Archive

Aviation materials and tecnologes №4, 2018

DOI: 10.18577/2071-9140-2018-0-4-3-10

UDC: 669.245.018.44

Pages: 3-10

B.S. Lomberg1, A.A. Shestakova1, M.M. Bakradze1, F.N. Karachevtsev1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

THE INVESTIGATION OF THE STABILITY OF γ′-PHASE WITH SIZE BELOW 100 nm IN Ni-BASE SUPERALLOY VZh175-ID

The analysis of the evolution of the alloying system of cast&wrought Ni-base superalloys for jet-engine disk application is presented in the article. Main phase components and their contribution in strengthening are described. The changing of the morphology of γ′-phase against its amount in the alloys is shown. By the example of high rupture strength VZh175-ID alloy the stability of γ′-phase with size below 100 nm after each step of heat-treatment is investigated. This one is also carried out after isothermal exposures at material exploitation temperatures.

Keywords: Ni-base superalloy, microstructure, γ′-phase, nanophase, thermal stability, isothermal exposure.

Reference List

1. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
4. Sims Ch.T., Stoloff N.S., Khagel U.K. Supersplavy II: Zharoprochnyye materialy dlya aerokosmicheskikh i promyshlennykh energoustanovok v 2 kn. Per. s angl. / pod red. R.E. Shalina [Superalloys II: Heat-resistant materials for aerospace and industrial power plants in 2 books. Trans.. from Engl. / ed. By R.E. Shalin]. M: Metallurgiya, 1995. Kn. 1. 384 s.
5. Khimushin F.F. Zharoprochnyye stali i splavy. 2-e izd., pererab. i dop. [Heat-resistant steel and alloys. 2nd ed., rev. and add.]. M.: Metallurgiya, 1969. 752 s.
6. Kablov E.N. Bez novykh materialov – net budushchego [Without new materials – there is no future] // Metallurg. 2013. №12. S. 4–8.
7. Lomberg B.S., Ovsepyan S.V., Bakradze M.M. Novyy zharoprochnyy nikelevyy splav dlya diskov gazoturbinnykh dvigateley (GTD) i gazoturbinnykh ustanovok (GTU) [New heat-resistant nickel alloy for disks of gas-turbine engines (GTE) and gas-turbine units (GTU)] // Materialovedeniye. 2010. №7. S. 24–28.
8. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. Vliyaniye lantanoidov na strukturu zharoprochnykh nikelevykh splavov [Influence of lanthanides on the structure of heat-resistant nickel alloys] // Vestnik RFFI. 2015. №1 (85) S. 38–44.
9. Chabina E.B. Vliyaniye mikrolegirovaniya lantanoidami na osobennosti formirovaniya struktury granits zeren i mezhfaznykh granits /zharoprochnogo nikelevogo splava tipa VZH175 [Microalloying influence by lanthanoids on feature of forming of structure grain boundaries and interphase boundaries of / heat resisting nickel alloy of the VZh175 type] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2. St. 09. Available at: http://www.viam-works.ru (accessed: October 12, 2018). DOI: 10.18577/2307-6046-2017-0-2-9-9.
10. Meetham G.W. Trace elements in superalloys – overview // Metals Technology. 1984. Vol. 11. No. 10. P. 414–418.
11. Gabb T.P., Garg A., Ellis D.L., O’Connor K.M. Detailed Microstructural Characterization of the Disk Alloy ME3 // NASA/TM–2004–213066.
12. Morozova G.I. Fenomen γ-fazy v zharoprochnykh nikelevykh splavakh [The γ-phase phenomenon in heat-resistant nickel alloys] // Doklady Akademii nauk. 1992. T. 325. №6. S. 1193–1198.
13. Sharpe H.J., Saxena A. Effect of Microstructure on High-Temperature Mechanical Behavior of Nickel-Base Superalloys for Turbine Disc Applications // Advanced Materials Research. 2011. No. 278. P. 259–264.
14. Shestakova A.A., Karachevtsev F.N., Zhebelev N.M. Issledovaniye vliyaniya temperatury stareniya na strukturno-fazovyye prevrashcheniya v splave VZH177 [The investigation of the influence of ageing temperature on structural and phase transformations in VZh177] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №5. St. 01. Available at: http://www.viam-works.ru (accessed: October 12, 2018). DOI: 10.18577/2307-6046-2018-0-5-3-11.
