Archive

Aviation materials and tecnologes №3, 2018

DOI: 10.18577/2071-9140-2018-0-3-3-10

UDC: 669.017.165:669.295

Pages: 3-10

D.A. Dzunovich1, E.A. Lukina2, A.L. Yakovlev1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Moscow Aviation Institute (National Research University),

INFLUENCE OF HEAT TREATMENT PARAMETERS ON PRODUCIBILITY AND MECHANICAL PROPERTIES OF SHEETS MADE FROM HIGH-STRENGTH TITANIUM ALLOY VT23

The influence of the vacuum heat treatment parameters on structural phase state, technological plasticity at room temperature, and mechanical properties of industrial sheets from VT23 alloy with 2,5 mm thickness was studied. It is shown that the developed parameters of double-stage annealing makes it possible to form two-phase structure with α-particle size of 5-7 μm and β-stabilization coefficient at the level of similar characteristics for pseudo-β-alloys. This treatment provides the angle of bend of the sheets during three-point bend tests at room temperature after load removal at least 100 degrees. It is established that the subsequent hardening heat treatment according to the developed two-stage mode allows achieving strength levels in the sheets above 1000 MPa.

Keywords: VT23 alloy, sheet, phase composition, structure, heat treatment, texture, angle of bend, anisotropy, mechanical properties

Reference List

1. Kablov E.N. Iz chego sdelat budushchee? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Antashev V.G., Nochovnaya N.A., Shiryaev A.A., Izotova A.Yu. Perspektivy razrabotki novykh titanovykh splavov [Perspectives of development of new titanium alloys] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. Cpetsvypusk: Perspektivnye konstruktsionnye materialy i tekhnologii. S. 60–67.
4. Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Zakonomernosti formirovaniya strukturno-fazovogo sostoyaniya splavov na osnove orto- i gamma-alyuminidov titana v protsesse termomekhanicheskoj obrabotki [Patterns of forming of structural and phase condition of alloys on basis orto-and titanium gamma aluminides in the course of thermomechanical processing] // Vestnik Rossijskogo fonda fundamentalnykh issledovanij. 2015. №1 (85). S. 18–26.
5. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallidnye splavy na osnove titana i nikelya [Intermetallic titanium-based alloys and nickel]. M.: VIAM. 2018. 308 s.
6. Kolachev B.A., Polkin I.S., Talalaev V.D. Titanovye splavy raznykh stran [Titanium alloys of the different countries]. M.: VILS, 2000. 318 s.
7. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoj tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
8. Vozdvizhenskij V.M., Zhukov A.A., Postnova A.D., Vozdvizhenskaya M.V. Splavy tsvetnykh metallov dlya aviatsionnoj tekhniki [Non-ferrous alloys for aviation engineering]. Rybinsk: RGATA, 2002. 219 s.
9. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: June 04, 2018).
10. Ilin A.A., Skvortsova S.V., Dzunovich D.A., Panin P.V., Shalin A.V. Vliyanie parametrov termicheskoj i termomekhanicheskoj obrabotki na teksturoobrazovanie v listovykh polufabrikatakh iz titanovykh splavov [Influence of parameters of thermal and thermomechanical processing on textureformation in sheet semi-finished products from titanium alloys] // Tekhnologiya mashinostroeniya. 2012. №8. S. 8–12.
11. Ilin A.A., Skvortsova S.V., Spektor V.S., Lukina E.A., Petrov L.M. Nizkotemperaturnoe vakuumnoe ionno-plazmennoe azotirovanie titanovykh splavov raznykh klassov [Low-temperature vacuum ion plasma nitriding of titanium alloys of different classes] // Tekhnologiya legkikh splavov. 2008. №3. S. 103–111.
12. Skvortsova S.V., Popova Yu.A., Panin P.V., Grushin I.A., Kuryshev E.A. Vliyanie termicheskoj obrabotki na strukturu i svojstva svarnykh soedinenij iz titanovogo splava VT23 [Influence of thermal processing on structure and property of welded connections from BT23 titanium alloy] // Titan. 2011. №2. S. 16–21.
13. Skvortsova S.V., Filatov A.A., Dzunovich D.A., Panin P.V. Vliyanie soderzhaniya alyuminiya na deformiruemost titanovykh splavov pri normalnoj temperature [Influence of the content of aluminum on deformability of titanium alloys at normal temperature] // Tekhnologiya legkikh splavov. 2008. №3. S. 40–45.
14. Aviatsionnye materialy: spravochnik v 13 t. 7-e izd., pererab. i dop. / pod obshch. red. E.N. Kablova [Aviation materials: the directory in 13 vol. 7th prod., rev. and add. / gen ed. by E.N. Kablov]. M.: VIAM, 2010. T. 6: Titanovye splavy. 96 s.
15. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
16. Yakovlev A.L., Filatov A.A., Burkhanova A.A., Popova Yu.A., Nochovnaya N.A. Effektivnost primeneniya titanovogo splava VT23 v novykh izdeliyakh «OKB Sukhogo» [Efficiency of application of BT23 titanium alloy in new products of «Sukhoi Design Bureau»] // Titan. 2013. №2 (40). S. 39–42.
17. Khorev A.I. Titanovyj splav VT23 i ego sravnenie s luchshimi zarubezhnymi splavami [VT23 titanium alloy and its comparison with the best foreign alloys] // Titan. 2006. №1 (18). S. 47–52.
18. Khopev A.I. Kompleksno-legipovannyj titanovyj splav VT23 univepsalnogo ppimeneniya [Complex alloyage VT23 titanium alloy of universal application] // Tekhnologiya mashinostpoeniya. 2007. №7. S. 5–11.
19. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanopolimernye sloistye materialy [Titanium-polymer laminated materials] // Aviacionnye materialy i tehnologii. 2016. №S2 (44). S. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
20. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Perspektivy ispolzovaniya titanovyh splavov v sloistyh kompozicionnyh materialah [Prospects for the use of titanium alloys in laminated composite materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 04. Available at: http://www.viam-works.ru (accessed: June 06, 2018). DOI: 10.18577/2307-6046-2015-0-10-4-4.
21. Alekseev E.B., Nochovnaya N.A., Panin P.V., Novak A.V. Tehnologicheskaya plastichnost, struktura i fazovyj sostav opytnogo titanovogo orto-splava, soderzhashhego 13% (po masse) alyuminiya [Technological plasticity, structure and phase composition of a pilot titanium ortho alloy with 13 wt. рct. aluminum] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 08. Available at: http://www.viam-works.ru (accessed: June 05, 2017). DOI: 10.18577/2307-6046-2015-0-12-8-8.
22. Skvortsova S.V., Filatov A.A., Afonina M.B., Ruchina N.V., Dzunovich D.A. Vliyanie sostava i struktury na tekhnologicheskuyu plastichnost titanovykh splavov [Influence of structure and structure on technological plasticity of titanium alloys] // Nauchnye trudy MATI im. K.E. Tsiolkovskogo. 2005. Vyp. 9 (81). S. 23–29.
23. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
24. Bratukhin A.G. Sovremennye aviatsionnye materialy: tekhnologicheskie i funktsionalnye osobennosti [Modern aviation materials: technological and functional features]. M.: Aviatekhinform, 2003. 440 s.
25. Bratukhin A.G., Kolachev B.A., Sadkov V.V. i dr. Tekhnologiya proizvodstva titanovykh samoletnykh konstruktsij [Production technology of titanic aircraft designs]. M.: Mashinostroenie, 1995. 448 s.
26. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
27. Zolotorevskij V.S. Mekhanicheskie svojstva metallov: 2-e izd., pererab. i dop. [Mechanical properties of metals: 2nd ed., rev. and add.]. M.: Metallurgiya, 1983. 351 s.
28. Novikov I.I. Teoriya termicheskoj obrabotki metallov: ucheb. dlya vuzov. 3-e izd., ispr/ i dop/ [Theory of thermal processing of metals: textbook for higher education institutions. 3rd ed., corr. and add.]. M.: Metallurgiya, 1978. 392 s.
29. Kolachev B.A., Betsofen S.Ya., Bunin S.Ya., Volodin V.A. Fiziko-mekhanicheskie svojstva legkikh konstruktsionnykh materialov [Physicomechanical properties of easy constructional materials]. M.: Metallurgiya, 1995. 442 s.
30. Kollerov M.Yu., Ilin A.A., Filatov A.A., Mamaev V.S. Uprochnyayushchaya termicheskaya obrabotka krupnogabaritnykh polufabrikatov i izdelij iz vysokoprochnykh titanovykh splavov [Strengthening thermal processing of large-size semi-finished products and products from high-strength titanium alloys] // Metallovedenie i termicheskaya obrabotka metallov. 2002. №5. S. 14–17. 31. Ovchinnikov A.V., Nosov V.K., Afonin V.E., Panin P.V. Osnovnye zakonomernosti deformatsii splavov titan-vodorod [Main patterns of deformation of alloys titanium-hydrogen] // Tekhnologiya legkikh splavov. 2007. №3. S. 96–99.
32. Ilin A.A., Skvortsova S.V., Popova YU.A., Kudelina I.M. Vliyanie termicheskoj obrabotki na formirovanie struktury i svojstv krupnogabaritnykh polufabrikatov iz splava VT23 [Influence of thermal processing on forming of structure and properties of large-size semi-finished products from alloy VT23] // Titan. 2010. №4. S. 48–53.
33. Dzunovich D.A., Panin P.V., Lukina E.A., Shiryaev A.A. Vliyanie rezhimov termicheskoj obrabotki na strukturu i svojstva svarnykh krupnogabaritnykh polufabrikatov iz titanovogo splava VT23 [Heat treatment effect on structure and properties of welded large-dimensioned semi-finished products from VT23 titanium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №1 (61). St. 07. Available at: http://www.viam-works.ru (accessed: June 06, 2018). DOI: 10.18577/2307-6046-2018-0-1-7-7.
34. Minakov V.T., Khorev A.I., Shigonova O.P. Vliyanie termicheskoj obrabotki na tonkuyu strukturu splava VT23 [Influence of thermal processing on thin alloy structure VT23]. M.: VIAM, 1983. S. 65–68.
35. Dzunovich D.A., SHalin A.V., Panin P.V. Struktura, tekstura i mekhanicheskie svojstva deformirovannykh polufabrikatov iz splava VT6, poluchennykh po promyshlennym i opytnym tekhnologiyam [Structure, structure and mechanical properties of the deformed semi-finished products from alloy of VT6 received on industrial and pilot technologies] // Deformatsiya i razrushenie materialov. 2017. №6. S. 19–27.

