenova L.I., Lapteva V.G., Kolmakov A.G., Rybakova L.M. Metody ispytanij na trenie i iznos [Test methods on friction and wear]. M.: Intermet inzhiniring, 2001. S. 152.
13. Kuksenova L.I., Lapteva W.G., Senatorski J., Kubaj E.N., Berezina E.W., Gerasimov S.A. Effect of tempering temperature on structure and wear resistance of nitride 38HMJA steel // Surface Engineering. 2001. No. 3. Р. 16–20.
14. Kuksenova L.I., Rybakova L.M., Lapteva W.G. Structure of the modified metal surface and friction wear in different lubricating conditions // Surface Engineering. 2002. No. 1. P. 38–44.
15. Kuksenova L.I., Lapteva W.G., Berezina E.W., Gerasimov S.A., Senatorski J. Tribological properties of thoughened and nitride 38H2MJA steel // Surface Engineering. 2004. No. 4. Р. 45–50.
16. Berezina E.V. Razrabotka tehnologii formirovaniya nanostrukturirovannogo azotirovannogo sloya konstrukcionnyh stalej dlya povysheniya ih iznosostojkosti: avtoref. dis. … kand. tehn. nauk [Development of technology of forming of the nanostructured nitrated layer constructional staly for increase of their wear resistance: : thesis, PhD (Tech.)]. M.: MGTU im. N.E. Baumana, 2007. 20 s.
17. Kuksenova L.I., Lapteva V.G., Michugina M.S., Berezina E.V. Struktura poverhnostnyh sloev stalej i iznosostojkost posle raznyh uslovij azotirovaniya [Structure of surface layers staly and wear resistance after different conditions of nitriding] // Metody uprochneniya poverhnostej detalej mashin. M.: Krasand, 2008. S. 341.
18. Gerasimov S.A., Kraposhin V.S., Lisockij I.V., Berezina E.V., Lapteva V.G., Kuksenova L.I. Vliyanie nanokristallicheskoj fazy nitridov zheleza na iznosostojkost azotirovannoj stali 38H2MYuA [Influence of nanocrystal phase of iron nitrides on wear resistance of nitrated steel 38H2MYuA] // Tr. Vseros. nauch.-tehnich. konf. «Mashinostroitel\'nye tehnologii». M.: MGTU im. N.E. Baumana, 2008. S. 216–218.

DOI: 10.18577/2071-9140-2018-0-1-9-18

UDC: 669.017.165

Pages: 9-18

V.M. Fomin1, A.G. Malikov1, A.M. Orishich1, V.V. Antipov2, G.G. Klochkov2, A.A. Skupov2

[1] Federal State Budgetary Institution Khristianovich institute of theoretical and applied mechanics Siberian Branch of Russian Academy of Sciences,
[2] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

HEAT TREATMENT EFFECT ON STRUCTURE OF JOINT WELD SHEETS FROM V-1469 ALLOY OF Al-Cu-Li SYSTEM MANUFACTURED BY LASER WELDING

Results of research of heat treatment effect on structure of welded joints of sheets from alloy V-1469, manufactured by laser welding are provided in the article. Chemical composition, microhardness of alloy and welded seam at different heat treatment modes are investigated. The microstructure by means of optical metallography and electron microscopy is studied. It is established that carrying out standard heat treatment of samples after welding process for alloy V-1469 allows recovering structure and chemical composition of all joints at the level of micron sizes.

Keywords: aluminum-lithium alloy, V-1469 alloy, system Al–Cu–Li, microstructure, electron microscopy, phase composition, mechanical properties, laser welding

Reference List

1. Klochkova Yu.Yu., Grushko O.E., Lantsova L.P., Burlyaeva I.P., Ovsyannikov B.V. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo alyuminijlitievogo splava V-1469 [Development in industrial production of semi-finished products from perspective aluminum lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2011. №1. S. 8–12.
2. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Hohlatova L.B. Alyuminijlitievye splavy [Aluminum lithium alloys] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehn. sb. M.: VIAM, 2007. S. 163–171.
3. Splav na osnove alyuminiya i izdelie, vypolnennoe iz nego: pat. 2237098 Ros. Federaciya [Alloy on the basis of aluminum and the product which has been executed of it: pat. 2237098 Rus. Federation]; opubl. 24.07.2003.
4. Ber L.B., Teleshov V.V., Ukolov O.G. Fazovyj sostav i mehanicheskie svojstva deformiruemyh alyuminievyh splavov sistemy Al–Cu–Mg–Ag–Xi [Phase structure and mechanical properties of deformable aluminum alloys of Al-Cu-Mg-Ag-Xi system] // Metallovedenie i termicheskaya obrabotka metallov. 2008. №5. S. 15–22.
5. Gazizov M., Kaibyshev R. Effect of over-aging on the microstructural evolution in an Al–Cu–Mg–Ag alloy during ECAP at 300°C // Journal of Alloys and Compounds. 2012. Vol. 527. P. 163–175.
6. Gazizov M., Teleshov V., Zakharov V., Kaibyshev R. Solidification behaviour and the effects of homogenisation on the structure of an Al–Cu–Mg–Ag–Sc alloy // Journal of Alloys and Compounds. 2011. Vol. 509. Issue 39. P. 9497–9507.
7. Gazizov M., Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy // Materials Science & Engineering. 2015. Vol. 625. P. 119–130.
8. Zink W. Welding Fuselage shells // Industrial Laser Solutions. 2001. Vol. 16. Issue 8. P. 7–10.
9. Dittrich D., Standfuss J., Liebscher J., Brenner B., Beyer E. Laser Beam Welding of Hard to Weld Al Alloys for a Regional Aircraft Fuselage Design – First Results // Physics Procedia. 2011. Vol. 12. Р. 113–122.
10. Petrovic M., Veljic D., Rakin M., Radovic N. et al. Friction-stir welding of highstrength aluminium alloys and a numerical simulation of plunge stage // Materials in technology. 2012. Vol. 46. No. 3. P. 215–221.
11. Ovchinnikov V.V., Grushko O.E., Alekseev V.V., Magnitov V.S., Egorov R.V. Struktura i svojstva svarnyh soedinenij alyuminievogo splava V-1469, poluchennyh elektronno-luchevoj svarkoj [Structure and properties of welded compounds of the V-1469 aluminum alloy received by electron beam bonding] // Zagotovitelnye proizvodstva v mashinostroenii. 2012. №5. S. 7–11.
12. Ovchinnikov V.V. Tehnologiya svarki alyuminievyh splavov: ucheb. posobie [Welding technology of aluminum alloys: manual]. M.: MGIU, 2005. 68 s.
13. Annin B.D., Fomin V.M., Antipov V.V., Ioda E.N., Karpov E.V., Malikov A.G., Orishich A.M., Cherepanov A.N. Issledovanie tehnologii lazernoj svarki alyuminievogo splava 1424 [Research of technology of laser bonding of aluminum alloy 1424] // Doklady akademii nauk. 2015. T. 465. №4. S. 419–424.
14. Annin B.D., Fomin V.M., Karpov E.V., Malikov A.G., Orishich A.M., Cherepanov A.N. Development of a technology for laser welding of the 1424 aluminum alloy with a high strength of the welded joint // Journal of Applied Mechanics and Technical Physics. 2015. Vol. 56. No. 6. P. 945–950.
15. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Vliyanie termicheskoj obrabotki na harakteristiki svarnyh soedinenij vysokoprochnyh alyuminijlitievyh splavov [Heat treatment influence on characteristics of welding joints of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 06. Available at: http://www.viam-works.ru (accessed: November 17, 2016). DOI: 10.18577/2307-6046-2015-0-4-6-6.
16. Kablov E.N., Lukin V.I., Zhegina I.P., Ioda E.N., Loskutov V.M. Osobennosti i perspektivy svarki alyuminijlitievyh splavov [Features and welding perspectives of aluminum lithium alloys] // Aviacionnye materialy i tehnologii. 2002. №4. S. 3–12.
17. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Tr. Vseros. nauch.-praktich. konf. «Svarka i bezopasnost». Yakutsk: IFTPS SO RAN, 2012. S. 21–30.
18. Kablov E.N., Lukin V.I., Antipov V.V., Ioda E.N., Panteleev M.D., Skupov A.A. Effektivnost primeneniya prisadochnyh materialov pri lazernoj svarke vysokoprochnyh alyuminij-litievyh splavov [Efficiency of application of additive materials at laser bonding high-strength aluminum-lithium alloys] // Svarochnoe proizvodstvo. 2016. №10. S. 17–21.
19. Shiganov I.N., Holopov A.A., Trushnikov A.V., Ioda E.N., Panteleev M.D., Skupov A.A. Lazernaya svarka vysokoprochnyh alyuminij-litievyh splavov s prisadochnoj provolokoj [Laser bonding high-strength aluminum-lithium alloys with filler wire] // Svarochnoe proizvodstvo. 2016. №6. S. 44–50.
20. Klochkova Yu.Yu., Klochkov G.G., Romanenko V.A., Popov V.I. Struktura i svojstva listov iz vysokoprochnogo alyuminij-litievogo splava V-1469 [Structure and properties of sheets from high-strength aluminum-lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 3–8. DOI: 10.18577/2071-9140-2015-0-4-3-8.
21. Poklyackij A.G., Lozovskaya A.V., Grinyuk A.A. i dr. Povyshenie prochnosti shvov pri dugovoj svarke alyuminievo-mednyh splavov s primeneniem skandijsoderzhashhih prisadok [Increase of durability of seams at arc welding of aluminum copper alloys using scandium of containing additives] // Avtomaticheskaya svarka. 2006. T. 2. S. 29–32.
22. Shiganov I.N., Shahov S.V., Holopov A.A. Lazernaya svarka alyuminievyh splavov aviacionnogo naznacheniya [Laser bonding of aluminum alloys of aviation assignment] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2012. №5. S. 34–50.
23. Annin B.D., Fomin V.M., Karpov E.V., Malikov A.G., Orishich A.M. Kompleksnoe issledovanie lazernoj svarki vysokoprochnogo splava V-1469 [Complex research of laser welding of high-strength alloy V-1469] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 9–16. DOI: 10.18577/2071-9140-2016-0-3-9-16.
24. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
25. Gazizov M.R., Kajbyshev R.O. Kinetika i mehanizm razrusheniya pri ciklicheskom nagruzhenii Al–Cu–Mg–Ag splava [Kinetics and the destruction mechanism at cyclic loading of Al–Cu–Mg–Ag of alloy] // Fizika metallov i metallovedenie. 2016. T. 117. №7. S. 748–757.
26. Shamraj V.F., Grushko O.E., Timofeev V.N., Lazarev E.M., Klochkova Yu.Yu., Gordeev A.S. Strukturnye sostoyaniya materiala pressovok i listov splava sistemy Al–Cu–Li, legirovannogo serebrom [Structural conditions of material of pressings and sheets of alloy of the Al–Cu–Li system alloyed by silver] // Metally. 2009. №3. S. 53–59.