15. Boittin G., Locq D., Rafray A. et al. Influence of γ precipitate size and distribution on LCF behavior of a PM disk superalloy // Superalloys. 2012. USA: TMS, 2012. P. 167–176.
16. Yiqiang C., Prasath R., Slater T.J.A. et al. An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy // Acta Materialia. 2016. Vol. 110. P. 295–305.
17. Pollock T., Tin S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties // Journal of Propulsion and Power. 2006. Vol. 22. No. 2. P. 361–374.
18. Ber L.B., Moiseyeva N.S., Ponomareva E.Yu. i dr. Formirovaniye chastits g-fazy v protsesse zakalochnogo okhlazhdeniya granulirovannogo splava EP741NP. Postroyeniye TTT-diagramm raspada g-tverdogo rastvora [Formation of γ-phase particles in the process of quenching cooling of granulated alloy EP741NP. Construction of TTT-diagrams of γ-solid solution decomposition] // Tekhnologiya legkikh splavov. 2009. №3. S. 77–88.
19. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: October 12, 2018).
20. Lomberg B.S., Bubnov M.V., Bakradze M.M., Arbina V.P. Izgotovleniye pokovok diskov gazoturbinnykh dvigateley iz splava VZH175 [Manufacturing of forgings for gas turbine engine disks made of VZh175 alloy] // Kuznechno-shtampovoye proizvodstvo. Obrabotka metallov davleniyem. 2013. №9. S. 21–23.
21. Ovsepyan S.V., Lomberg B.S., Bakradze M.M., Letnikov M.N. Termicheskaya obrabotka deformiruyemykh zharoprochnykh splavov dlya diskov GTD [Heat treatment of deformable heat-resistant alloys for gas-turbine engines] // Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya: Mashinostroyeniye. 2011. №S2. S. 122–130.
22. Filonova E.V., Bakradze M.M., Kochubey A.Ya., Vavilin N.L. Issledovanie izmenenij strukturno-fazovogo sostoyaniya splava VZh175 v processe goryachej deformacii i termicheskoj obrabotki [Structural-phase evolution of VZH175-alloy during hot deformation and heat treatment] // Aviacionnye materialy i tehnologii. 2014. №3. S. 10–13. DOI: 10.18577/2071-9140-2014-0-3-10-13.
23. Zhang G.Q. Research and Development of High Temperature Structural Materials for Aero-Engine Application // Acta Metallurgica Sinica. 2005. Vol. 18. No. 4. P. 443–452.
24. Gabb T., Gayda J. The Grain Size-Temperature Response of Advanced Nickel-Base Disk Superalloys During Solution Heat Treatments // NASA/TM–2007–214912. USA, Cleveland, Ohio. December, 2007. 19 p.
25. Gorelik S.S. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. M.: Metallurgiya, 1978. 568 s.
26. Inozemtsev A.A., Sandarskiy V.L. Gazoturbinnyye dvigateli [Gas turbine engines]. Perm: Aviadvigatel, 2006. 1204 s.
27. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: Cambridge University Press, 2006. 372 p.
28. Lanshin A.I., Palkin V.A., Fedyakin V.N. Analiz tendentsiy razvitiya dvigateley dlya samoletov grazhdanskoy aviatsii [Analysis of trends in the development of engines for civil aircraft] // Dvigatel. 2010. №6 (72). S. 72–76.
29. Inozemtsev A.A. Materialy i tekhnologii dlya dvigatelya PD-14 [Materials and technologies for the PD-14 engine] // Programma Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Novyye materialy i tekhnologii glubokoy pererabotki syr\'ya – osnova innovatsionnogo razvitiya ekonomiki Rossii» (Moskva, 25–28 iyunya 2012 g.). M., 2012. 1 CD-ROM.
30. Sharova N.A., Tikhomirova E.A., Barabash A.L. i dr. K voprosu o vybore novykh zharoprochnykh nikelevykh splavov dlya perspektivnykh aviatsionnykh GTD [On the choice of new heat-resistant nickel alloys for promising aviation gas turbine engines] // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2009. №3 (19). S. 249–255.