DOI: 10.18577/2071-9140-2018-0-3-11-17

UDC: 621.791

Pages: 11-17

M.D. Panteleev1, M.M. Bakradze1, A.A. Skupov1, A.V. Scherbakov2, V.E. Belozor1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Federal State Budgetary Educational Institution of Higher Education «National Research University «MPEI»,

TECHNOLOGICAL FEATURES OF FUSION WELDING OF ALUMINUM ALLOY V-1579

The article explores the features of macro- and microstructure formation and properties of new aluminum alloy V-1579 (Al-Mg-Sc) produced by automatic argon arc, laser beam welding and electron beam welding. The influence of adding material composition on resistance to hot cracking formation of alloy V-1579 and mechanical properties at different types of welding were studied. Good welding capacity of alloy by all types of fuse welding with ensuring strength of welded joints at the level not below than 0,8 from the strength of the base material has been noted.

Keywords: aluminum alloy V-1579, automatic argon-arc, electron beam welding, laser beam welding microstructure, mechanical properties

Reference List

1. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
2. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminij-litievye splavy novogo pokoleniya i sloistye alyumostekloplastiki na ikh osnove [Aluminum-lithium alloys of new generation and glass laminate aluminium reinforced epoxy on their basis] // Tsvetnye metally. 2016. №8 (884). S. 86–91.
3. Klochkov G.G., Ovchinnikov V.V., Klochkova Yu.Yu., Romanenko V.A. Struktura i svojstva listov iz vysokotekhnologichnogo splava V-1341 sistemy Al–Mg–Si [Structure and properties of sheets from workable aluminium alloy V-1341 of Al–Mg–Si system] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №12. St. 03. Available at: http://www.viam-works.ru (accessed: May 30, 2018). DOI: 10.18577/2307-6046-2017-0-12-3-3.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
5. Skupov A.A., Ioda E.N., Panteleev M.D. Novye prisadochnye materialy dlya svarki vysokoprochnyh alyuminij-litievyh splavov [New filler materials for welding of high-strength aluminum-lithium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 04. Available at: http://www.viam-works.ru (accessed: May 30, 2018). DOI: 10.18577/2307-6046-2016-0-9-4-4.
6. Kablov E.N., Lukin V.I., Antipov V.V., Ioda E.N., Panteleev M.D., Skupov A.A. Efficiency of using filler materials in laser welding of high-strength aluminium-lithium alloys // Welding International. 2017. Vol. 31. No. 9. P. 717–721.
7. Zakharov V.V., Elagin V.I., Filatov Yu.A., Rostova T.D. i dr. Perspektivy primeneniya alyuminievykh splavov so skandiem v promyshlennosti [Perspectives of application of aluminum alloys with scandium in the industry] // Tekhnologiya legkikh splavov. 2006. №4. S. 20–27.
8. Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov / B.A. Kolachev, V.I. Elagin, V.A. Livanov [Metallurgical science and thermal processing of non-ferrous metals and alloys / B.A. Kolachev, V.I. Elagin, V.A. Livanov ]. M.: MISIS, 1999. 416 s.
9. Lukin V.I., Filatov YU.A., Panasyugina L.I. Osobennosti svarki alyuminievykh splavov so skandiem [Features of welding of aluminum alloys with scandium] // Tekhnologiya legkikh splavov. 1997. №5. S. 10–13.
10. Ryabov D.K., Vakhromov R.O., Ivanova A.O. [An effect of small additions of elements with high solubility in aluminium on microstructure of ingots and cold-rolled sheets made of Al–Mg–Sc alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 05. Available at: http://www.viam-works.ru (accessed: May 30, 2018). DOI: 10.18577/2307-6046-2015-0-9-5-5
11. Splav na osnove alyuminiya: pat. 2576286 Ros. Federatsiya. №2014119988/02 [Alloy on the basis of aluminum: pat. 2576286 Rus. Federation. No. 2014119988/02]; zayavl. 19.05.2014; opubl. 27.02.16, Byul. №6. 7 s.
12. Lukin V.I., Bratukhin A.G., Redchits V.V. Problema sozdaniya svarnykh konstruktsij letatelnykh apparatov [Problem of creation of welded designs of flight vehicles] // Svarochnoe proizvodstvo. 1994. №10. S. 2–5.
13. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
14. Poristost pri svarke tsvetnykh metallov / V.V. Redchits, V.A. Frolov, V.A. Kazakov, V.I. Lukin [Porosity when welding non-ferrous metals / V.V. Redchits, V.A. Frolov, V.A. Kazakov, V.I. Lukin]. M.: Tekhnologiya mashinostroeniya, 2002. 448 s.
15. Skupov A.A., Panteleev M.D., Ioda E.N. Struktura i svojstva svarnykh soedinenij splavov V-1579 i V-1481, vypolnennykh lazernoj svarkoj [Microstructure and mechanical properties of V-1579 and V-1481 laser welds] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №7. St. 07. Available at: http://www.viam-works.ru (accessed: May 30, 2018). DOI: 10.18577/2307-6046-2017-0-7-7-7.

DOI: 10.18577/2071-9140-2018-0-3-18-26

UDC: 678.747.2

Pages: 18-26

A.G. Gunyaeva1, A.I. Sidorina1, A.O. Kurnosov1, O.N. Klimenko1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

POLYMERIC COMPOSITE MATERIALS OF NEW GENERATION ON THE BASIS OF BINDER VSE-1212 AND THE FILLING AGENTS ALTERNATIVE TO ONES OF Porcher Ind. AND Toho Tenax

In the conditions of sanctions, it is difficult to purchase widely used in the aviation industry import fillers produced by firms Toho Tenax (Japan) and Porcher Ind. (France), which are necessary for prepregs production from polymeric composite materials. In this regard there was pressing need to find alternative suppliers of carbon fibers, carbon and glass reinforcing fillers. The article describes the results of experimental researches performed by FSUE «VIAM» on development carbon composite the following types VKU-25, VKU-29, VKU-39 and fiberglass composite VPS-48/7781 on the basis of epoxy binder VSE-1212 and fillers alternative to fillers of Porcher Ind. and Toho Tenax firms.

Keywords: Russian and Chinese fillers, carbon fibers, polymer composite materials (PСM), polymeric binders, carbon fiber composite, fiberglass composite