DOI: 10.18577/2071-9240-2018-0-1-19-24

UDC: 669.295

Pages: 19-24

S.V. Putyrskiy1, A.A. Arislanov1, N.I. Artemenko1, A.L. Yakovlev1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

DIFFERENT METHODS OF WEAR RESISTANCE INCREASE OF TITANIUM ALLOYS AND COMPARATIVE ANALYSIS OF THEIR EFFICIENCY FOR VT23M TITANIUM ALLOY

In current article different methods for wear resistance increase of titanium alloys including anodic oxidation in the pulsed mode, detonation sputtering of WC-Co coating, ion-plasma sputtering of TiN coating are described. The described methods were applied to samples of the alloy VT23M. For the purpose of comparative analysis of the methods effectiveness for increasing wear resistance, samples after different heat treatment and samples with applied coatings were subjected to linear wear test. The work has been performed within the framework of complex scientific direction 12.4. «Sparingly alloyed titanium alloys compatible with carbon fiber reinforced plastic » («The strategic directions of development of materials and technologies of their processing for the period till 2030»)

Keywords: titanium alloys, wear resistance, coatings, heat treatment, high strength alloys

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed., rev. and add.]. M.: VIAM, 2015. 720 s.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
5. Yakovlev A.L., Filatov A.A., Burhanova A.A., Popova Yu.A., Nochovnaya N.A Effektivnost primeneniya titanovogo splava VT23 v novyh izdeliyah «OKB Suhogo» [Efficiency of application of BT23 titanium alloy in new products of «Sukhoi Design Bureau»] // Titan. №2 (40). 2013. S. 39–42.
6. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Perspektivy ispolzovaniya titanovyh splavov v sloistyh kompozicionnyh materialah [Prospects for the use of titanium alloys in laminated composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 04. Available at: http://www.viam-works.ru (accessed: February 23, 2017). DOI: 10.18577/2307-6046-2015-0-10-4-4.
7. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanopolimernye sloistye materialy [Titanium-polymer laminated materials] // Aviacionnye materialy i tehnologii. 2016. №S2 (44). S. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
8. Chechulin B.B., Ushkov S.S., Razuvaev I.N. Titanovye splavy v mashinostroenii [Titanium alloys in mechanical engineering]. L.: Mashinostroenie, 1977. 248 s.
9. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
10. Yakovlev A.L., Nochovnaya N.A. Vliyanie termicheskoj obrabotki na svojstva listov iz vysokoprochnogo titanovogo splava VT23M [Effect of heat treatment on properties of sheets of high-strength titanium alloy VT23M] // Aviacionnye materialy i tehnologii. 2013. №4. S. 8–13.
11. Nochovnaya N.A., Panin P.V. Analiz ostatochnyh makronapryazhenij v svarnyh soedineniyah titanovyh splavov raznyh klassov [Residual Macrostress Analysis in Welded Junctions of Different Titanium Alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 02. Available at: http://www.viam-works.ru. (accessed: February 15, 2017). DOI: 10.18577/2307-6046-2014-0-5-2-2.
12. Horev A.I. Razrabotka teoreticheskih i prakticheskih osnov povysheniya konstrukcionnoj prochnosti titanovyh splavov putem kompleksnogo legirovaniya i mikrolegirovaniya [Development of theoretical and practical bases of increase of constructional durability of titanium alloys by complex alloying and microalloying] // Sb. Ti−2007 v SNG. Yalta, 2007. S. 226−234.
13. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
14. Horev A.I. Titanovyj splav VT23 i ego sravnenie s luchshimi zarubezhnymi splavami [BT23 titanium alloy and its comparison with the best foreign alloys] // Titan. 2006. №1 (18). S. 47–52.
15. Muboyadzhyan S.A. Osobennosti osazhdeniya potoka mnogokomponentnoj plazmy vakuumno-dugovogo razryada, soderzhashhego mikrokapli isparyaemogo materiala [Features of sedimentation of flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] // Metally. 2008. №2. S. 20–34.
16. Horev A.I. Osnovnye nauchnye i prakticheskie napravleniya povysheniya stabilnosti mehanicheskih svojstv (α+β)-titanovyh splavov vysokoj i sverhvysokoj prochnosti [The main scientific and practical directions of increase of stability of mechanical properties (α+β)-titanium alloys of high and ultrahigh strength] // Sb. Ti−2010 v SNG. Ekaterinburg, 2010. S. 227–235.

DOI: 10.18577/2071-9140-2018-0-1-25-31

UDC: 621.791.55:669.715

Pages: 25-31

A.O. Koshelev1, V.V. Antipov2, E.V. Nikitina3, I.Yu. Mukhina2

[1] Joint Stock Company «Moscow machine-building mill «Avangard»,
[2] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,
[3] Moscow Aviation Institute (National Research University),

MECHANISM OF ACTION OF FLUORID FLUX-SUSPENSIONS AT ARC WELDING OF ALUMINUM ALLOYS

The effect of introducing small amounts of pure fluoride fluxes on the properties of welded joints in arc welding of aluminum alloys was studied. It is established that the use of the proposed flux can improve the geometric characteristics of the weld, ensure effective refining of the weld pool, and as a result - improve the mechanical properties of welded joints. The analysis of metallurgical processes taking place in the welding bath during the introduction of fluxes is carried out, the mechanism of action of fluxes is proposed.