DOI: 10.18577/2071-9140-2018-0-4-11-18

UDC: 669-1

Pages: 11-18

R.M. Mubarakshin1

[1] Ural Engineering Consulting Ltd. Center for Advanced Technologies,

OPTIMIZATION OF TECHNOLOGY AND EQUIPMENT FOR PRODUCTING DISKS OF GAS TURBINE ENGINES AND UNITS

The analysis of technological methods for shaping profile grooves in discs of gas turbine engines and plants is carried out. It is shown that at this stage the most economical method for shaping the grooves in the disks is the method of traction. The aspects of optimization of the basic parameters of the equipment for broaching, determining its cost and productivity of the process are considered. The possibilities of high-speed broaching of the grooves of disks and examples of application of carbide broa-ching for the purpose of increasing the productivity of the process are analyzed.

Keywords:  gas turbine engine, optimization, technology, stretching, disc, blade

Reference List

1. Logunov A.V., Shmotin Yu.N. Sovremennyye zharoprochnyye nikelevyye splavy dlya diskov i gazovykh turbin (materialy i tekhnologii) [Modern heat-resistant nickel alloys for disks and gas turbines (materials and technologies)]. M.: Nauka i tekhnologii, 2013. 264 s.
2. Skibin V.A., Solonin V.I., Palkin V.A. Raboty vedushchikh aviadvigatelestroitel\'nykh kompaniy po sozdaniyu perspektivnykh aviatsionnykh dvigateley [Works of leading aircraft engine companies to create advanced aircraft engines]. M.: TSIAM, 2004. 421 s.
3. Inozemtsev A.A., Sandratskiy V.L. Gazoturbinnyye dvigateli [Gas turbine engines]. Perm: Aviadvigatel, 2006. Ch. I. S. 456–457.
4. Tomilina T.V., Shmotin Yu.N. Techeniye v turbine vysokogo davleniya s uchetom nestatsionarnogo stator/rotor vzaimodeystviya [The flow in the high-pressure turbine, taking into account the non-stationary stator / rotor interaction] // Konversiya v mashinostroyenii. 2008. №1 (86). S. 7–10.
5. Reed R.C. The superalloys. Fundamentals and Applications. Cambridge: University Press, 2006. 372 p.
6. Mubarakshin R.M. Optimizatsiya obrabotki fasonnykh detaley slozhnoy formy iz vysokoprochnykh, zharostoykikh splavov na mnogotselevykh obrabatyvayushchikh tsentrakh [Optimization of machining shaped parts of complex shape from high-strength, heat-resistant alloys on multi-purpose machining centers] // Tekhnologiya mashinostroyeniya. 2017. №2. S. 17–23.
7. Bratukhin A.G., Reshetnikov Yu.E., Inozemtsev A.A. i dr. Osnovy sozdaniya gazoturbinnykh dvigateley dlya magistralnykh samoletov [Basics of creating gas turbine engines for long-haul aircraft]. M.: Aviatekhinform, 1999. S. 271–272.
8. Koll. R. Sovremennaya obrabotka yelochnykh profiley diskov turbin [Modern processing of fir-tree profiles of turbine disks. specialist. conf. «Complex processing of shafts and disks of turbines»] // Sb. spets. konf. «Kompleksnaya obrabotka valov i diskov turbin». Perm, 2003. S. 1–18.
9. Antar M.T., Soo S.L., Aspinwall D.K. et al. Fatigue response of Udimet 720 following minimum damage wire electrical discharge machining // Materials and Design. 2012. Vol. 42. P. 295–300.
10. Chernyshev V.V., Rakhmarova M.S., Deych G.B. Protyagivaniye i uprochneniye khvostovikov lopatok gazoturbinnykh dvigateley [Broaching and hardening the shanks of the blades of gas turbine engines]. M: Mashinostroyeniye, 1971. 276 s.
11. Zhigalko N.I. Skorostnoye protyagivaniye [Speed pulling]. Minsk: Vysshaya shkola, 1982. 152 s.
12. Protyazhnaya tekhnika v turbostroyenii: preprint [Broaching technology in turbine construction: preprint]. Hoffmann, 2007. S. 1–42.
13. Hasslach K., Brinkhaus J. Information ToolScope: inf. Listok [Information ToolScope: inf. leaflet]. Hoffmann, 2009. 1 p.
14. Mubarakshin R.M. Povysheniye effektivnosti proizvodstva za schet primeneniya sredstv izmereniy [Improving production efficiency through the use of measuring instruments] // Innovatsiya. 2007. №9. S. 48–49.
15. Bratukhin A.G., Reshetnikov Yu.E., Inozemtsev A.A. i dr. Osnovy sozdaniya gazoturbinnykh dvigateley dlya magistralnykh samoletov [basics of creating gas turbine engines for long-haul aircraft]. M.: Aviatekhinform, 1999. S. 286–288.