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Sidorina A.I., Gunyaeva A.G. Rynok uglerodnykh volokon i kompozitov na ikh osnove (obzor) [The market of carbon fibers and composites on their basis (overview)] // Khimicheskie volokna. 2016. №4. S. 48–53.
4. Kurnosov A.O., Vavilova M.I., Melnikov D.A. Tehnologii proizvodstva steklyannyh napolnitelej i issledovanie vliyaniya appretiruyushhego veshhestva na fiziko-mehanicheskie harakteristiki stekloplastikov [Manufacturing technologies of glass fillers and study of effects of finishing material on physical and mechanical properties of fiberglass plastics] // Aviacionnye materialy i tehnologii. 2018. №1 (50). S. 64–70. DOI: 10.18577/2071-9140-2018-0-1-64-70.
5. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii: sb. nauch.-inform. materialov. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials]. M.: VIAM, 2015. 720 s.
6. Dushin M.I., Doneckij K.I., Karavaev R.Yu. Ustanovlenie prichin obrazovaniya poristosti pri izgotovlenii PKM [Identification of the reasons of porosity formation when manufacturing composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6 (42). St. 08. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2016-0-6-8-8.
7. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and VIAM technologies for «Aviadvigatel»] // Permskie aviatsionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
8. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: April 09, 2018).
9. Mishurov K.S., Fajzrakhmanov N.G., Ivanov N.V. Vliyanie vneshnej sredy na svojstva ugleplastika VKU-29 [Environmental effects on properties of CFRP (carbon fiber reinforced plastic) VKU-29] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №8. St. 08. Available at: http://www.viam-works.ru (accessed: April 11, 2018). DOI: 10.185577/2307-6046-2017-0-8-8-8.
10. Mikhajlin Yu.A. Konstruktsionnye polimernye kompozitsionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tekhnologii, 2008. 822 s. 
11. Konkin A.A. Uglerodnye volokna i drugie zharostojkie voloknistye materialy [Carbon fibers and other heat resisting fibrous materials]. M: Khimiya, 1974. 376 s.
12. Zelenskij E.S., Kuperman A.M., Gorbatkina Yu.A. i dr. Armirovannye plastiki – sovremennye konstruktsionnye materialy [The reinforced plastics – modern constructional materials] // Rossijskij khimicheskij zhurnal. 2001. T. XLV. №2. S. 56–74.
13. Mikhajlin Yu.A. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymeric composite materials in equipment]. SPb.: Nauchnye osnovy i tekhnologii, 2015. 720 s.
14. Valueva M.I., Zelenina I.V., Khaskov M.A., Gulyaev A.I. Podgotovka uglerodnogo volokna k naneseniyu interfaznogo pokrytiya dlya kompozitsionnykh materialov s keramicheskoj matritsej [Preparation of carbon fibers to interphase coating deposition for ceramic matrix composites] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №10. St. 09. Available at: http://www.viam-works.ru (accessed: April 08, 2018). DOI: 10.185577/2307-6046-2017-0-10-9-9.
15. Meleshko A.I., Polovnikov S.P. Uglerod, uglerodnye volokna, uglerodnye kompozity [Carbon, carbon fibers, carbon composites]. M.: SAJNS-PRESS, 2007.192 s.
16. Bobovich B.B. Polimernye konstruktsionnye materialy (struktura, svojstva, primenenie) [Polymeric constructional materials (structure, properties, application)]. M.: FORUM: INFRA-M, 2014. 400 s.

DOI: 10.18577/2071-9140-2018-0-3-27-34

UDC: 678.8

Pages: 27-34

I.V. Terekhov1, V.A. Shlenskii1, E.V. Kurshev1, S.L. Lonskii1, V.A. Dyatlov2

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Dmitry Mendeleev University of Chemical Technology of Russia,

RESEARCHES OF FACTORS AFFECTING THE FORMATION OF EPOXY-CONTAINING MICROCAPSULES FOR THE SELF-HEALING COMPOSITIONS

The article has studied various methods for microencapsulation of epoxy resins, as well as the influence of a number of factors on the process for obtaining microcapsules. The morphology of the obtained microcapsules was studied by using microstructural analysis. By the results of the microstructural analysis, the influence of different factors on the quality of the obtained product was studied. A sample of self-healing polymer composition was produced by using these microcapsules. The sample was examined by microstructural analysis, the results were analyzed.

Keywords: microencapsulation, microstructure, composite materials, self-healing, epoxy resins, «smart» materials

Reference List

1. Rule J.D., Brown E.N., Sottos N.R. et al. Wax-protected catalyst microspheres for efficient self-healing materials //Advanced Materials. 2005. Vol. 72. Р. 205–208.
2. Menshutina N.V. Tekhnologii inkapsulyatsii [Technologies of encapsulation] // Farmatsevticheskie tekhnologii i upakovka. 2014. №5. S. 30–33.
3. Giannakopoulos G., Masania K., Taylor A.C. Toughening of epoxy using care-shell particles // Journal of Materials Science. 2011. Vol. 46. P. 327–338.
4. Liao L.P., Zhang W., Xin Y. et al. Preparation and characterization of microcapsule containing epoxy resin and its self-healing performance of anticorrosion covering material // Chinese Science Bull. 2011. Vol. 56. Р. 439−443.
5. Chowdhury R.A., Hosur M.V., Nuruddin M. Self-healing epoxy composites: preparation, characterization and healing performance // Journal of Materials Research and Technology. 2015. Vol. 4. P. 33–43.
6. Caruso M.M., Delafuente D.A., Ho V. Solvent-promoted self-healing materials // Macromolecules. 2007. Vol. 40. Р. 8830–8832.
7. Rule J.D. The chemistry of self-healing polymers // Education in Chemistry. 2005. Vol. 42 (5). Р. 130–132.
8. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt & Tekhnologii. 2016. №2. S. 41–46.
9. Kuznetsova V.A., Deev I.S., Zheleznyak V.G., Silaeva A.A. Iznosostojkoe lakokrasochnoe pokrytie s kvazikristallicheskim napolnitelem [Anti wear coating with quasicrystal filler] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №3. St. 08. Available at: http://www.viam-works.ru (accessed: June 13, 2018). DOI: 10.18577/2307-6046-2018-0-3-8-8.
10. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoj tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
11. Raskutin A.E., Hrulkov A.V., Yazvenko L.N. Polimernoe plenochnoe pokrytie dlya konstrukcij iz PKM (obzor) [Polymer film coating for PCM structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2 (50). St. 05. Available at: http://www.viam-works.ru (accessed: June 13, 2018). DOI: 10.18577/2307-6046-2017-0-2-5-5.
12. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskij spravochnik. 2008. №3. S. 2–14.
13. Solovyanchik L.V., Kondrashov S.V., Shashkeev K.A., Marakhovskij P.S., Soldatov M.A. Novyj podkhod dlya pridaniya PKM funktsionalnykh svojstv [A new approach to impart to polymer composites functional properties] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4 (52). St. 05. Available at: http://www.viam-works.ru (accessed: June 13, 2018). DOI: 10.18577/2307-6046-2017-0-4-5-5.
14. Grebeneva T.A., Terekhov I.V., Chursova L.V., Shlyonskij V.A. i dr. Mikrokapsulirovanie v samovosstanavlivayushchikhsya kompozitsionnykh materialakh [Micro capsulation in selfrepair composite materials] // Klei. Germetiki. Tekhnologii. 2016. №10. S. 40–45.
15. Liu X., Sheng X., Lee J.K., Kessler M.R. Synthesis and Characterization of Melamine-Urea-Formaldehyde Microcapsules Containing ENB-Based Self-Healing Agents // Macromolecular Materials Engineering. 2009. Vol. 294. P. 389–395.
16. Grebeneva T.A., Terekhov I.V., Chursova L.V., Shlyonskij V.A. i dr. Mikrokapsulirovanie v samovosstanavlivayushchikhsya kompozitsionnykh materialakh [Micro capsulation in selfrepair composite materials] // Klei. Germetiki. Tekhnologii. 2016. №11. S. 39–46.
17. Yin T., Rong M.Z., Zhang M.Q., Yang G.C. Self-healing epoxy composites – Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent // Composites Science and Technology. 2007. Vol. 67. P. 201–212.
18. Wang R., Li H., Hu H. et al. Preparation and characterization of self-healing microcapsules with poly(urea-formaldehyde) grafted epoxy functional group shell // Journal of Applied Polymer Science. 2009. Vol. 113. Р. 1501–1506.
19. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.

DOI: 10.18577/2071-9140-2018-0-3-35-41

UDC: 678.8

Pages: 35-41

P.V. Shershak1, V.A. Kosarev2, D.Yu. Ryabovol3

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Joint Stock Company «AeroComposit»,
[3] Joint Stock Company «National institute of aviation technologies»,

HYBRID FACINGS IN SANDWICH-CONSTRUCTION OF AVIATION FLOOR PANELS

The possible usage of intra-layer hybridization of glass fiber and carbon fiber as reinforcement in facings of three-layered honeycomb of aircraft floor panels is considered in this article. Calculation data of panel characteristics at different percent ratio of carbon fibers and glass fibers in the facings and test results that confirm data accuracy are presented. Floor panels with hybrid facings have better parameters than similar panels with glass fiber facings, and allow avoiding the influence of some negative features that are common to panels with carbon fiber facing. The possibility to change proportions between carbon and glass fibers in the hybrid facing allows making the process of floor panels designing more flexible, sorting out the alternative solutions that meet the various peculiar requirements of aircraft designers.

Keywords: sandwich-construction, three-layer honeycomb panel, floor panel, glass fiber, carbon fiber, glass-carbon fabric, hybrid material, reinforcement, facing

Reference List

1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.

2. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem [Chemistry role in creation of materials of new generation for complex technical systems] // XX Mendeleevskij ezd po obshchej i prikladnoj khimii: tez. dokl. v 5 t. Ekaterinburg: UrO RAN, 2016. S. 25–26.

3. Mikhajlin Yu.M. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymeric composite materials in equipment]. SPb.: Nauchnye osnovy i tekhnologii, 2013. 715 s.

4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.

5. Dushin M.I., Ermolaev A.M., Katyrev I.Ya. i dr. Ugleplastiki v panelyakh pola trekhslojnoj konstruktsii [Carbon plastics in panels of floor of three-layered design] // Aviatsionnaya promyshlennost. 1978. №6. S. 8–12.