Keywords: welding, fluoride fluxes, aluminum alloys, refining of the weld pool

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
4. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: May 23, 2017).
6. Morozova G.I., Muhina I.Yu. Nanostrukturnoe uprochnenie litejnyh magnievyh splavov sistemy Mg–Zn–Zr [Nanostructural hardening of the casting magnesium alloys of Mg–Zn–Zr] // MiTOM. 2011. №11. S. 3–7.
7. Volkova E.F., Muhina I.Yu. Novye materialy na magnievoj osnove i vysokoresursnye tehnologii ih proizvodstva [New materials based on magnesium and high-life technologies of their production] // Tehnologiya legkih splavov. 2007. №2. S. 28–34.
8. Nikitinskij A.M. Pajka alyuminiya i ego splavov [Soldering of aluminium and its alloys]. M.: Mashinostroenie, 1983. 192 s.
9. Grafas N.I., Belyaev A.I. Nekotorye svojstva rasplavlennyh solevyh flyusov i ih rol\' pri plavke i rafinirovanii rasplava [Some properties of molten salt fluxes and their role in the smelting and refining of the melt] // Cvetnaya metallurgiya. 1959. №4. S. 27–31.
10. Altman M.B., Lebedev A.A., Chuhrov M.V. Plavka i lite legkih splavov [Melting and casting of light alloys]. M.: Metallurgiya, 1969. 680 s.
11. Rabkin D.M. Metallurgiya svarki plavleniem alyuminiya i ego splavov [Metallurgy of fusion welding of aluminium and its alloys]. Kiev: Naukova dumka, 1986. 256 s.
12. Harvey I. The brazing of aluminium. Part II // Welding and Metal Fabrication. 1978. Vol. 46. No. 1. P. 51–54.
13. Jordan M.F., Milner D.R. The removal of oxide from Aluminium by brazing fluxes // Journal Institute of Metals. 1956. Vol. 85. No. 2. P. 315–316.
14. Petrunin I.E., Locmanov S.N., Nikolaev G.A. Pajka metallov [Soldering]. M.: Metallurgiya, 1973. 281 s.
15. Storchaj E.I. Flyusovaya pajka alyuminiya [Flux soldering of aluminum]. M.: Metallurgiya, 1980. 124 s.
16. Nikiforov G.D. Metallurgiya svarki plavleniem alyuminievyh splavov [Metallurgy of fusion welding of aluminum alloys]. M.: Mashinostroenie, 1972. 264 s.
17. Nikitin V.M., Nikitina E.V., Silanteva S.A., Rajkov S.V. Vliyanie podgotovki poverhnosti pri argono-dugovoj svarke listov iz splava AMg6 [The influence of surface preparation with argon-arc welding of sheets of alloy AMg6] // Svarka cvetnyh splavov: mezhvuzov. sb. nauchn. tr. Tula, 1985. S. 44–49.
18. Dankov P.D., Ignatov D.B., Shishakov N.A. Elektronno-graficheskie issledovaniya okisnyh i gidrookisnyh plenok na metallah [Electron-graphic studies and gidrookisi oxide films on metals]. M.: Izd-vo AN SSSR, 1953. 200 s.
19. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.

DOI: 10.18577/2071-9140-2018-0-1-32-38

UDC: 678.8

Pages: 32-38

A.E. Sorokin1, M.V. Goroshkov2, A.V. Naumkin2, G.F. Zyuzina3, V.A. Soloviova2, A.P. Krasnov2

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,
[2] Federal state budgetary institution of science A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences,
[3] Federal state unitary enterprise «Federal research and production center «Pribor»,

INFLUENCE OF METHOD AND PROCESSING CONDITIONS ON PROPERTIES OF POLYARYLATE

The paper shows that the processing of high molecular weight polyarylate is characterized by destructive structuring processes with predominantly hydrolytic degradation, which leads to reduction of molecular weight and, simultaneously, improves polymer homogeneity during extrusion. Reduction of low molecular weight polymer fraction during extrusion and polydispersity index from 5,5 to 2,7 increases heat resistance and stabilizes thermofriction properties of the material. The processing of «high molecular» polyarylate (³150·103 a.m.u.) in an inert environment (Ar) promotes to increase heat resistance, reduce and stabilize friction ratio under thermofrictive influence.

Keywords: polyarylate, pressing, extrusion, processing in an inert environment, friction, wear, molecular weight, heat resistance

Reference List

1. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Polimernaya kompoziciya na osnove polidodekalaktama dlya tehnologii 3D-pechati rasplavlennoj polimernoj nityu [Polymer composition on the basis of polydodecanolactam for 3D-printing technology by melted polymer string] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 09. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2016-0-10-9-9.
4. Petrova G.N., Larionov S.A., Sapego Yu.A., Platonov M.M. Reologicheskie svojstva termoplastichnoj kompozicii na osnove polikarbonata: zavisimost ot temperatury pererabotki; vliyanie na mehanicheskie harakteristiki i razmernuyu stabilnost obektov, sozdannyh po FDM-tehnologii [Rheological properties of the thermoplastic composition with a reduced fire hazard polycarbonate-based: depending on the temperature processing; effect on mechanical properties and stability dimension objects created software FDM-technology] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4 (52). St. 09. Available at: http://viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2017-0-4-9-9.
5. Petrova G.N., Bejder E.Ya. Litevye termoplastichnye materialy aviakosmicheskogo naznacheniya [Lityevye thermoflexible materials of aerospace assignment] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 41–45.
6. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Optimizaciya sostava polimernoj kompozicii s ponizhennoj pozharnoj opasnostyu na osnove polikarbonata dlya tehnologii 3D-pechati rasplavlennoj polimernoj nityu [Optimization of structure of polymeric composition with the lowered fire danger on the basis of polycarbonate for technology of the 3D-press the melted polymeric thread] // Izvestiya vysshih uchebnyh zavedenij. Ser.: Himiya i himicheskaya tehnologiya. 2017. T. 60. №1. S. 87–94.
7. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polimernye kompozicionnye materialy na termoplastichnoj matrice [Polymeric composite materials on thermoflexible matrix] // Izvestiya vysshih uchebnyh zavedenij. Seriya: Himiya i himicheskaya tehnologiya. 2016. T. 59. №10. S. 61–71.
8. Korshak B.B., Vinogradova C.B. Poliarilaty [Polyarylates]. M.: Nauka,1964. 72 s.
9. Askadskij A.A. Fiziko-himiya poliarilatov [Physic and chemistry of polyarylates]. M.: Himiya, 1968. 216 s.
10. Vinogradov S.V., Vasnev V.A. Polikondensacionnye processy i polimery [Polycondensate processes and polymers]. M.: Nauka, MAIK «Nauka/Interperiodika», 2000. 373 s.
11. Tabuti Nobuhide. Polyarylates «U-polymers» // Japan Energy and Technology Intelligence. 1986. Vol. 6. P. 69–72.
12. Mapleston B.Y. Polyesters: properties spectrum in broadening // Modern Plastic International. 1993. Vol. 7. P. 26–27.
13. Burya A.I., Chigvintseva O.P. The influence of carbon fibre content on the tribological properties of polyarylate based сomposites materials // Science in China (Series A). 2001. Vol. 44. Р. 281–286.
14. Tae Oan Ahn, Byeong Uk Nam, Muyoung Lee, Han Mo Jeong. Miscibility of polyarylate copolymers with poly(styrene-co-acrylonitrile) // Polymer. 1997. Vol. 38. P. 577–580.
15. Jyongsik Jang, Jongseob Won. Crystallisation and phase behaviour of poly(butylene terephthalate)/polyarylate blends // Polymer. 1998. Vol. 39. P. 4335–4342.
16. Bastida S., Eguiazábal J.I., Nazábal Etxeberria J. Phase and mechanical characterization of poly(ether imide)/polyarylate injection moulded blends // European Polymer Journal. 1996. Vol. 32. P. 1229–1234.
17. Paul D.R., Pixton M.R. Polyarylate gas separation membranes // Macromolecular Symposia. 1997. Vol. 118. P. 401–406.
18. McCaig M.S., Paul D.R. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Part I. Experimental observations // Polymer. 2000. Vol. 41. P. 629–637.
19. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N. i dr. Plenochnye svyazuyushhie dlya RFI-tehnologii [Film binding for RFI technology] // Rossijskij himicheskij zhurnal. T. LIV. №1. 2010. S. 63–66.
20. Zyuzina G.F. i dr. Tribologicheskie svojstva modificirovannogo litevogo polimera-poliarilata [Tribology properties of the modified molding polymer-polyarylate] // Trenie i smazka v mashinah i mehanizmah. 2010. №4. C. 17–22.
21. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
22. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.

DOI: 10.18577/2071-9140-2018-0-1-39-45

UDC: 621.742.487.54.07

Pages: 39-45

E.A. Veshkin1, V.I. Postnov1, V.V. Semenychev1, E.V. Krasheninnikova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

RESEARCH OF MICROHARDNESS AND SCLEROMETRIC CHARACTERISTICS OF THE BINDING UP-2227N, CURED BY DIFFERENT REGIMES

Estimate change in microhardness depending on the degree of hardening of the obtained plastics and, depending on the selected cross-sectional area (height) of the sample is made on samples of the binding UP-2227N cured by four different temperature and time regimes. It has been established that microhardness of plastic increases with rising temperature and holding time. Sclerometric studies also confirmed the dependence of the width of grooves on the plastic curing conditions: the more width of the groove is, the less degree of curing of the sample is, and vice versa, the less channel width of the groove is, the more degree of cure and microhardness of the plastic are. It is shown that microhardness of the plastic increases in thickness from the surface of the sample to its core, and the width of the sclerometric groove, respectively, decreases.