DOI: 10.18577/2071-9140-2018-0-4-19-25

UDC: 620.198

Pages: 19-25

A.A. Malikov1, E.V. Markova1, O.V. Chechuga1

[1] Federal State Budgetary Institution of Higher Education «Tula State University»,

APPLICATION OF ELECTRIC DISCHARGE METHODS OF SURFACE HARDENING FOR TOOL LIFE DURABILITY

The paper presents an analysis of the possibility of using electrospark methods for surface hardening of parts of tool production. The objects of study are the surface layers of steel 60С2ХА, 45ХН2МФА and 35ХРA after the electrical discharge treatment and electrospark alloying. The results of metallographic, micro-x-ray diffraction, and x-ray diffraction methods are presented, as well as the results of wear tests of samples. The distributions of microhardness in the surface layer of samples during electrospark alloying with chromium and chromium carbide are presented.

Keywords: electrical discharge machining, electrospark alloying, stresses, microstructure, wear, substructure, surface layer, micro-cracks

Reference List

1. Vlasov V.M., Nechayev L.M., Fomicheva N.B. Vliyaniye kontsentratsii energii deformatsii formoizmeneniya na mekhanicheskoye razrusheniye pokrytiya [The effect of deformation energy concentration of deformation on the mechanical destruction of the coating] // Uspekhi sovremennogo yestestvoznaniya. 2002. №4. S. 103.
2. Ablyaz T.R. Analiz kachestva obrabotannoy poverkhnosti detali posle elektroerozionnoy obrabotki [Analysis of the quality of the processed surface of the part after EDM processing] // Sovremennyye problemy nauki i obrazovaniya. 2014. №2. Available at: http://www.science-education.ru/ru/article/view?id=1293 (accessed: July 05, 2018).
3. Blinova T.A., Puzacheva Ye.I., Boyko A.F. Povysheniye tochnosti elektroerozionnoy obrabotki [Improving the accuracy of electrical discharge machining] // Materialy II Mezhdunar. nauch.-praktich. konf. «Perspektivnoye razvitiye nauki, tekhniki i tekhnologiy». Kursk: YuZGU, 2012. T. 1. S. 89–90.
4. Vlasov V.M., Nechayev L.M., Fomicheva N.B. Prognozirovaniye rabotosposobnosti trushchikhsya poverkhnostey [Prediction of the efficiency of rubbing surfaces] // Sovremennyye tekhnologii v mashinostroyenii: tez. dokl. 5-y VNPK. Penza, 2001. Ch. 2. S. 43–44.
5. Nechayev L.M., Fomicheva N.B., Markova Ye.V. Raspredeleniye vnutrennikh napryazheniy po glubine poverkhnostnogo sloya stali 65S2VA [Distribution of internal stresses over the depth of the surface layer of steel 65S2BA] // Materialy V Mezhdunar. konf. «Deformatsiya i razrusheniye materialov i nanomaterialov». M.: IMET RAN, 2013. S. 339–340.
6. Ondracek G. Zurquantitativen Gefüge-Feldeigenschafts-Korrelation mehrhasiger Werkstoffe Teil I, II, III // Metall. 1982. Vol. 36. No. 12. P. 1288–1290.
7. Nechayev L.M., Serzhantova G.V., Markova E.V. Modelirovaniye kharakteristik geterogennosti diffuzionnykh zon po pokazatelyam mikrotverdosti [Modeling the characteristics of heterogeneity of diffusion zones in terms of microhardness] // Mekhanika i fizika protsessov na poverkhnosti i v kontakte tverdykh tel, detaley tekhnologicheskogo i energeticheskogo oborudovaniya: mezhvuz. sb. nauch. tr. Tver: TGTU, 2013. Vyp. 6. S. 129–134.
8. Dagani R. Individual Surface Atoms Identified, Chemical & Engineering News. Published by American Chemical Society, 2007. P. 13.
9. Tikhonova I.V., Grinberg E.M., Markova E.V. Vliyaniye khimicheskogo sostava na kolichestvo ostatochnogo austenita i sklonnost stali ko vtorichnoy zakalke [The influence of chemical composition on the amount of residual austenite and the tendency of steel to secondary hardening] // Izvestiya TulGU. Ser.: Tekhnicheskiye nauki. 2012. Vyp. 1. S. 114–122.
10. Microwave discharges: Fundamentals and Applications: Proceedings of V International Workshop (Greifswald, July 8–12, 2003) / ed. by A. Ohl. Greifswald: INP, 2003. P. 247–254.
11. Vlasov V.M., Nechayev L.M. Rabotosposobnost vysokoprochnykh termodiffuzionnykh pokrytiy v uzlakh treniya mashin [Efficiency of high-strength thermal diffusion coatings in the friction units of machines]. Tula: Prioks. knizhn. izd-vo, 1994. 237 s.
12. Wirz R.Е. Discharge plasma processes of ring-cusp ion thrusters: In partial fulfillment of the requirements for the degree of PhD. Pasadena, California: CA Inst. of Technology, 2005.
13. Filonenko N.S. Termokinetika fazovykh prevrashcheniy pri elektromekhanicheskoy obrabotke [Thermokinetics of phase transformations during electromechanical processing] // Diffuzionnyye protsessy v metallakh. Tula: TPI, 1975. Vyp. 3. S. 131–135.
14. Borisov Yu.S., Kharlamov Yu.A., Sidorenko S.L. i dr. Gazotermicheskiye pokrytiya iz poroshkovykh materialov: spravochnik [Thermal coatings of powder materials: Handbook]. Kiev: Naukova dumka, 1987. 544 s.
15. Kondratov L.P., Bozhko N.N. Tekhnologiya materialov i pokrytiy [Technology materials and coatings]. M.: MGUP, 2008. 226 s.