6. Barannikov A.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. K voprosu proizvodstva panelej pola iz PKM dlya letatel\'nykh apparatov (obzornaya statya) [To question of production of panels of floor from PKM for flight vehicles (review)] // Izvestiya Samarskogo nauchnogo tsentra Rossijskoj akademii nauk. 2017. T. 19. №4 (2). S. 198–213.

7. Shokin G.I., Shershak P.V., Andryunina M.A. Opyt razrabotki i osvoeniya proizvodstva sotovykh panelej pola LA iz otechestvennykh materialov [Experience of development and development of production of cellular panels of floor of flight vehicles from domestic materials] // Aviatsionnaya promyshlennost. 2017. №1. S. 32–39.

8. Shokin G.I., Shershak P.V., Andryunina M.A. Svyazuyushchee, prepreg, kleevaya plenka i aviatsionnye sotovye paneli pola na ikh osnove [Binding, prepreg, glue film and aviation cellular panels of floor on their basis] // Materialy nauch.-tekhnich. konf. «Polimernye kompozitsionnye materialy i proizvodstvennye tekhnologii novogo pokoleniya». M.: VIAM, 2016. Doklad 10 (CD).

9. Khan S. Bonding of sandwich structures – The facesheet/honeycomb interface – a phenomenological study // DuPont de Nemours, Advanced Fibers System. 2007. 9 p.

10. Lavrov A.V., Erasov V.S., Podzhivotov N.Yu., Avtaev V.V. Optimizaciya struktury gibridnyh kompozicionnyh materialov aviacionnogo naznacheniya [Optimization of structure of hybrid composition materials for aircraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №11 (47). St. 07. Available at: http://www.viam-works.ru (accessed: June 07, 2018). DOI: 10.18577/2307-6046-2016-0-11-7-7.

11. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. Kleevye svjazujushhie dlja polimernyh kompozicionnyh materialov na ugle- i steklonapolniteljah [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: June 07, 2018). DOI: 10.18577/2307-6046-2015-0-9-11-11.

12. Distribution information of Hexcel production. Aim Composites. Available at: http://www.aimaltitude.com/ (accessed: June 07, 2018).

13. Gillfloor product data sheets. The Gill Corporation. Available at: https://www.thegillcorp.com/ (accessed: June 07, 2018).

14. AeroBASE technical data sheets. Rockwell Collins. Available at: https://www.rockwellcollins.com/ (accessed: June 07, 2018).

15. Kurnosov A.O., Sokolov I.I., Melnikov D.A., Topunova T.E. Pozharobezopasnye stekloplastiki dlya interera passazhirskih samoletov (obzor) [Fireproof fiberglass for interior of passenger aircraft (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 07. Available at: http://www.viam-works.ru (accessed June 07, 2018). DOI: 10.18577/2307-6046-2015-0-11-7-7.

16. Shershak P.V., Shokin G.I., Egorov V.N. Tekhnologicheskie osobennosti proizvodstva trekhslojnykh sotovykh panelej pola vozdushnykh sudov [Technological features of production of three-layered cellular panels of floor of air vehicles] // Aviatsionnaya promyshlennost. 2014. №3. S. 34–42.

17. Timoshenko S.P. Soprotivlenie materialov [Resistance of materials]. M.: Nauka, 1965. T. 1. 364 s.

18. Shershak P.V., Kosarev V.A., Kurilenko N.V. Vliyanie vysoty polimernogo sotovogo zapolnitelya na zhestkost trekhslojnykh sotovykh panelej pola vozdushnykh sudov [Influence of height of polymeric cellular filler on rigidity of three-layered cellular panels of floor of air vehicles] // Aviatsionnaya promyshlennost. 2016. №2. S. 49–52.

19. Sukhinin S.N. Prikladnye zadachi ustojchivosti mnogoslojnykh kompozitnykh obolochek [Applied problems of stability of multi-layer composite covers]. M.: Fizmatlit, 2010. 248 s.

20. Timoshkov P.N., Hrulkov A.V. Sovremennye tehnologii pererabotki polimernyh kompozitsionnyh materialov, poluchaemyh metodom propitki rasplavnym svyazuyushchim [Modern technologies of hotmelt polymer composite materials processing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 04. Available at: http://www.viam-works.ru (accessed: June 07, 2018). DOI: 10.18577/2307-6046-2014-0-8-4-4.

DOI: 10.18577/2071-9140-2018-0-3-42-49

UDC: 629.7.023.226

Pages: 42-49

Yu.V. Loshchinin1, S.A. Budinovsky1, M.G. Razmakhov1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

HEAT CONDUCTIVITY OF HEAT-PROTECTIVE COATINGS ZrO2-Y2O3 ALLOYED BY REM OXIDES OBTAINED BY MAGNETRONNY APPLICATION

The analysis of factors influencing heat conductivity of ceramic layers of heat-protective coating on the basis of ZrO2-Y2O3 oxides is carried out. Particularities for preparing samples with the use of two-layered model of determining heat conductivity of heat-protective coatings are discussed. The technique for determining heat conductivity using the equipment of laser flash is described. Results in determining thermophysical properties of substrate, effective heat conductivity of two-layered samples with ceramic layer and heat conductivity of materials of ceramic layers with the different content of REM oxides are presented. It has been shown that increase in the content of yttrium oxide from 7,8 to 11% (by weight) reduces heat conductivity of ceramic layers of heat-protective coatings by 25%. The article has shown the absence of influence of different methods of applying metallic thin layer coatings excluding transparency of ceramic layers on the results of determination of heat conductivity.

Keywords: heat-protective covering, electron-beam and magnetron application, thermal-fatigue life, heat conductivity, heating capacity, conductive and convective thermal conductivity, method of laser flash, thermal resistance