Keywords: binding  UP-2227N, sclerometry, microscopic examination, microhardness, degree of curing

Reference List

1. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
2. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
3. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Fenolformaldegidnye svjazuyushhie novogo pokoleniya dlya materialov interera [Phenolformaldehyde binding new generation for interior materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.
4. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
5. Dospehi dlya «Burana». Materialy i tehnologii VIAM dlya MKS «Energiya–Buran» / pod obsh. red. E.N. Kablova [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya-Buran»]. M.: Nauka i zhizn, 2013. 128 s.
6. Sposob izgotovleniya detalej iz polimernyh kompozicionnyh materialov: pat. №2574269 Ros. Federaciya: №2014145771/05 [Way of manufacturing of details from polymeric composite materials: stalemate. No. 2574269 Rus. Federation: No. 2014145771/05]; zayavl. 14.11.2014; opubl. 10.02. 2016. Byul. №4.
7. Postnov V.I., Satdinov A.I., Strel\'nikov S.V., Antonov A.I., Veshkin E.A. Vliyanie tehnologicheskoj podgotovki proizvodstva na kachestvo izdelij iz PKM [Influence of technological preparation of production on quality of products from PCM] // Aviacionnye materialy i tehnologii. 2009. №3. S. 3–6.
8. Postnov V.I., Veshkin E.A., Abramov P.A. Osobennosti podgotovki polimernogo svyazuyushhego dlya snizheniya poristosti stekloplastikov, poluchaemyh metodom vakuumnogo formovaniya [Features of preparation polymeric binding for decrease in porosity of the fibreglasses received by method of vacuum formation] // Izvestiya Samarskogo nauchnogo centra RAN. 2011. T. 13. №4 (2). S. 462–468.
9. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detalej iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PCM at vacuum formation] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2012. T. 14. №4 (3). S. 834–839.
10. Veshkin E.A. Osobennosti bezavtoklavnogo formovaniya nizkoporistykh PKM [Features of out-of-autoclave forming of poor-porous PCM] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2016. №2. St. 07. Available at: http://www.viam-works.ru (accessed: June 15, 2017). DOI 10.1857/2307-6046-2016-0-2-7-7
11. Semenychev V.V., Salahova R.K. Pribor dlya ocenki svojstv pokrytij [The device for assessment of properties of coverings] // Zavodskaya laboratoriya. Diagnostika materialov. 2017. T. 83. №2. S. 60–65.
12. Semenychev V.V. Nikelirovanie stali metodom elektronatiraniya [Nickel plating became method of electronation] // Galvanotehnika i obrabotka poverhnosti. 2017. №1. S. 23–27.
13. Semenychev V.V., Panarin A.V. Primenenie sklerometrii dlya povysheniya informativnosti izmeryaemyh harakteristik hromovyh i nikelevyh pokrytij [Application of sclerometry for more informativeness measured characteristics of chromium and nickel coatings] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №3 (21). St. 05. Available at: http://www. materialsnews.ru (accessed: June 15, 2017).
14. Semenychev V.V., Salahova R.K. Ocenka adgezii nikel-kobaltovogo pokrytiya k steklo- i ugleplastiku metodom carapanya [Evaluation of nickel-cobalt coating adhesion to fiberglass and carbon fiber–reinforced plastic by scratching] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7 (43). St. 06. Available at: http://www.viam-works.ru (accessed: June 15, 2017). DOI: 10.18577/2307-6046-2016-0-7-6-6.
15. Semenychev V.V., Salahov R.K. Sklerometriya kak metod ocenki intensivnosti mezhkristallitnoj korrozii [Sclerometry as method of assessment of intensity between crystallite corrosion] // Korroziya: materialy, zashhita. 2015. №12. S. 37–41.
16. Panarin A.V., Semenychev V.V. Ocenka tribotehnicheskih harakteristik karbidohromovogo pokrytiya [Assessment of tribotechnical characteristics of carbazochrome covering] // Fizika i himiya obrabotki materialov. 2016. №5. S. 65–70.
17. Ilin V.A., Postnov V.I., Semenychev V.V., Petuhov V.I., Nikitin K.E. Effektivnost sovremennyh naukoemkih tehnologij [Efficiency of modern high technologies] // Aviacionnye materialy. Izbrannye trudy «VIAM»: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 413–416.
18. Benjamin P., Weaver C. Measurement of Adhesion of Thin Films // Proc. Royal. Society. London. 1960. P. 163–176.
19. Weaver C. Adhesion of Thin Films // Vac. Sci. Technol. 1975. P. 18–25.
20. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.

DOI: 10.18577/2071-9140-2018-0-1-46-51

UDC: 620.1:669.018.95

Pages: 46-51

A.V. Mazaev1

[1] Federal State Budgetary Institution of High Education «Voronezh State University»,

STRENGTH ANALYSIS OF EXPERIMENTAL PANELS FROM COMPOSITE SIAL-3-1 AND ALLOY D16ch.-AT BY A FINITE ELEMENT METHOD

The strength analysis of experimental panels of four variants from SIAL-3-1 metal-polymer composite and two variants from D16ch.-AT aluminium alloy has been performed. The difference between the samples consisted in stage-by-stage change of their shape - adding variable thickness and double curvature thereof. The strength properties have been determined by the finite element method using APM WinMachine 12 XE software package in accordance with Mises criterion. According to the static calculation results, the comparative table of yield and strength factors has been prepared; the weight of samples has been specified. The advantages of the panel of double curvature and variable thickness made from SIAL-3-1 for application in paneling of aviation equipment parts have been revealed.

Keywords: metal-polymer composite, SIAL-3-1, strength analysis, aluminium glass fiber reinforced plastic, double curvature, variable thickness, finite element method, strength gradient, fire resistance, yield and strength factors, APM WinMachine 12 XE, APM Structure3D.

Reference List

1. Around Glare a new aircraft material in context // The Netherlands, Delft university of technology / ed. by Vermeeren C. Kluwer Academic Publishers, 2002. 216 p.
2. Senatorova O.G., Antipov V.V., Lukina N.F., Sidelnikov V.V. i dr. Vysokoprochnye treshhinostojkie legkie sloistye alyumostekloplastiki klassa SIAL – perspektivnyj material dlya aviacionnyh konstrukcij [High-strength crack resistant lungs layered aluminum fibreglasses class SIAL – perspective material for aviation designs] // Tehnologiya legkih splavov. 2008. №2. 10 s.
3. Sinmazçelik T., Avcu E., Bora M.Ö., Çoban O. Fibre metal laminates, background, bonding types and applied test methods: review // Turkey: Materials & Design. 2011. Vol. 32. No. 15 P. 3671–3685.
4. Antipov V.V., Senatorova O.G., Sidelnikov V.V., Shestov V.V. Konstrukcionnye sloistye materialy SIAL [SIAL constructional layered materials] // Klei. Germetiki. Tehnologii. 2012. №6. 13 s.
5. Sagdeeva Yu.A., Kopysov S.P., Novikov A.K. Vvedenie v metod konechnyh elementov [Introduction in method of final elements]. Izhevsk: Izd-vo Udmurtskogo un-ta, 2011. 44 s.
6. Sapunov V.T. Teoriya plastichnosti. Ploskaya zadacha. Ekstremalnye principy i energeticheskie metody resheniya. Zakony, uravneniya i zadachi ciklicheskoj plastichnosti [Plasticity theory. Flat task. Extreme principles and power methods of the decision. Laws, equations and problems of cyclic plasticity]. M.: NIYaU MIFI, 2010. 124 s.
7. Kompas-3D V16: rukovodstvo polzovatelya [V16 compass-3D: user\'s guide]. SPb.: ASKON, 2016. 2590 s.
8. Zamrij A.A. Proektirovanie i raschet metodom konechnyh elementov trehmernyh konstrukcij v srede APM Structure3D [Design and calculation by method of final elements of three-dimensional designs in the environment of APM Structure3D]. M.: APM, 2006. 289 s.
9. APM Structure3D. Sistema rascheta i proektirovaniya detalej i konstrukcij metodom konechnyh elementov: rukovodstvo polzovatelya [APM Structure3D. System of calculation and design of details and designs method of final elements: user\'s guide]. M.: APM, 2015. 53 s.
10. Fokin V.G. Metod konechnyh elementov v mehanike deformiruemogo tverdogo tela [Method of final elements in mechanics of deformable solid body]. Samara: SGTU, 2010. 131 s.
11. Mazaev A.V., Ivanova Yu.V. Osobennosti tehnologii izgotovleniya paneli dvojnoj krivizny i peremennoj tolshhiny iz kompozita SIAL [Features of manufacturing techniques of the panel of double curvature and variable thickness from SIAL composite] // Nauchnyj vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitelnogo universiteta. Ser.: Innovacii v stroitelstve. 2017. №3. C. 76–82.
12. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Kleyashhie materialy v konstrukcii lopastej vertoletov [Gluing materials in the design of blades of helicopters] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 07. Available at: http://www.viam-works.ru (accessed: October 23, 2017). DOI: 10.18577/2307-6046-2016-0-7-7-7.
13. Botelho E.C., Silva R.A., Pardini L.C., Rezende M.C. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures // Materials Research. 2006. No. 3. P. 247–256.
14. Antipov V.V. Tehnologichnyj alyuminijlitievyj splav 1441 i sloistye gibridnye kompozity na ego osnove [Technological alyuminiylitiyevy alloy 1441 and layered hybrid composites on its basis] // Metallurg. 2012. №5. 11 s.
15. Lukina N.F., Dementeva L.A., Anihovskaya L.I. Kleevye prepregi dlya sloistyh alyumostekloplastikov klassa SIAL [Glue prepregs for layered aluminum fiberglasses class SIAL] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №1. St. 05. Available at: http://www.viam-works.ru (accessed: October 23, 2017). DOI: 10.18577/2307-6046-2014-0-1-5-5.
16. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // FGUP «VIAM»: [ofic. sajt.]. Available at: https://viam.ru/layered_materials (accessed: October 23, 2017).
17. Antipov V.V., Senatorova O.G., Sidelnikov V.V. Issledovanie pozharostojkosti sloistyh gibridnyh alyumostekloplastikov klassa SIAL [Investigation of the fire resistance of hybrid aluminium-glassplastic SIAL laminates] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 04. Available at: http://viam-works.ru (accessed: October 23, 2017).