DOI: 10.18577/2071-9140-2018-0-4-26-30

UDC: 665.939.5

Pages: 26-30

G.V. Malysheva1, D.V. Grashchenkov2, T.A. Guzeva1

[1] Bauman Moscow State Technical University (National Research University of Technology),
[2] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

EVALUATION OF TECHNOLOGICAL USE EFFICIENCY OF ADHESIVES AND GLUE PREPREGS IN THE MANUFACTURE OF THREE-LAYER PANELS

An assessment of the technological efficiency of adhesive materials depending on the types of industries, where they were made, has been conducted. The technological efficiency characteristics while using liquid and film adhe-sives as well as glue prepregs have been considered as exemplified by a three-layer panel. Index of labor require-ment, materials intensity and energy intensity during production, operation and maintenance were used as a characteristic of technological efficiency. It has been established that glue prepregs have the best estimates for the technological efficiency according to the most indicators.

Keywords: adhesive joints, the technological efficiency, reliability, type of production

Reference List

1. Petrova A.P., Malysheva G.V. Klei, kleyevyye svyazuyushchiye, kleyevyye prepregi [Glues, adhesive binders, adhesive prepregs]. M.: VIAM, 2017. 472 s.
2. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Issledovaniye epoksidno-polisulfonovykh polimernykh sistem kak osnovy vysokoprochnykh kleye aviatsionnogo naznacheniya [Study of epoxy-polysulfone polymer systems as the basis for high-strength aviation-grade glue] // Klei. Germetiki. Tekhnologii. 2017. №3. S. 7–12.
3. Mikhailin Yu.A.  Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fiber polymer composite materials in technics]. Spb.: Nauchnye osnovy i tekhnologii, 2013. 72 s.
4. Mishkin S.I., Raskutin A.E., Evdokimov A.A., Gulyaev I.N. Tehnologii i osnovnye etapy stroitelstva pervogo v Rossii arochnogo mosta iz kompozicionnyh materialov [Technologies and the main stages of construction of the arch bridge first in Russia from composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6 (54). St. 05. Available at: http://www.viam-works.ru (accessed: July 16, 2018). DOI: 10.18577/2307-6046-2017-0-6-5-5.
5. Antipov V.V., Chesnokov D.V., Kozlov I.A., Volkov I.A., Petrova A.P. Podgotovka poverkhnosti alyuminiyevogo splava V-1469 pered primeneniyem v sostave sloistogo gibridnogo materiala [Surface preparation aluminum alloy V-1469 before use in the composition of layered hybrid material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №4 (64). St. 07. Available at: http://www.viam-works.ru (accessed: July 16, 2018). DOI: 10.18577/2307-6046-2018-0-4-59-65.
6. Antipov V.V., Kotova E.V., Serebrennikova N.Yu., Petrova A.P. Kleyevyye svyazuyushchiye i kleyevyye prepregi dlya alyumopolimernykh materialov [Glue binders and glue prepregs for alumopolymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №5 (65). St. 06. Available at: http://www.viam-works.ru (accessed: July 16, 2018). DOI: 10.18577/2307-6046-2018-0-5-44-54.
7. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 3. Raschet energii aktivacii i teplovogo resursa polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 3. Calculation of activation energy and thermal resource of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 11. Available at: http://www.viam-works.ru (accessed: July 16, 2018). DOI: 10.18577/2307-6046-2016-0-5-11-11.
8. Malysheva G.V., Guzeva T.A., Grashchenkov D.V., Raskutin A.E. Vliyaniye tekhnologii nagreva na prodolzhitelnost protsessa otverzhdeniya polimernykh kompozitsionnykh materialov [The influence of heating  technology on the duration  of the curing process of polymer composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №8 (68). St. 02. Available at: http://www.viam-works.ru (accessed: July 16, 2018). DOI: 10.18577/2307-6046-2018-0-2-23-27.
9. Tekhnologicheskaya nasledstvennost v mashinostroitelnom proizvodstve / pod red. A.M. Dalskogo [Technological heredity in engineering production / ed. by A.M. Dalskiy]. M.: Izd-vo MAI, 2000. 360 s.
10. Suslov A.G., Dalskiy A.M. Nauchnyye osnovy tekhnologii mashinostroyeniya [Scientific basis of engineering technology]. M.: Mashinostroyeniye, 2002. 684 s.
11. Kablov E.N., Buznik V.M. Sostoyaniye i perspektivy arkticheskogo materialovedeniya [State of the art and prospects for Arctic materials science] // Vestnik Rossiyskoy akademii nauk. 2017. T. 87. №9. S. 827–839.
12. Baurova N.I., Zorin V.A. Primeneniye polimernykh kompozitsionnykh materialov pri proizvodstve i remonte mashin: ucheb. Posobiye [The use of polymer composite materials in the production and repair of machines: tutorial]. M.: MADI, 2016. 264 s.
13. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
14. Shchegoleva N.E., Grashchenkov D.V., Vaganova M.L., Solntsev S.S. Kompozitsionnyye materialy, armirovannyye voloknistymi napolnitelyami [Composite materials reinforced with fibrous fillers] // Perspektivnyye materialy. 2014. №8. S. 22–30.
15. Marakhovskiy P.S., Barinov D.Ya., Pavlovskiy K.A., Aleksashin V.M. Otverzhdeniye mnogosloynykh polimernykh kompozitsionnykh materialov. Chast 1. Matematicheskoye modelirovaniye teploperenosa pri formovanii tolstoy plity ugleplastika [Curing of multilayer polymer composites. Part 1. Mathematical modeling of heat transfer in the formation of a thick plate of carbon fiber] // Vse materialy. Entsiklopedicheskiy spravochnik. 2018. №2. S. 16–22.

DOI: 10.18577/2071-9140-2018-0-4-31-36

UDC: 678.8

Pages: 31-36

V.V. Vnuk1, S.V. Kamayev1, M.A. Markov1, S.A. Cherebylo1

[1] Institute on Laser and Information Technologies of Russian Academy of Sciences - Branch of Federal Scientific Research Centre «Crystallography and Photonics» of Russian Academy of Sciences,

FEATURES OF PARTS FABRICATION BY USING MULTICOMPONENT RESINS BY LASER STEREOLITHOGRAPHY

The paper reports on the technological features of using the multicomponent photocurable resins by the exam-ple of a new resin IРLIT-4 to achieve the best characteristics of the cured parts. It was found that repeated drawing of the layer with a proportional increase in the speed of drawing thin spots of the part improves the physical and mechanical characteristics.