Reference List

1. Kablov E.N. Innovatsionnye razrabotki FGUP «VIAM» GNTS RF po realizatsii «Strategicheskikh napravlenij razvitiya materialov i tekhnologij ikh pererabotki na period do 2030 goda» // Aviatsionnye materialy i tekhnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
3. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnye pokrytiya s keramicheskim sloem ponizhennoj teploprovodnosti na osnove oksida tsirkoniya dlya lopatok turbiny vysokogo davleniya perspektivnykh GTD [Heat-protective coverings with ceramic layer of the lowered heat conductivity on the basis of zirconium oxide for turbine blades of high pressure of perspective GTD] // Sovremennye dostizheniya v oblasti sozdaniya perspektivnykh nemetallicheskikh kompozitsionnykh materialov i pokrytij dlya aviatsionnoj i kosmicheskoj tekhniki: sb. dokl. konf. M.: VIAM, 2015. Ch. 1. Doklad №3. URL: http://conf.viam.ru/conf/172/ proceedings (data obrashcheniya: 27.10.2017).
4. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnykh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD] // Metally. 2012. №1. S. 5–13.
5. Levi C.G. Emerging materials and processes for thermal barrier systems // Solid state and materials science. 2004. Vol. 38. P. 77–91.
6. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlya rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Receiving ceramic heat-protective coatings for working blades of turbines of aviation GTD magnetronny method] // Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
7. Chubarov D.A., Budinovskij S.A. Vybor keramicheskogo materiala dlya teplozashhitnyh pokrytij lopatok aviacionnyh turbin na rabochie temperatury do 1400°C [Choosing ceramic materials for thermal barrier coating of GTE turbine blades on working temperatures up to 1400°С] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2015. №4. St. 07. Available at: http://viam-works.ru (accessed: October 25, 2017). DOI: 10.18577/2307-6046-2015-0-4-7-7.
8. Zhao H., Yu F., Bennett T.D., Wadley H.N.G. Morphology and thermal conductivity of yttria-stabilized zirconia coatings // Acta materialia. 2006. Vol. 54. P. 5195–5207.
9. Gayamov A.M., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Vybor zharostojkogo pokrytija dlya zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Selection of heat-resistant coating with metalloceramic barrier layer for protection of Re-Ru nickel-based superalloy] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №1. St. 01. Available at: http://viam-works.ru (accessed: October 25, 2017).
10. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlya teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coating using in GTE turbine blades] // Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
11. Tamarin Yu.A., Kachanov E.B. Elektronno-luchevaya tekhnologiya naneseniya teplozashchitnykh pokrytij [Electron beam technology of drawing heat-protective coverings] // Novye tekhnologicheskie protsessy i nadezhnost GTD. M.: Izd-vo TSIAM, 2008. Vyp. 7. S. 144–158.
12. Tamarin Yu.A., Kachanov E.B. Svojstva teplozashchitnykh pokrytij, nanosimykh elektronno-luchevoj tekhnologiej [Properties of the heat-protective coverings put with electron beam technology] // Novye tekhnologicheskie protsessy i nadezhnost GTD. M.: Izd-vo TSIAM, 2008. Vyp. 7. S. 125–144.
13. Yakovchuk K.Yu. Teploprovodnost i termotsiklicheskaya dolgovechnost kondensatsionnykh termobarernykh pokrytij [Heat conductivity and thermocyclic durability of condensation thermobarrier coatings] // Sovremennaya elektrometallurgiya. 2014. №4. S. 25–31.
14. Renteria F.A., Saruhan B., Schulz U. et al. Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs // Surface and Coatings Technology. 2006. Vol. 201. P. 2611–2620.
15. Altun O., Boke Y.E. Effect of the microstructure of EB-PVD thermal barrier coatings on the thermal conductivity and the methods to reduce the thermal conductivity // Archives of materials science and engineering. 2009. Vol. 40. No. 1. P. 47–52.
16. Levi C.G., Hutchinson J.W., Vidal-Setif M.H., Johnson C.A. Environmental degradation of thermal barrier coatings by molten deposits // MRS Bulletin. 2012. Vol. 37. No. 10. P. 932–941.
17. Xinghua Zhong, Huayu Zhao, Xiaming Zhou et al. Thermal shock behaviour of toughened gadolinium zirconate YSZ double-layered thermal barrier coating // Journal of alloy and compounds. 2014. Vol. 593. P. 50–55.
18. Devojno O.G., Okovityj V.V. Plazmennye teplozashchitnye pokrytiya na osnove dioksida tsirkoniya s povyshennoj termostojkostyu [Plasma heat-protective coverings on the basis of zirconium dioxide with increased thermal stability] // Nauka i tekhnika. 2015. №1. S. 35–39.
19. Bychkov N.G., Klimov D.A., Myktybekov B., Nizovtsev V.E. Otsenka optimalnoj tolshchiny teplozashchitnykh pokrytij stolbchatoj struktury na rabochikh lopatkakh turbin s uchetom dejstviya tsentrobezhnykh nagruzok [Assessment of optimum thickness of heat-protective coverings of stolbchaty structure on working blades of turbines taking into account action of centrifugal loadings] // Trudy MAI: elektron. zhurn. 2011. №46. St. 16. URL: http://trudymai.ru (data obrashcheniya: 25.10.2017).
20. Popov P.A., Solomennik V.D., Lomonova E.E., Borik M.A., Myzina V.A. Teploprovodnost monokristallicheskikh tverdykh rastvorov ZrO2–Y2O3 v intervale temperatur 50–300 K [Heat conductivity of single-crystal ZrO2–Y2O3 solid solutions in the range of temperatures of 50–300 K] // Fizika tverdogo tela. 2012. T. 54. №3. S. 615–618.
21. Ratzer-Scheibe H.-J., Schulz U., Krell T. The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings // Surface and Coatings Technology. 2006. Vol. 200. P. 5636–5644.
22. Nicholls R., Lawson K.J., Johnston A., Rickerby D.S. Low Thermal Conductivity EB-PVD Thermal Barrier Coatings // High Temperature Corrosion. Trans Tech Publication. 2001. P. 595–606.
23. Parker W.J., Jenkins R.J., Butler C.P., Abbott G.L. Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity // Journal of Applied Physics. 1961. Vol. 32. Р. 1679–1684.
24. Hemberger F., Gobel A., Ebert H.P. Determination of the thermal diffusivity of electrically non-conductive solids in the temperature range from 80 K to 300 R by laser flash measurement // International Journal Thermophysical. 2010. Vol. 31. P. 2187–2200.
25. ASTM E1461. Standard test method for thermal diffusivity by the flash method. ASTM Standards, American Society for Testing and Materials-Philadelphia, 2002.
26. Altun O., Erhan Boke Y., Kalemtas A. Problems for determining the thermal conductivity of TBCs by laser-flash method // Journal of Achievements in Materials and Manufacturing Engineering. 2008. Vol. 30. No. 2. Р. 115–120.
27. Hohenauer W., Vozár L. An Estimation of  thermophysical properties of layered materials by the laser-flash method // High Temperature–High Pressures. 2001. Vol. 33. Р. 17–25.
28. Mcmasters R.L., Dinwiddie R.B., Haji-Sheikh A. Estimating the thermal conductivity of a film on a known substrate // Journal of Thermophysics and Heat Transfer. 2007. Vol. 21. No. 4. Р. 681–687.
29. Loshchinin Yu.V., Folomejkin Yu.I., Pakhomkin S.I. Izmerenie teploemkosti obraztsov s pokrytiem metodom lazernoj vspyshki [Measurement of heat capacity of samples with covering method of laser flash] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №9. S. 40–44.

DOI: 10.18577/2071-9140-2018-0-3-50-55

UDC: 669.018.44:669.245

Pages: 50-55

M.A. Gorbovets1, M.S. Belyayev1, P.V. Ryzhkov1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

FATIGUE STRENGTH OF HEAT-RESISTANT NICKEL ALLOYS PRODUCED BY SELECTIVE LASER MELTING

The fatigue resistance of nickel superalloys VGh175 and EP648, produced by selective laser melting has been studied. The characteristics of fatigue have been studied at high- and low-cycle loading and at various temperatures. The anisotropy of fatigue strength (the value of the fatigue limit), caused by the orientation of synthesis direction of the material, manifests itself in a small degree. The surface of the high-cycle fatigue fracture of the EP648 alloy, produced by SLM method, has similar fractorographic features as the heat-resistant nickel alloys, produced according to traditional technology.

Keywords: fatigue characteristics, nickel-based superalloys, technology of selective laser melting (SLM), fatigue failure, anisotropy of fatigue strength

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologij proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
3. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii: sb. nauch.-inform. materialov. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials]. M.: VIAM, 2015. 720 s.
4. Kablov E.N. Chto takoe innovatsii [What is the innovations] // Nauka i zhizn. 2011. №11. S. 16–21.
5. Mazalov I.S., Evgenov A.G., Prager S.M. Perspektivy primeneniya zharoprochnogo strukturnostabilnogo splava VZh159 dlya additivnogo proizvodstva vysokotemperaturnyh detalej GTD [Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
6. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: June 05, 2018). DOI: 10.18577/2307-6046-2015-0-2-2-2.
7. Catchpole-Smitha S., Aboulkhaira N., Parrya L. et al. Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys // Additive Manufacturing. 2017. Vol. 15. P. 113–122.
8. Mostafa A., Rubio I.P., Brailovski V. et al. Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments // Metals. 2017. Vol. 7. P. 196.
9. Trosch T., Strobner J., Volkl R., Glatzel U. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting // Materials Letters. 2016. Vol. 164. P. 428–431.
10. Helvajian H., Pique A., Wegener M. et al. Microstructural evolution and mechanical behavior of nickel-based superalloy 625 made by selective laser melting // Proceedings of the SPIE. 2015. Vol. 9353. P. 93530B.
11. Amato K.N., Gaytan S.M., Murk L.E. et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting // Acta Materialia. 2012. Vol. 60 (5). P. 2229–2239.
12. Gu H., Gong H., Dilip J.J.S. et al. Effects of powder variation on the microstructure and tensile strength of Ti–6Al–4V parts fabricated by selective laser melting // International Journal of Powder Metallurgy. 2015. Vol. 51. No. 1. P. 35−42.
13. Belyaev M.S., Khvatskiy K.K., Gorbovets M.A. Sravnitelnyj analiz rossijskogo i zarubezhnyh standartov ispytanij na ustalost metallov [Comparative analysis of national standards of RF and the USA on methods of metals fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 11. Available at: http://www.viam-works.ru (accessed: June 04, 2018). DOI: 10.18577/2307-6046-2014-0-9-11-11.
14. Gorbovets M.A., Bazyleva O.A., Belyaev M.S., Khodinev I.A. Malotsiklovaya ustalost monokristallicheskogo intermetallidnogo splava tipa VKNA v usloviyakh «zhestkogo» nagruzheniya [Low-cyclic fatigue of single-crystal intermetallidny alloy of VKNA type in the conditions of «rigid» loading] // Metallurg. 2014. №8. S. 111–114.
15. Belyaev M.S., Terentev V.F., Gorbovets M.A., Bakradze M.M., Antonova O.S. Malotsiklovaya ustalost pri zadannoj deformatsii i razrushenie zharoprochnogo splava VZh175 [Low-cyclic fatigue at the set deformation and VZh175 hot strength alloy destruction] // Materialovedenie. 2017. №3. S. 18–24.
16. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
17. Gerov M.V., Vladislavskaya E.YU., Terentev V.F. i dr. Issledovanie ustalostnoj prochnosti splava tipa Ti–6Al–4V, poluchennogo metodom selektivnogo lazernogo plavleniya [Research of fatigue resistance of alloy of the Ti-6Al-4V type received by method of the selection laser melting] // Deformatsiya i razrushenie materialov. 2016. №5. S. 14−20.

DOI: 10.18577/2071-9140-2018-0-3-56-64

UDC: 620.1

Pages: 56-64

V.S. Erasov1, E.I. Oreshko1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

REASONS FOR DEPENDENCE OF MECHANICAL CHARACTERISTICS OF MATERIAL FRACTURE RESISTANCEON SAMPLE SIZES

The article considers the reasons for dependence of mechanical characteristics of material fracture resistance on sample sizes and presents features of the modern constructional materials affecting on characteristics of fracture resistance. Restrictions of linear fracture mechanics are presented as exemplified in problem solving plate with the central crack. It is proposed to evaluate synergism of numerous mechanisms of the processes of stress-strain interaction of structure elements in the zone of crack tip that will allow to introduce new indicators of material quality into practice of evaluating fracture resistance, to actualize current standards and to develop new ones on experimental characterization of fracture resistance.