DOI: 10.18577/2071-9140-2018-0-1-52-57

UDC: 678.8

Pages: 52-57

E.Yu. Aristova1, V.A. Denisova1, V.S. Drozhzhin1, M.D. Kuvaev1, S.A. Kulikov1, N.V. Maximova1, I.V. Pikulin1, G.A. Potemkin1, S.A. Redyushev1, G.Yu. Samsonov1, Yu.V. Skorochkin1

[1] Federal State Unitary Enterprise «Russian Federal Nuclear Center - All-Russian Scientific-Research Institute of Experimental Physics»,

COMPOSITE MATERIALS USING HOLLOW MICROSPHERES

FSUE «RFNC-VNIIEF» has developed experimental and methodological bases which allow producing and studying hollow microspheres made from different materials. Laboratory technologies for producing microspheres with various functional properties as follows: durable, lightweight, carbonor metallized oneshave been developed. Through the use of microspheres layered carbon material has been developed for the use in structures operating at up to 2000°C temperatures, as well as low-density materials designed for volumetric fixture of radioelectronic elements and for damping of shock effects on automatic equipment when acceleration up to 10000 g have also been developed.

Keywords: hollow microspheres, hydrostatic strength, layered carbon material, low-density material, damping, carbonization of microspheres, metallization of microspheres

Reference List

1. Polye mikrosfery v zolah unosa elektrostancij: sbornik nauchnyh statej / pod red. V.S. Drozhzhina [Hollow microspheres in halls of ablation of power plants: collection of scientific articles / ed. by V.S. Drozhzhin]. Sarov: RFYaC–VNIIEF, 2009. 125 s.
2. Napolniteli dlya polimernyh kompozicionnyh materialov: spravochnoe posobie / pod red. G.S. Kaca, D.V. Milevski [Fillers for polymeric composite materials: handbook / ed. by G.S. Kats, D.V. Milevski]. M.: Himiya, 1981. 736 s.
3. Nepyshnevskij V.M., Frolova L.A., Lykov M.V., Rybakov N.S. Pererabotka fenoloformaldegidnyh oligomerov v mikroballony [Processing of phenolformaldehyde oligomers in microcylinders] // Plasticheskie massy. 1967. №7. S. 44–46.
4. Gurtovnik I.G., Sokolov V.I., Trofimov N.N., Shalgunov S.G. Radioprozrachnye izdeliya iz stekloplastikov [Radio transparent products from fibreglasses]. M.: Mir, 2002. S. 50–55.
5. Stend dlya izgotovleniya mikrosfer: pat. na poleznuyu model 43476 Ros. Federaciya. №2004127348/22 [The stand for manufacturing of microspheres: pat. on useful model 43476 of Rus. Federation. No. 2004127348/22]; zayavl. 13.09.04; opubl.27.01.05.
6. Vysokotemperaturnaya vertikalnaya pech dlya polucheniya mikrosfer: pat. na poleznuyu model 69062 Ros. Federaciya. №2007127456/22[The high-temperature vertical furnace for receiving microspheres: pat. on useful model 69062 of Dews. Federation. No. 2007127456/22]; zayavl. 17.07.07; opubl.10.12.07.
7. Drozhzhin V.S., Kuvaev M.D., Pikulin I.V. i dr. Processy obrazovaniya i osnovnye svojstva polyh alyumosilikatnyh mikrosfer v zolah unosa teplovyh elektrostancij [Processes of education and the main properties of hollow silica-alumina microspheres in halls of ablation of thermal power stations] // Himiya tverdogo topliva. 2008. №2. S. 53–66.
8. Sposob otbora mikrosfer po prochnosti k zadannomu davleniyu: prioritet na pat. №2016139216 [Way of selection of microspheres on durability to the set pressure: priority on pat. No. 2016139216] ot 5.10.16.
9. Sposob izgotovleniya reziny iz elastomernoj kompozicii na osnove sinteticheskogo kauchuka: pat. 2586092 Ros. Federaciya. №2014142734/05 [Way of manufacturing of rubber from elastomeric composition on the basis of synthetic rubber: pat. 2586092 Rus. Federation. No. 2014142734/05]; zayavl. 22.10.14; opubl. 10.06.16.
10. Shihta dlya izgotovleniya nizkoplotnogo materiala dlya zashhity priborov ot mehanicheskih vozdejstvij i sposob izgotovleniya nizkoplotnogo materiala dlya zashhity priborov ot mehanicheskih vozdejstvij: pat. 2394851 Ros. Federaciya. №2008101615/04 [Blend for manufacturing of low-density material for protection of devices against mechanical influences and way of manufacturing of low-density material for protection of devices against mechanical influences: pat. 2394851 Rus. Federation. No. 2008101615/04]; zayavl. 15.01.08; opubl. 20.07.10.
11. Sposob zashhity apparatury ot udarnyh vozdejstvij: pat. 2385554 Ros. Federaciya. №2008145347/09 [Way of protection of equipment from shock influences: pat. 2385554 Rus. Federation. No.2008145347/09]; zayavl. 17.11.08; opubl. 27.03.10.
12. Sposob metallizacii poroshkov i mikrosfer iz gazovoj fazy i ustrojstvo dlya ego osushhestvleniya: pat. 2307004 Ros. Federaciya. №2005131339/02 [Way of metallization of powders and microspheres from gas phase and the device for its implementation: pat. 2307004 Rus. Federation. No. 2005131339/02]; zayavl. 10.10.05; opubl. 27.09.07.

DOI: 10.18577/2071-9140-2018-0-1-58-63

UDC: 678.8

Pages: 58-63

G.F. Zhelezina1, N.A. Solovieva1, K.V. Makrushin1, L.S. Rysin2

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,
[2] State research center of the Russian Federation Federal state unitary enterprise «P.I. Baranov Central Institute of Aviation Motor Development»,

POLYMER COMPOSITE MATERIALS FOR MANUFACTURING ENGINE AIR PARTICLE SEPARATION OF ADVANCED HELICOPTER ENGINE

In the article information on properties of polymer composite materials for engine air particle separation (EAPS) of helicopter engine and bench test results of lambda shaped engine air particle separation, which was made of polymer composite materials, in conditions close to the real operating conditions of helicopters is given. Application of polymer composite materials in construction of engine air particle separation of advanced helicopter engine will allow improving their weight and protective characteristics.