Keywords: additive technology, laser stereolithography, three-dimensional modeling, photocurable resin

Reference List

1. Jacobs P.F. Introduction to Rapid Prototyping and Manufacturing // Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography. 1st ed. Dearborn MI: Society of Manufacturing Engineers, 1992. P. 4–6.
2. Evseyev A.V., Kamaev S.V., Kotsyuba E.V. i dr. Lazernyye tekhnologii bystrogo prototipirovaniya i pryamoy fabrikatsii trekhmernykh oyektov [Laser technologies for rapid prototyping and direct fabrication of three-dimensional objects] // Lazernyye tekhnologii obrabotki materialov: sovremennyye problemy fundamentalnykh issledovaniy i prikladnykh razrabotok. M: Fizmatlit, 2009. S. 333–397.
3. Three dimensional printing techniques: pat. US 5204055; publ. 08.12.89.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation – the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
5. Vermel V.D., Kozlov V.A., Kornushenko A.V. i dr. Perspektivy primeneniya lazernoy stereolitografii (SLA-tekhnologii) pri izgotovlenii produvochnykh aerodinamicheskikh modeley [Prospects for the use of laser stereolithography (SLA-technology) in the manufacture of blowing aerodynamic models] // Informatsionnyye tekhnologii v proyektirovanii i proizvodstve. 2000. №3. S. 27–31.
6. Evseyev A.V., Kamayev S.V., Kotsyuba E.V., Markov M.A., Novikov M.M., Panchenko V.Ya. Operativnoye formirovaniye trekhmernykh obektov metodom lazernoy stereolitografii [Operational formation of three-dimensional objects by laser stereolithography method] // Sovremennyye lazerno-informatsionnyye i lazernyye tekhnologii. M: Interkontakt Nauka, 2005. S. 26–40.
7. Asberg B., Blanco G., Bose P. et. al. Feasibility of design in stereolithography // Algorithmica, Special Issue on Computational Geometry in Manufacturing. 1997. Vol. 19. No. 1–2. Р. 61–83.
8. Antonov A.N., Evseev A.V., Kamaev S.V. i dr. Lazernaya stereolitografiya – tekhnologiya posloynogo izgotovleniya trekhmernykh obyektov iz zhidkikh fotopolimerizuyushchikhsya kompozitsiy [Laser stereolithography — the technology of layer-by-layer fabrication of three-dimensional objects from liquid photopolymerizable compositions] // Opticheskaya tekhnika. 1998. T. 1. №13. S. 5–14.
9. Markov M.A. Fotopolimerizuyushchayasya smola dlya lazernoy stereolitografii «IPLIT-4» [Photopolymerizable resin for laser stereolithography «IPLIT-4»] // Materialy IV Mezhdunar. konf. «Additivnyye tekhnologii: nastoyashcheye i budushcheye» (Moskva, 30 marta 2018). Available at: https://conf.viam.ru/sites/default/files/uploads/proceedings/1073.pdf (accessed: November 23, 2018).
10. Tsybin A.I., Tkachuk A.I., Grebeneva T.A. et al. A Study of the Performance Properties of Oligoetheracrylate Binder Cured by Coherent UV Radiation // Polymer Science. Series D. 2017. Vol. 10. No. 1. P. 13–18.
11. Evseev A.V., Nikitin A.N. Issledovaniye fotoinitsiirovannoy polimerizatsii v IPLIT RAN [Investigation of photo-initiated polymerization in ILIT RAS] // Sovremennyye lazerno-informatsionnyye tekhnologii. M: Interkontakt Nauka, 2015. C. 345–357.
12. Evseev A.V., Markov M.A. Fotoinitsiirovannaya izlucheniyem XeCl lazera polimerizatsiya akrilovykh oligomerov [Photoinitiated XeCl laser radiation polymerization of acrylic oligomers] // Kvantovaya elektronika. 1994. T. 21. №5. S. 491–494.
13. Sposob otverzhdeniya fotopolimerizuyushcheysya kompozitsii na osnove akrilovogo oligomera putem initsiirovaniya polimerizatsii v ustanovkakh radiatsionnogo otverzhdeniya pokrytiy: pat. 2148060 Ros. Federatsiya [Method of curing a photopolymerizable composition based on an acrylic oligomer by initiating polymerization in radiation-curing installations for coatings: pat. 2148060 Rus. Federation]; opubl. 08.12.97.
14. Berlin A.A., Korolev G.V., Kefeli T.Ya., Sivergin Yu.M. Akrilovyye oligomery i materialy na ikh osnove [Acrylic oligomers and materials based on them]. M.: Khimiya, 1983. 232 s.
15. Lysych M.N., Shabanov M.L., Skrypnikov A.E. Perspektivy ispol\'zovaniya tekhnologiy 3D pechati [Perspectives of using 3D printing technologies] // Molodoy uchenyy. 2014. №11. S. 69–73.