Keywords: constructional material, fracture resistance, size of a sample, metal atomic bonding, covalent bond, multilevel model, linear fracture mechanics, power, deformation and energy criteria of failure, destruction zone

Reference List

1. Erasov V.S., Oreshko E.I., Lucenko A.N. Ploshhad svobodnoj poverhnosti kak kriterij hrupkogo razrusheniya [Area of a free surface as criterion of brittle fracture] // Aviacionnye materialy i tehnologii. 2017. № 2 (47). S. 69–79. DOI: 10.18577/2071-9140-2017-0-2-69-79.
2. Erasov V.S., Oreshko E.I. Silovoj, deformacionnyj i energeticheskij kriterii razrusheniya [Force, deformation and energy criteria of destruction] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 11. Available at: http://viam-works.ru (accessed: June 18, 2018). DOI: 10.18577/2307-6046-2017-0-10-11-11.
3. Makhutov N.A., Moskvitin G.V. Vliyanie uslovij nagruzheniya na nakoplenie povrezhdenij i razrushenie [Influence of conditions of loading on accumulation of damages and destruction] // Mashinostroenie: entsiklopediya. M.: Mashinostroenie, 2010. T. II-I: Fiziko-mekhanicheskie svojstva. Ispytaniya metallicheskikh materialov. S. 220–221.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
5. Vildeman V.E., Tretyakov V.P. Ispytaniya materialov s postroeniem polnykh diagramm deformirovaniya [Tests of materials with creation of full charts of deformation] // Problemy mashinostroeniya i nadezhnosti mashin. 2013. №2. S. 93–98.
6. Erasov V.S., Oreshko E.I. Deformaciya i razrushenie kak processy izmeneniya obema, ploshhadi poverhnosti i linejnyh razmerov v nagruzhaemyh telah [Deformation and destruction as processes of change of volume, the areas of a surface and the linear sizes in loaded bodies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8. St. 11. Available at: http://www.viam-works.ru (accessed: June 18, 2018). DOI: 10.18577/2307-6046-2016-0-8-11-11.
7. Oreshko E.I., Erasov V.S., Lutsenko A.N. Kriticheskie napryazheniya poteri ustojchivosti v gibridnykh sloistykh plastinakh [The critical tension of loss of stability in hybrid layered plates] // Materialovedenie. 2016. №11. S. 17–21.
8. Erasov V.S., Oreshko E.I., Lutsenko A.N. Povrezhdaemost materialov pri staticheskom rastyazhenii [Damageability of materials in tension testing] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 91–94. DOI: 10.18577/2071-9140-2015-0-4-91-94.
9. GOST 25.506–85. Raschety i ispytaniya na prochnost. Metody mekhanicheskikh ispytanij metallov. Opredelenie kharakteristik treshchinostojkosti (vyazkosti razrusheniya) pri staticheskom nagruzhenii [Calculations and strength tests. Methods of mechanical tests of metals. Definition of characteristics of crackresistance (fracture toughness) at static loading]. M.: Izd-vo standartov, 1985. 61 s.
10. OST1 90356–84. Metally. Metod opredeleniya staticheskoj treshchinostojkosti (vyazkosti razrusheniya) obshivochnykh materialov pri ploskom napryazhennom sostoyanii [Metals. Method of definition of static crackresistance (fracture toughness) of sheathing materials at flat tension]. M., 1984. 31 s.
11. OST1 92122–88. Metally. Metod opredeleniya krivoj soprotivleniya rasprostraneniyu treshchiny pri staticheskom nagruzhenii (R-krivoj) obshivochnykh materialov pri ploskom napryazhennom sostoyanii [Metals. Method of definition of curve of resistance to crack distribution at static loading (R-curve) of sheathing materials at flat tension]. M., 1988. 32 s.
12. ASTM E 561-10. Standard Test Method for K-R Curve Determination. American Society for Testing and Materials, 2010.
13. Zhu X.-K., Joyce J.A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization // U.S. Navy Research. 2012. No. 49. 47 p.
14. ASTM E 1290–08. Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement. American Society for Testing and Materials, 2008.
15. ASTM E 2472–06. Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions. American Society for Testing and Materials, 2006.
16. ASTM E 1820–11. Standard Test Method for Measurement of Fracture Toughness. American Society for Testing and Materials, 2011.
17. ASTM E 1922-04. Standard Test Method for Translaminar Fracture Toughness of Laminated and Pultruded Polymer Matrix Composite Materials. American Society for Testing and Materials, 2010.
18. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Terentev V.F., Korableva S.A. Ustalost metallov [Fatigue of metals]. M.: Nauka, 2015. S. 27–32.
20. Terentev V.F., Korableva S.A. Ustalost metallov [Fatigue of metals]. M.: Nauka, 2015. S. 73–77.
21. Makhutov N.A. Problemy tekhnicheskoj diagnostiki materialov, detalej i konstruktsij [Problems of technical diagnostics of materials, details and designs] // Zavodskaya laboratoriya. Diagnostika materialov. 2017. T. 83. №4. S. 47–48.
22. Shvechkov E.I. Analiz rossijskikh i zarubezhnykh metodov ispytanij na staticheskuyu treshchinostojkost aviatsionnykh materialov [The analysis of the Russian and foreign test methods on static crackresistance of aviation materials] // Tekhnologiya legkikh splavov. 2016. №1. S. 99–106.
23. Nott Dzh.F. Osnovy mekhaniki razrusheniya. Per. s angl. [Fracture mechanics bases. Trans. form Engl.]. M.: Metallurgiya, 1978. S. 97–98.
24. Kuzmichev S.V. Zarozhdenie i evolyutsiya defektov struktury v tverdykh khrupkikh telakh pod vozdejstviem vneshnej mekhanicheskoj nagruzki: avtoref. dis. … kand. fiz.-mat. nauk [Origin and evolution of defects of structure in solid brittle bodies under the influence of external mechanical loading: thesis, Cand. Sc. (Tech.)]. SPb.: In-t problem mashinovedeniya RAN, 2011. 16 s.
25. Cheremskoj P.G., Slezov V.V., Betekhtin V.I. Pory v tverdom tele [Pores in solid body]. M.: Energoatomizdat, 1990. S. 156–158.
26. Kablov E.N., Grinevich A.V., Erasov V.S. Kharakteristiki prochnosti metallicheskikh aviatsionnykh materialov i ikh raschetnye znacheniya [Characteristics of durability of metal aviation materials and their calculated values] // 75 let. Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tekhnich. sb. M.: VIAM, 2007. S. 370–379.

DOI: 10.18577/2307-6046-2018-0-3-65-79

UDC: 620.179.1

Pages: 65-79

V.Yu. Chertishchev1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

THE ESTIMATION OF THE PROBABILITY OF DEFECTS DETECTION BY THE ACOUSTIC METHODS, DEPENDING ON THEIR SIZE IN CONSTRUCTIONS FROM PCM FOR OUTPUT CONTROL DATA IN THE FORM OF BINARY VALUES

The probability of defects detection depending on their size with ultrasonic non-destructive testing of parts and structures from polymer composite materials (PCM) is an integral part of the calculation of the resource and, if necessary, maintenance intervals for aircraft products. Most acoustic methods of controlling products from PCM give the output control data in the form of binary values (the defect is either missing or found). This report describes a method for constructing the dependence of the probability of defects detection on their sizes for output control data in the form of binary quantities. The choice of the necessary model probability functions is made and the algorithm for finding the parameters of these functions by the maximum likelihood method is described. An algorithm for finding the boundaries of confidence intervals of the probability function for detecting defects through an asymptotic χ2-density (Pearson's criterion) of the logarithmic likelihood ratio of model function is described. The influence of the main parameters of the sample of artificial defects (number, range, displacement, etc.), necessary for constructing the probability of detection function, on the value of the limits of confidence probability was studied. The original research data of special constructively-similar samples from CFRP and GRP monolithic and honeycomb structures by shadow and echo-pulse methods are given.