Keywords: polymer composite material, carbon fiber reinforced plastic, organoplastic, engine air particle separation, helicopter engine

Reference List

1. Duyar A., Gu Zh., Litt J.S. A Simplified Dynamic Model of the T700 Turboshaft Engine // Journal of the American Helicopter Society. 1995. Vol. 40 (4). P. 62–70.
2. Chen R., Wen C.Y., Lorente S., Bejan A. The evolution of helicopters // Journal of Applied Physics. 2016. Vol. 120. No. 1. P. 1–7.
3. Rysin L.S. Eshhe raz o pyli [Once again about dust] // Dvigatel. 2009. №5. S. 10.
4. Gishvarov A.S., Aitov R.R., Ajtumbetov A.M. Issledovanie effektivnosti pylezashhitnyh ustrojstv vertoletnyh gazoturbinnyh dvigatelej [Research of efficiency of dust-protection devices of helicopter gas turbine engines] // Vestnik UGATU. 2015. T. 19. №2 (68). S. 100–110.
5. Kablov E.N. Materialy dlya aviakosmicheskoj tehniki [Materials for aerospace equipment] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №5. S. 7–27.
6. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
7. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
8. Gunyaev G.M., Krivonos V.V., Rumyancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukciyah letatelnyh apparatov [Polymeric composite materials in designs of flight vehicles] // Konversiya v mashinostroenii. 2004. №4 (65). S. 65–69.
9. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
10. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: July 01, 2017).
11. Shuldeshova P.M., Zhelezina G.F. Vliyanie atmosfernyh uslovij i zapylennosti sredy na svojstva konstrukcionnyh organoplastikov [An influence of atmospheric condition and dust loading on properties of structural organic plastics] // Aviacionnye materialy i tehnologii. 2014. №1. S. 64–68. DOI: 10.18577/2071-9140-2014-0-1-64-68.
12. Zhelezina G.F., Vojnov S.I., Chernyh T.E., Chernyh K.Yu. Novye aramidnye volokna Rusar NT dlya armirovaniya konstrukcionnyh organoplastikov [New aramide fibers Rusar NT for reinforcing constructional organoplastics] // Voprosy materialovedeniya. 2015. №1 (81). S. 60–72.
13. Zhelezina G.F., Shuldeshova P.M. Konstrukcionnye organoplastiki na osnove plenochnyh kleev [Constructional organoplastics on the basis of film glues] // Klei. Germetiki. Tehnologii. 2014. №2. S. 9–14.
14. Shuldeshova P.M., Zhelezina G.F. Aramidnyj sloisto-tkanyj material dlya zashhity ot ballisticheskih i udarnyh vozdejstvij [The aramid layered and woven material for protection against impact and ballistic influences] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 06. Available at: http://www.viam-works.ru (accessed: July 01, 2017). DOI: 10.18577/2307-6046-2014-0-9-6-6.
15. Zhelezina G.F., Solov\'eva N.A., Orlova L.G., Vojnov S.I. Ballisticheski stojkie aramidnye sloisto-tkanye kompozity dlya aviacionnyh konstrukcij [Ballistic resistant aramide layered and woven composites for aviation designs ] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №12. S. 23–26.
16. Zhelezina G.F. Osobennosti razrusheniya organoplastikov pri udarnyh vozdejstviyah [Features of destruction organoplastikov at shock influences] // Aviacionnye materialy i tehnologii. 2012. №S. S. 272–277.
17. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.

DOI: 10.18577/2071-9140-2018-0-1-64-70

UDC: 678.067.5

Pages: 64-70

A.O. Kurnosov1, M.I. Vavilova1, D.A. Melnikov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

MANUFACTURING TECHNOLOGIES OF GLASS FILLERS AND STUDY OF EFFECTS OF FINISHING MATERIAL ON PHYSICAL AND MECHANICAL PROPERTIES OF FIBERGLASS PLASTICS

The main types of glass fillers used in the manufacture of fiberglass plastics are considered in the article. Data on types and properties of glasses are most widely used in the production of fillers with a description of production technology of glass fiber, as well as the application of lubricating agents and finishing materials are given. The main principles of improving the stability of the properties of GRP due to improvement of interaction of filler and a polymer binder are described. The physicomechanical characteristics of glass-fiber reinforced plastics based on the binder with the addition of an active additive (product AGM-9), as well as fillers with different types of finishing materials were studied.

Keywords: polymer composite materials, glass-fiber reinforced plastics, glass fillers, fiberglass, fabrics, glass, finishing agent

Reference List

1. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: April 20, 2017).
2. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Kurnosov A.O., Melnikov D.A., Sokolov I.I. Stekloplastiki konstrukcionnogo naznacheniya dlya aviastroeniya [Structural glass-reinforced plastics purposed for aviation industry] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 08. Available at: http://viam-works.ru (accessed: April 20, 2017). DOI: 10.18577/2307-6046-2015-0-8-8-8.
5. Kurnosov A.O., Sokolov I.I., Melnikov D.A., Topunova T.E. Pozharobezopasnye stekloplastiki dlya interera passazhirskih samoletov (obzor) [Fireproof fiberglass for interior of passenger aircraft (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 07. Available at: http://www.viam-works.ru (accessed: May 01, 2017.). DOI: 10.18577/2307-6046-2015-0-11-7-7.
6. Melnikov D.A., Gromova A.A., Raskutin A.E., Kurnosov A.O. Teoreticheskij raschet i eksperimentalnoe opredelenie modulya uprugosti i prochnosti stekloplastika VPS-53/120 [Theoretical calculation and experimental determination of modulus of elasticity and strength of GRP VPS-53/120] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №1 (49). St. 08. Available at: http://www.viam-works.ru (accessed: April 17, 2017). DOI: 10.18577/2307-6046-2017-0-1-8-8.
7. Gutnikov S.I., Lazoryak B.I., Seleznev A.N. Steklyannye volokna: ucheb. posobie [Glass fibers: manual]. M.: MGU, 2010. S. 27–39.
8. Pervushin Yu.S., Zhernakov V.S. Proektirovanie i prognozirovanie mehanicheskih svojstv odnonapravlennogo sloya iz kompozicionnogo materiala: ucheb. posobie [Design and forecasting of mechanical properties of the unidirectional layer from composite material: manual]. Ufa: Ufimsk. gos. aviac. tehn. un-t, 2002. 127 s.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Sidorina A.I., Gunyaeva A.G. Tkanye armiruyushhie napolniteli dlya polimernyh kompozicionnyh materialov. Obzor [Woven reinforcing fillers for polymeric composite materials. Overview] // Himicheskie volokna. 2017. №2. S. 20–23.
11. Mihajlin Yu.A. Voloknistye polimernye kompozicionnye materialy v tehnike [Fibrous polymeric composite materials in equipment]. SPb.: Nauchnye osnovy i tehnologii, 2015. 102 s.
12. Plastiki konstrukcionnogo naznacheniya (reaktoplasty) / pod red. E.B. Trostyanskoj [Plastics of constructional assignment (thermosets) / ed. by E.B. Trostyanskaya]. M.: Himiya, 1974. 120 s.
13. Ivashhenko E.A. Zamaslivateli i apprety dlya bazaltovyh i steklyannyh volokon [Oil contamination and apprety for basalt and glass fibers] // Himicheskaya tehnologiya. 2008. T. 9. №1. S. 16–20.
14. Gunyaev G.M. Struktura i svojstva polimernyh voloknistyh kompozitov [Structure and properties of polymeric fibrous composites]. M.: Himiya, 1981. 232 s.
15. Muhammadieva G.F., Karimova L.K., Bakirov A.B. i dr. Profilaktika onkologicheskogo riska u rabotnikov proizvodstva steklovolokna [Prevention of oncological risk at workers of production of fiber glass] // Analiz riska zdorovyu. 2016. №3. St. 09. URL: http://www.journal.fcrisk.ru (data obrashheniya: 25.05.2017). DOI: 10.21668/health.risk/2016.3.09.
16. Vavilova M.I., Kavun N.S. Svojstva i osobennosti armiruyushhih steklyannyh napolnitelej, ispolzuemyh dlya izgotovleniya konstrukcionnyh stekloplastikov [The properties of glass filler for constructions of fiberglass] // Aviacionnye materialy i tehnologii. 2014. №3. S. 33–37. DOI: 10.18577/2071-9140-2014-0-3-33-37.
17. GOST 19170–2001. Steklovolokno. Tkan konstrukcionnogo naznacheniya [State Standard 19170–2001. Fiber glass. Fabric of constructional assignment]. Minsk: Mezhgosudarstvennyj sovet po standartizacii, metrologii i sertifikacii, 2001. 11 s.
18. Golubenkova L.I. Armirovannye polimernye materialy / pod red. Z.A. Rogovina, P.M. Valeckogo, M.L. Karbera [The reinforced polymeric materials / ed. Z.A. Rogovin, P.M. Valeckij, M.L. Karber]. M.: Mir, 1968. 244 s.

DOI: 10.18577/2071-9140-2018-0-1-71-76

UDC: 669.017:669.715

Pages: 71-76

L.V. Morozova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

RESEARCH OF CAUSES AND FRACTURE PATTERN OF AIR INTAKE PARTS FROM AK4-1 ALLOY

Complex research of several cases of operational destructions of air intake parts from AK4-1 alloy is conducted. Microstructure, chemical composition and destruction mechanism of the air intake parts are studied with the methods of optical and electron microscopy, X-ray diffraction and chemical analysis. It is established that air intake parts destruction has occurred because of cyclic load. In most cases air intake parts destruction was promoted by microdamages availability which arisen during surface machining.

Keywords: destruction, fracture, aluminum alloy, fatigue, fractography

Reference List

1. Beleckij V.M., Krivov G.A. Alyuminievye splavy. Sostav, svojstva, tehnologiya, primenenie: spravochnik / pod obshh. red. I.N. Fridlyandera [Aluminum alloys. Structure, properties, technology, application: directory / gen. ed. by I.N. Fridlyander]. Kiev: Kominteh, 2005. 365 s.
2. Alyuminievye splavy. Metallovedenie alyuminiya i ego splavov: spravochnoe rukovodstvo [Metallurgical science of aluminum and its alloys: reference guide]. M.: Metallurgiya, 1971. 352 s.
3. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
4. Fridlyander I.N., Senatorova O.G., Tkachenko E.A., Molostova I.I. Razvitie i primenenie vysokoprochnyh splavov sistemy Al–Zn–Mg–Cu dlya aviakosmicheskoj tehniki [Development and application of high-strength alloys of Al–Zn–Mg–Cu system for aerospace equipment] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 155–163.
5. Mondolfo L.F. Struktura i svojstva alyuminievyh splavov. Per. s angl. [Structure and properties of aluminum alloys. Trans. from Eng.]. M.: Metallurgiya, 1979. 640 s.
6. Alieva S.G., Altman M.B., Ambarcumyan S.M. i dr. Promyshlennye alyuminievye splavy. 2-e izd., pererab. i dop. [Industrial aluminum alloys. 2nd ed., rev. and. add.]. M.: Metallurgiya, 1984. 528 s.
7. Belyaev M.S., Zhukov N.D. Vliyanie koncentracii napryazhenij na soprotivlenie ustalosti zharoprochnyh nikelevyh splavov [Influence of concentration of tension on resistance of fatigue of heat resisting nickel alloys] // Problemy prochnosti. 1984. №5. S. 2–15.
8. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №1. S. 2–10.
9. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
10. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
11. Kablov E.N. Materialy dlya aviakosmicheskoj tehniki [Materials for aerospace equipment] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №5. S. 7–27.
12. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: July 07, 2017).
13. Bronfin M.B., Alekseev A.A., Chabina E.B. Metallofizicheskie issledovaniya. Vozmozhnosti i perspektivy [Metalphysical researches. Opportunities and perspectives] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM. 2007. S. 353–365.
14. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju jekspertizy materialov [Methodical approach to carrying out examination of materials] // Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.

DOI: 10.18577/2071-9140-2018-0-1-77-87

UDC: 669:53.086

Pages: 77-87

V.B. Grigorenko1, L.V. Morozova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

APPLICATION OF THE SCANNING ELECTRON MICROSCOPY FOR STUDYING OF INITIAL DESTRUCTION STAGES

The principle of work of SEM is based on different interactions of an electronic bunch with studied substance that allows using it as the universal tool for receiving images of a surface of object with high spatial resolution and also information on a chemical composition, structure and some other properties of blanket surface layer. Using the scanning electron microscopy, kinetics of accumulation processes of lines, slip bands and corrosive damages within the plastic zone of samples made from aluminum-lithium alloy 1441 has been studied after performing tensile and fatigue tests in “hard” cycle under the combined effects of applied stress and corrosive environment.

Keywords: scanning electron microscope, surface, damage, slip lines, localization of destruction

Reference List

1. Materialy XXI veka: baza dannyh po materialovedeniyu: elektronnyj resurs [Materials of the XXI century: database on materials science: electronic resource]. Available at: http://ism-data.misis.ru (accessed: August 24, 2017).
2. Zworykin V.K., Morton Q.A., Ramberg Ε.Q. et al. Electron Optics and the Electron Microscope. New York: John Wiley & Sons, 1945. 766 p.
3. Panin V.E. Fizicheskaya mezomehanika materialov [Physical mesomechanics of materials]. Tomsk: Izd-vo Tomsk. gos. un-ta, 2015. 920 s.
4. Panin V.E., Kablov E.N., Pochivalov Yu.I., Panin S.V., Kolobnev N.I. Vliyanie nanostrukturirovaniya poverhnostnogo sloya alyuminij-litievogo splava 1424 na mehanizmy deformacii, tehnologicheskie harakteristiki i ustalostnuyu dolgovechnost. Povyshenie plastichnosti i tehnologicheskih harakteristik [Influence of nanostructuring surface layer aluminum-lithium alloy 1424 on deformation mechanisms, technical characteristics and fatigue life. Increase of plasticity and technical characteristics] // Fizicheskaya mezomehanika. 2012. T. 15. №6. S. 107–111.
5. Seong-Woong Kim, Huck Beng Chew, K. Sharvan Kumar. In situ TEM study of crack–grain boundary interactions in thin copper foils // Scripta Materialia. 2013. Vol. 68. P. 154–157.
6. Dun Yu., Aleksandrov I.V., Vang D. Vysokoskorostnoe deformacionnoe povedenie ultramelkozernistoj medi [High-speed deformation behavior of ultrafine-grained copper] // Vestnik Ufimskogo gosudarstvennogo aviacionnogo tehnicheskogo universiteta. 2012. T. 16. №1 (46). S. 98–105.
7. Belikova A.F., Buravova C.N., Gordopolov Yu.A. Lokalizaciya deformacii i svyaz ee s deformirovannym sostoyaniem materiala [Localization of deformation and its communication with the deformed condition of material] // Zhurnal tehnicheskoj fiziki. 2013. T. 83. №2. S. 153–155.
8. Glezer A.M., Shurygina N.A., Zajchenko S.G., Permyakova I.E. Vzaimodejstvie polos deformacionnogo sdviga i nanochastic v amorfno-nanokristallicheskih splavah [Interaction of strips of deformation shift and nanoparticles in amorphous nanocrystalline alloys] // Deformaciya i razrushenie materialov. 2012. №4. S. 2–12.
9. Shibkov A.A., Zolotov A.E., Zheltov M.A. dr. Dinamika deformacionnyh polos i razrushenie alyuminij-magnievogo splava AMg6 [Dynamics of deformation strips and destruction Amg6 aluminum-magnesium alloy] // Fizika tverdogo tela. 2011. T. 53. №10. S. 1873–1878.
10. Zhegina I.P., Morozova L.V. Opredelenie diagnosticheskih priznakov predrazrusheniya po sostoyaniyu poverhnostnyh sloev zharoprochnyh nikelevyh splavov [Definition of pre-destruction diagnostic signs on condition of surface layers of heat resistant nickel alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 04. Available at: http://www.viam-works.ru (accessed: June 24, 2017). DOI: 10.18577/2307-6046-2015-0-4-4-4.
11. Shibkov A.A., Zolotov A.E., Zheltov M.A., Denisov A.A. Deformacionnyj haos i samoorganizaciya na stadii predrazrusheniya splava AMg6 [Deformation chaos and self-organization at stage of predestruction of alloy АМг6] // Fizika tverdogo tela. 2011. T. 53. №10. S. 1879–1884.
12. Zuev L.B., Barannikova S.A. O volnovom haraktere makroskopicheskoj lokalizacii plasticheskoj deformacii metallov [About wave nature of macroscopical localization of plastic strain of metals] // Vestnik Permskogo gosudarstvennogo tehnicheskogo universiteta. Mehanika. 2011. №2. S. 42–63.
13. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
14. Khokhlatova L.B., Kolobnev N.I., Antipov V.V. i dr. Vliyanie korrozionnoj sredy na skorost\' rosta treshhiny ustalosti v alyuminievyh splavah [Influence of the corrosion environment on the growth rate of crack of fatigue in aluminum alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 05. Available at: http://www.viam-works.ru (accessed: June 24, 2017).
15. Kurs M.G., Karimova S.A., Mahsidov V.V. Sravnenie korrozionnoj stojkosti deformiruemyh alyuminievyh splavov pri naturnyh i naturno-uskorennyh ispytaniyah [Comparison of corrosion resistance of deformable aluminum alloys at natural and natural accelerated tests] // Voprosy materialovedeniya. 2013. №1 (73). S. 182–190.
16. Panin S.V., Startsev O.V., Krotov A.S., Medvedev I.M., Frolov A.S. Korroziya i starenie poverhnosti konstrukcionnyh materialov po dannym 3D mikroskopii [Corrosion and aging of structural materials surface studied by 3D microscopy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 12. Available at: http://www.viam-works.ru (accessed: June 24, 2017). DOI: 10.18577/2307-6046-2014-0-12-12-12.
17. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
18. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistyh alyumostekloplastikov na osnove alyuminij-litievogo splava 1441 s ponizhennoj plotnostyu [New class layered alyumostekloplastikov on basis aluminum - lithium alloy 1441 with lowered density] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 174–183.
20. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
21. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.