Keywords: nondestructive testing, ultrasonic testing, acoustic control methods, fiber reinforced plastics, PCM, probability of detection

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoj tekhniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
4. Kablov E.N. Sovremennye materialy – osnova innovatsionnoj modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
6. Bojchuk A.S., Generalov A.S., Stepanov A.V. Veroyatnostnaya otsenka dostovernosti rezultatov ultrazvukovogo nerazrushayushchego kontrolya monolitnykh konstruktsij iz ugleplastika pri ispolzovanii fazirovannykh reshetok [Probabilistic assessment of results reliability of monolithic CFRP structures ultrasonic non-destructive testing by phased arrays] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №11 (47). St. 11. Available at: http://www.viam-works.ru (accessed: May 22, 2018). DOI: 10.18577/2307-6046-2016-0-11-11-11.
7. Generalov A.S., Bojchuk A.S., Chertishchev V.Yu., Yakovleva S.I., Dikov I.A. Vyyavlenie rassloenij i neprokleev v 5- i 7-slojnykh sotovykh detalyakh i elementakh konstruktsij iz PKM akusticheskim metodom [Identification of stratifications and starved joints in 5- and 7-layer cellular details and elements of designs from PCM acoustic method] // Klei. Germetiki. Tekhnologii. 2017. №3. S. 23–26.
8. Bojchuk A.S., Chertishchev V.YU., Dikov I.A., Generalov A.S. Otsenka vozmozhnosti opredeleniya poristosti v ugleplastike ultrazvukovym tenevym metodom [Estimation of porosity determination possibility in CFRP by ultrasonic through transmission method] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №7 (55). St. 11. Available at: http://www.viam-works.ru (accessed: May 22, 2018). DOI: 10.18577/2307-6046-2017-0-7-11-11.
9. Chertishchev V.Yu., Generalov A.S. Povyshenie proizvoditelnosti ultrazvukovogo kontrolya izdelij s ploskoparallelnymi granitsami tsifrovoj fokusirovkoj antennykh reshetok metodom C-SAFT [Efficiency improving of ultrasonic control of products with flat-parallel boundaries by antenna arrays digital focusing by C-SAFT method] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 10. Available at: http://www.viam-works.ru (accessed: May 22, 2018). DOI: 10.18577/2307-6046-2016-0-10-10-10.
10. Lozhkova D.S., Dalin M.A. Otsenka dostovernosti avtomatizirovannogo ultrazvukovogo kontrolya tipovykh splavov s ispolzovaniem matematicheskogo modelirovaniya [Assessment of reliability of the automated ultrasonic control of standard alloys with use of mathematical modeling] // V mire nerazrushayushchego kontrolya. 2014. №4 (66). S. 15–19.
11. Bojchuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Veroyatnostnaya otsenka dostovernosti rezultatov ultrazvukovogo nerazrushayushchego kontrolya konstruktsij iz PKM, primenyaemykh v aviatsionnoj promyshlennosti [Probabilistic assessment of reliability of results of ultrasonic non-destructive testing of designs from PKM applied in the aviation industry] // Remont. Vosstanovlenie. Modernizatsiya. 2013. №9. S. 36–39.
12. Kobzar A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh sotrudnikov [Applied mathematical statistics. For engineers and research associates]. M.: Fizmatlit, 2006. 816 s.
13. MIL-HDBK-1823A. Department of Defense Handbook: Nondestructive Evaluation System Reliability Assessment.2009. 171 p.
14. Nosko V.P. Ekonometrika dlya nachinayushchikh. Dopolnitelnye glavy [Econometric for beginners. Additional heads]. M.: In-t ekonomiki perekhodnogo perioda, 2005. 255 s.
15. Osnovy matematicheskoj statistiki / pod red. V.S. Ivanova [Bases of mathematical statistics / ed. by V.S. Ivanov]. M.: Fizkultura i sport, 1990. 165 s.
16. ASTM E2862–12. Standard Practice for Probability of Detection Analysis for Hit/Miss Data. 2012. 6 p. DOI: 10.1520/E2862-12.

DOI: 10.18577/2071-9140-2018-0-3-80-88

UDC: 620.1:678.8

Pages: 80-88

A.B. Laptev1, E.V. Nikolaev1, E.D. Kolpachkov1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

THERMODYNAMIC CHARACTERISTICS OF AGING OF POLYMERIC COMPOSITE MATERIALS UNDER CONDITIONS OF REAL EXPLOITATION

In this paper, the approaches to the determination of thermodynamic characteristics in the aging of products from polymer composite materials under the influence of climatic and operational factors are presented. The known methods for determining the physical properties and changes in the chemical structure of polymer composite materials under operating conditions are presented. Theoretical approaches and functional dependences of physical and chemical processes in the polymer matrix on the changing physical parameters of the material and the environment are considered. The analysis of functional dependences of polymer material properties on the adsorption interactions of matrix and solvent, the action of surfactants, climatic factors and mechanical loads in the structural elements of polymer materials is carried out. It is shown that the aging process of the polymer can go through the changing the entropy of the polymer, as the sum of the entropy changes under the action of each of the active physical and chemical factors.

Keywords: adsorption of low molecular weight substances, climatic factors, matrix, filler, polymer, polymer aging, thermodynamic characteristics, entropy

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Reynolds T.J., McManus H.L. Accelerated tests of environmental degradation in composite materials // Composite structures: theory and practice. ASTM STP 1383, 2000. P. 513–525.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
4. Laptev A.B., Barbotko S.L., Nikolaev E.V. Osnovnye napravleniya issledovanij sokhranyaemosti svojstv materialov pod vozdejstviem klimaticheskikh i ekspluatatsionnykh faktorov [The main research areas of the persistence properties of materials under the influence of climatic and operational factors] // Aviacionnye materialy i tehnologii. 2017. №S. S. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
5. Weitsman Y. Moisture in composites: sorption and damage // Fatigue Composite Materials. 1990. Vol. 4. P. 385–429.
6. Lutsenko A.N., Kurs M.G., Laptev A.B. Obosnovanie srokov naturnykh klimaticheskikh ispytanij metallicheskikh materialov v atmosfere chernomorskogo poberezhya. Analiticheskij obzor [Justification of terms of natural climatic tests of metal materials in the atmosphere of the Black Sea coast. State-of-the-art review] // Voprosy materialovedeniya. 2016. №3. S. 126–137.
7. Laptev A.B., Barbotko S.L., Nikolaev E.V., Skirta A.A. Statisticheskaya obrabotka rezultatov klimaticheskikh ispytanij stekloplastikov [Statistical processing of results of climatic tests of fibreglasses] // Plasticheskie massy. 2016. №3–4. S. 58–64.
8. Didierjean S., Michel L., Barrau J.J., Paroissien E. Predicting the behaviour of graphite/epoxy laminates under hydrothermal loads // Proceedings of Euromech 453 Conference Internal Stresses in Polymer Composite Processing and Service Life (Saint-Etienne, December 1–3, 2003). Available at: http://www.bris.ac.uk/composites/media/comptest2004/proceedings/abstracts.pdf (accessed: June 12, 2018).
9. Jacquemin F., Vautrin A. Modelling of the moisture concentration field due to cyclical hygrothermal conditions in thick laminated pipes // European Journal of Mechanics. Series A: Solids. 2002. Vol. 21. P. 845–855.
10. Grinevich A.V., Laptev A.B., Skripachev S.Yu., Nuzhnyj G.A. Matritsa prochnostnykh kharakteristik dlya otsenki predelnykh sostoyanij konstruktsionnykh metallicheskikh materialov [Matrix strength characteristics for the assessment of limit states of structural metallic materials] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 67–74. DOI: 10.18577/2071-9140-2018-0-2-57-74.
11. Jacquemin F., Vautrin A. A closed-form solution for the internal stresses in thick composite cylinders induced by cyclical environmental conditions // Composite Structure. 2002. Vol. 58. P. 1–9.
12. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P. 1. Factors of influence (overview)] // Korroziya: materialy, zashchita. 2013. №12. S. 6–18.
13. GOST 4401–81. Atmosfera standartnaya. Parametry [State Standard 4401-81. Atmosphere standard. Parameters]. M.: Izd-vo standartov, 2004. 165 c.
14. Laptev A.B., Lutsenko A.N., Skripachev S.Yu. Standartizatsiya klimaticheskoj kvalifikatsii izdelij [Standardization of climatic qualification of products] // Standarty i kachestvo. 2016. №11. S. 82–85.
15. Kuleznev V.N., Shershnev V.A. Khimiya i fizika polimerov [Chemistry and physics of polymers]. M.: Vysshaya shkola, 1988. 312 s.
16. Bolshakov V.A., Aleksashin V.M. Povyshenie ostatochnoj prochnosti pri szhatii posle nizkoskorostnogo udara ugleplastikov, izgotovlyaemyh infuzionnym metodom formovaniya [A way to increase the residual compression strength after low-speed impact of CFRP produced by vacuum infusion technology] // Aviacionnye materialy i tehnologii. 2013. №4. S. 47–50.
17. Erasov V.S., Grinevich A.V., Senik V.Ya., Konovalov V.V., Trunin Yu.P., Nesterenko G.I. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
18. Kaw A.K. Mechanics of Composite Materials. New York: Taylor & Francis Group, 2006. 457 p.
19. Grinevich A.V., Erasov V.S., Lutsenko A.N., Laptev A.B., Kutyrev A.E., Skripachev S.YU. Problemnye zadachi opredeleniya raschetnykh kharakteristik aviatsionnykh konstruktsionnykh materialov [Problem problems of definition of rated characteristics of aviation constructional materials] // Sb. dokl. IX Vseros. konf. po ispytaniyam i issledovaniyam svojstv materialov «TestMat». M.: VIAM, 2017. S. 16.
20. Babich V.F., Bryk M.T., Veselovskij R.A. i dr. Fizikokhimiya mnogokomponentnykh polimernykh sistem v 2 t. [Physicochmistry of multi-component polymeric systems in 2 vol.]. Kiev: Naukova dumka, 1986. T. 2: Polimernye smesi i splavy. 376 s.
21. Lebedev E.V., Lipatov Yu.S., Rosovitskij V.F. i dr. Fizikokhimiya mnogokomponentnykh polimernykh sistem v 2-kh t. [Physicochmistry of multi-component polymeric systems in 2 vol.]. Kiev: Naukova dumka, 1986. T. 1: Napolnennye polimery. 384 s.
22. Bertenev G.M., Frenkel S.Ya. Fizika polimerov [Physics of polymers]. L.: Khimiya. 1990. 432 s.
23. Laptev A.B., Nikolaev E.V., Skirta A.A., Laptev D.A. Metod otsenki sostoyaniya materialov v protsesse klimaticheskogo stareniya [Method of assessment of condition of materials in the course of climatic aging] // Aviakosmicheskoe priborostroenie. 2016. №11. S. 20–29.
24. Antonova-Antipova I.P. Khimiya i fizika polimerov: ucheb. posobie [Chemistry and physics of polymers: manual]. M.: In-t otkrytogo distantsionnogo obrazovaniya, 2001. 236 s.
25. Good R.J., van Oss C.J. The modern theory of contact angles and the hydrogen bond components of surface energies // Modern Approaches to Wettability: Theory and Applications. N.Y.: Plenum, 1992. P. 1–27.
26. Springer G.S., Shen C.H. Moisture absorption and desorption of composite materials // Environmental Effects on Composites Materials. 1981. Vol. 1. P. 15–33.
27. Aviatsionnye materialy: spravochnik v 13 t. / pod red. E.N. Kablova. 7-e izd., dop. i pererab. [Aviation materials: directory in 13 vol. / ed. by  E.N.Kablov. 7th ed., add. and rev.]. M.: VIAM, 2015. T. 13: Klimaticheskaya i mikrobiologicheskaya stojkost nemetallicheskikh materialov. 270 s.
28. Ivanova A.O., Vahromov R.O., Grigorev M.V., Senatorova O.G. Issledovanie vliyaniya malyh dobavok serebra na strukturu i svojstva resursnyh splavov sistemy Al–Cu–Mg [Effect of small additive of silver on structure and properties of Al–Cu–Mg alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 01. Available at: http://www.viam-works.ru (accessed: June 06, 2018). DOI: 10.18577/2307-6046-2014-0-10-1-1.
29. Pereverzev E.S. Sluchajnye protsessy v parametricheskikh modelyakh nadezhnosti [Accidental processes in parametrical models of reliability]. Kiev: Naukova dumka, 1987. 240 s.
30. Melnikova N.B., Ignatova V.I., Dolzhikova V.D., Summ B.D. Mezhfaznaya energiya na granitse razdela faz «polimer–zhidkost», kak kriterij adgezionnykh svojstv poliimidov [Interphase energy on limit of the section of the phases «polymer-liquid» as criterion of adhesive properties of polyimide] // Vestnik Moskovskogo universiteta. Ser. 2: Khimiya. 1998. №6. S. 413–417.
31. Kozhevnikov B.L. Metodologiya rascheta kompleksnykh otsenok agressivnosti pogodno-klimaticheskikh uslovij dlya tekhnicheskikh tselej: avtoref. dis. … dokt. tekhn. nauk [Methodology of calculation of complex estimates of aggression of weather weather conditions for the technical purposes: thesis, Dr. Sc. (Tech.)]. SPb., 2010. 34 s.
32. Bolotin V.V. Prognozirovanie resursa mashin i konstruktsij [Forecasting of resource of machines and designs]. M.: Mashinostroenie, 1984. 312 s.
33. Kablov V.F. Tekhnicheskaya fizika i mekhanika polimerov: ucheb. posobie. Ser.: Tekhnicheskie distsipliny [Technical physics and mechanics of polymers: manual. Series: Technical disciplines]. Volzhskij: VPI (filial) VolgGTU, 2012. Vyp. 5 (CD-ROM).