DOI: 10.18577/2071-9140-2018-0-1-88-94

UDC: 620.179

Pages: 88-94

V.V. Murashov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

APPLICATION OF THE ULTRASONIC RESONANCE METHOD FOR DETECTION OF DEFECTS OF GLUED CONSTRUCTIONS

Physical principals of the ultrasonic resonance method are considered, its applicable scope and advantages before other acoustic methods are indicated. Results of research of operation capabilities of resonance method at non-destructive testing of glued constructions are presented. Dependence of resonance frequency of the loaded probe from diameter and depth of defects for different probes, change of resonance frequency of the loaded probe from defect radius, dependence of resonance frequency of the loaded probe from distance of two defects from each other and from defect distance from design edge for different depth of defects, change of usable sensitivity of resonance method from probe traverse speed on design surface for different thickness of the upper sheet are shown in the article.

Keywords: multilayer glued constructions, non-destructive testing of quality, ultrasonic resonance method

Reference List

1 Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aviation materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
4. Malysheva G.V. Prognozirovanie resursa kleevyh soedinenij [Forecasting of resource of glued joints] // Klei. Germetiki. Tehnologii. 2013. №8. S. 31–34.
5. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. M.: VIAM, 2001. Vyp.: Metody ispytanij i kontrolya kachestva metallicheskih i nemetallicheskih materialov. S. 3–8.
6. Murashov V.V., Rumyancev A.F. Defektoskopiya i diagnostika polimernyh kompozicionnyh materialov akusticheskimi metodami [Defectoscope and diagnostics of polymeric composite materials by acoustic methods] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 342–347.
7. Murashov V.V. Kontrol i diagnostika mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov akusticheskimi metodami [Control and diagnostics of multi-layer designs from polymeric composite materials acoustic methods]. M.: Spektr, 2016. 244 s.
8. Nerazrushayushhij kontrol: spravochnik / pod obshh. red. V.V. Klyueva [Non-destructive testing: directory / gen. ed. by V.V. Klyuev]. M.: Mashinostroenie, 2006. T. 3. Ultrazvukovoj kontrol / I.N. Ermolov, Yu.V. Lange. 864 s.
9. Murashov V.V. Kontrol kleenyh konstrukcij akusticheskim impedansnym metodom [Control of kleeny designs by acoustic impedance method] // Klei. Germetiki. Tehnologii. 2010. №3. S. 21–27.
10. Murashov V.V. Nerazrushayushhij kontrol kleevyh soedinenij [Non-destructive testing of glued joints] // Klei. Germetiki. Tehnologii. 2008. №7. S. 13–20.
11. Murashov V.V. Nondestructive Testing of Glued Joints // Polymer Science. Series D: Glues and Sealing Materials. 2009. Vol. 2. No. 1. Р. 58–63.
12. Murashov V.V. Kontrol monolitnyh i kleenyh konstrukcij iz polimernyh kompozicionnyh materialov akusticheskim impedansnym metodom [Control of monolithic and glued designs from polymeric composite materials acoustic impedance method] // Aviacionnaya promyshlennost. 2009. №3. S. 43–48.
13. Murashov V.V. Attestation of Glued Articles by Acoustic Impedance Method // Polymer Science. Series D: Glues and Sealing Materials. 2010. Vol. 3. No. 4. Р. 267–273.
14. Murashov V.V. Kontrol kleenyh konstrukcij akusticheskim metodom svobodnyh kolebanij [Control of glued designs by acoustic method of free fluctuations] // Klei. Germetiki. Tehnologii. 2012. №4. S. 40–44.
15. Bakunov A.S., Murashov V.V., Sysoev A.M. Kontrol lopastej vozdushnogo vinta sredstvami nizkochastotnoj akustiki [Control of blades of air screw by means of low-frequency acoustics] // Kontrol. Diagnostika. 2012. №6. S. 72–74.
16. Murashov V.V., Generalov A.S. Kontrol mnogoslojnyh kleenyh konstrukcij nizkochastotnymi akusticheskimi metodami [Control of multilayer adhesive structures operating in severe climatic condition] // Aviacionnye materialy i tehnologii. 2014. №2. S. 59–67. DOI: 10.18577/2071-9140-2014-0-2-59-67.
17. Murashov V.V., Trifonova S.I. Kontrol kachestva polimernyh kompozicionnyh materialov ultrazvukovym vremennym sposobom velosimetricheskogo metoda [Quality control of polymer composite materials using ultrasonic time-of-flight velocimetric technique] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 86–90. DOI: 10.18577/2071-9140-2015-0-4-86-90.
18. Murashov V.V. Vyyavlenie zon otsutstviya adgezionnogo soedineniya sloev v mnogoslojnyh konstrukciyah [Identification of zones of lack of adhesive connection of layers in multi-layer designs] // Klei. Germetiki. Tehnologii. 2013. №3. S. 29–31.
19. Karabutov A.A., Murashov V.V., Oraevsky A.A., Podymova N.B. Nondestructive characterization of layered composite materials with a laser optoacoustic sensor // Conf. «Nondestructive Evaluation of Materials and Composites II» (San Antonio, Texas, March-April, 1998). San Antonio: The International Society for Optical Engineering. 1998. Vol. 3396. P. 103–111.
20. Kablov E., Murashov V., Rumyantsev A. Diagnostics of Polymer Composites by Acoustic Methods // Ultrasound. Kaunas: Tecnologija. 2006. No. 2. Р. 7–10.
21. Murashov V.V., Rumyancev A.F., Ivanova G.A., Fajzrahmanov N.G. Diagnostika struktury, sostava i svojstv polimernyh kompozicionnyh materialov [Diagnostics of structure, structure and properties of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2008. №1. S. 17–24.
22. Murashov V.V., Rumyancev A.F. Diagnostika sostava i svojstv polimernyh kompozitov v detalyah i konstrukciyah [Diagnostics of structure and properties of polymeric composites in details and designs] // Kontrol. Diagnostika. 2008. №8. S. 13–17.
23. Murashov V.V. Kontrol mnogoslojnyh kleenyh konstrukcij iz polimernyh kompozicionnyh materialov [Control of multi-layer glued designs from polymeric composite materials] // Klei. Germetiki. Tehnologii. 2011. №10. S. 16–23.
24. Sposob opredeleniya prochnosti soedineniya detalej integralnyh konstrukcij iz polimernyh kompozicionnyh materialov: pat. 2262099 Ros. Federaciya [Way of determination of durability of connection of details of integral designs from polymeric composite materials: pat. 2262099 Rus. Federation]; opubl. 10.10.05, Byul. №28.
25. Murashov V.V. K voprosu opredeleniya uprugih i prochnostnyh svojstv polimernyh kompozicionnyh materialov akusticheskim kompleksnym metodom [To question of determination of elastic and strength properties of polymeric composite materials acoustic complex method] // Deformaciya i razrushenie materialov. 2014. №11. S. 39–45.
26. Murashov V.V., Mishurov K.S. Opredelenie poristosti ugleplastikov v aviacionnyh konstrukciyah ultrazvukovym metodom [The determinations of carbon fiber reinforced plastics porosity in aircraft constructions by the ultrasonic method] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 88–92.
27. Murashov V.V. Identification of Areas of Absence of Adhesive Bonding between Layers in Multilayer Structures // Polymer Science. Series D. Glues and Sealing Materials. 2014. Vol. 7. No. 1. Р. 46–48.
28. Sposob opredeleniya fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov v konstrukciyah ultrazvukovym metodom: pat. 2196982 Ros. Federaciya [Way of definition of physicomechanical characteristics and composition of polymeric composite materials in designs ultrasonic method: pat. 2196982 Rus. Federation]; opubl. 20.01.03, Byul. №2.
29. Murashov V. Non-destructive testing and evaluation designs by the acoustic methods. Saarbrücken, Germany: LAMBERT Academic Publishing, 2017. 167 p.
30. Schliekelmann R.J. Non-destructive testing of bonded joints // Non-Destructive Testing. 1975. Vol. 8. No. 2. P. 100–103.
31. Murashov V.V., Laptev A.S. Kontaktnye zhidkosti dlya sozdaniya akusticheskogo kontakta pri ultrazvukovom kontrole mnogoslojnyh konstrukcij iz PKM [Contact liquids for creation of an acoustic contact at ultrasonic control of multi-layer structures from PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 10. Available at: http://viam-works.ru (accessed: May 30, 2017). DOI: 10.18577/2307-6046-2015-0-8-10-10.