DOI: 10.18577/2071-9140-2018-0-3-89-94

UDC: 629.7:66.017

Pages: 89-94

M.A. Gorbovets1, A.V. Slavin1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

PROOF OF MATERIAL COMPLIANCE WITH THE REQUIREMENTS TO PART No. 33 OF JARs

JARs, part No. 33 and auxiliary engine have been put into effect for providing quality, reliability and durability of civil aircraft engines. It contains requirements to materials, which are used for engine structure. It is necessary to prove compliance with the requirements to the clauses of JARs in order to accept material for application in aero-engine design. The article contains the analysis of the regulatory documentation of RF regulating materials application capability in aero-engine design for Essential Airworthiness.

Keywords: regulatory documentation, JARs, aero-engine building, construction materials, Essential Airworthiness

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologij proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
3. Kablov E.N. Sovremennye materialy – osnova innovatsionnoj modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and VIAM technologies for «Aviadvigatel»] // Permskie aviatsionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
5. Sertifikatsiya aviatsionnoj tekhniki, organizatsij razrabotchikov i izgotovitelej: AP-21 [Certification of aviation engineering, organizations of developers and manufacturers: Part No. 21 of JARs]: vvod. v dejstvie s 05.07.1994. M.: Aviaizdat, 2013. 54 s.
6. Normy letnoj godnosti dvigatelej vozdushnykh sudov: AP-33 [Standards of the flight validity of engines of air vehicles: Part No. 33 of JARs]: utv. Postanovleniem 32-j sessii soveta po aviatsii i ispol\'zovaniyu vozdushnogo prostranstva 17.02.2012. 3-e izd. s popravkami 1–2. M.: Aviaizdat, 2012. 85 s.
7. Normy letnoj godnosti vspomogatelnykh dvigatelej vozdushnykh sudov: AP-VD [Standards of the flight validity of slave engines of air vehicles: AP-VD]: vvod. v dejstvie s 22.06.1998. M.: Aviaizdat, 1999. 20 s.
8. Poryadok otsenki sootvetstviya materialov, ispolzuemykh v konstruktsii aviatsionnogo dvigatelya, trebovaniyam Aviatsionnykh pravil: rukovodstvo 33-VD-M [Order of assessment of compliance of the materials used in design of the aircraft engine, to requirements of Aviation rules: management 33-VD-M]: vvod. v dejstvie 19.12.2012. M.: Aviaizdat, 2012. 14 s.
9. Metodicheskie rekomendatsii po opredeleniyu raschetnykh kharakteristik konstruktsionnoj prochnosti metallicheskikh materialov: RTS-AP-33.15-1 [Methodical recommendations about definition of rated characteristics of constructional durability of metal materials]. M.: Aviaizdat, 2013. 41 s.
10. Code of Federal Regulations (Federal Aviation Regulations) PART 33–Airworthiness Standards: Aircraft Engines. Available at: http://faa.gov (accessed: June 04, 2018).
11. Metallic Materials Property Development and Standardization. Available at: http://mmpds.org (accessed: June 04, 2018).
12. Federal Aviation Administration. Available at: http://faa.gov (accessed: June 04, 2018).
13. Manufacturing Process of Premium Quality Titanium Alloy Rotating Engine Components: Advisory circular 33.15-1. URL: http://faa.gov (accessed: June 04, 2018).
14. Manufacturing Processes for Premium Quality Nickel Alloy for Engine Rotating Parts: Advisory circular 33.15-2. Available at: http://faa.gov (accessed: June 04, 2018).
15. Belyaev M.S., Khvatskiy K.K., Gorbovets M.A. Sravnitelnyj analiz rossijskogo i zarubezhnyh standartov ispytanij na ustalost metallov [Comparative analysis of national standards of RF and the USA on methods of metals fatigue testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 11. Available at: http://www.viam-works.ru (accessed: June 04, 2018). DOI: 10.18577/2307-6046-2014-0-9-11-11.
16. Gorbovets M.A., Kochetkov D.A., Khodinev I.A. Analiz i sravnenie rossijskogo i zarubezhnogo standartov, ustanavlivayushchikh metody ispytanij na termomekhanicheskuyu ustalost [The analysis and comparison of the RF and foreign standards for method of thermomechanical fatigue tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4. St. 11. Available at: http://www.viam-works.ru (accessed: June 04, 2018). DOI: 10.18577/2307-6046-2017-0-4-11-11.
17. Gorbovets M.A., Nochovnaya N.A. Vliyanie mikrostruktury i fazovogo sostava zharoprochnyh titanovyh splavov na skorost\' rosta treshhiny ustalosti [Influence of microstructure and phase composition of heat-resisting titanium alloys on the fatigue crack growth rate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 03. Available at: http://www.viam-works.ru (accessed: June 04, 2018). DOI: 10.18577/2307-6046-2016-0-4-3-3.
18. Solovyev A.E., Golynets S.A., Khvatsky K.K., Aslanyan I.R. Provedenie staticheskih ispytanij pri rastyazhenii na mashinah firmy Zwick/Roell [Performing of static tensile tests on Zwick/Roell machines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 12. Available at: http://viam-works.ru (accessed: June 04, 2018). DOI: 10.18577/2307-6046-2015-0-8-12-12.
19. Ispytatelnyj tsentr VIAM [VIAM Testing Centre]. Available at: http://isp.viam.ru (accessed: June 04, 2018).