DOI: 10.18577/2071-9140-2018-0-4-37-44

UDC: 66.017:666.7

Pages: 37-44

B.Yu. Kuznetsov1, O.Yu. Sorokin1, M.L. Vaganova1, I.V. Osin1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

SYNTHESIS OF MODEL HIGH-TEMPERATURE CERAMIC MATRICES BY THE METHOD OF SPARK PLASMA SINTERING AND THE STUDY OF THEIR PROPERTIES FOR THE PRODUCTION OF COMPOSITE MATERIALS

The main task of this work is modeling based on thermodynamic calculation of the processes that result from liquid-phase impregnation with metal melts, leading to the formation of a ceramic matrix of a complex phase com-position. Also on model samples that repeat the phase composition of the kermic matrix, the hypothesis that the variation of the TCLЕ of multiphase material obeys the additivity law in the first approximation will be tested.

Keywords: ceramic composite materials, interphase coating, modifying additives, spark plasma sintering, tem-perature coefficient of linear expansion (TCLE), oxidation

Reference List

1. Ultra-high temperature ceramics: materials for extreme environmental applications / Edited by W.G. Fahrenholts, E.J. Wuchina, W.E. Lee, Y. Zhou // USA. WILEY. 2014. P. 146–160.
2. Kablov E.N., Zhestkov B.E., Grashchenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaganova M.L. Investigation of the oxidative resistance of high-temperature coating on a SiC material under // High Temperature. 2017. Vol. 55. No. 6. P. 873–879.
3. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: September 21, 2018). DOI: 10.18577/2307-6046-2014-0-6-8-8.
4. Sevastyanov V.G., Simonenko Ye.P., Simonenko N.P., Grashchenkov D.V., Solntsev S.St., Yermakova G.V., Prokopchenko G.M., Kablov E.N., Kuznetsov N.T. Polucheniye nitevidnykh kristallov karbida kremniya s primeneniyem zol-gel metoda v obyeme SiC-keramiki [Preparation of whiskers of silicon carbide using the sol-gel method in the bulk of SiC ceramics] // Kompozity i nanostruktury. 2014. T. 6. №4. S. 198–211.
5. Lebedeva Yu.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytiya dlya kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2013. №2. St. 06. Available at: http://www.viam-works.ru (accessed: September 17, 2018).
6. Corman G., Upadhyay R., Sinha S. et al. General Electric company: selected applications of ceramics and composite materials // Materials Research for Manufacturing. 2016. P. 59–91.
7. Sevastyanov V.G., Simonenko E.P., Simonenko N.P., Kuznetsov N.T., Grashchenkov D.V., Solntsev S.St., Ermakova G.V., Prokopchenko G.M. Sintez nanostrukturirovannogo kremniya cherez gazovuyu fazu s primeneniyem perkhlorsilanov dlya dopirovaniya vysokotemperaturnogo kompozitsionnogo materiala na osnove karbida kremniya [The synthesis of nanostructured silicon through the gas phase using perchloresilanes for doping silicon carbide-based high-temperature composite material] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 04. URL: http://www.viam-works.ru (accessed: September 25, 2018). DOI: 10.18577/2307-6046-2014-0-4-4-4.
8. Erasov V.S., Oreshko E.I. Prichiny zavisimosti mekhanicheskikh kharakteristik treshchinostoykosti materiala ot razmerov obraztsa [Reasons for dependence of mechanical characteristics of material fracture  resistanceon  sample sizes] // Aviacionnyye materialy i tehnologii. 2018. №3. S. 56–64. DOI: 10.18577/2071-9140-2018-0-3-56-64.
9. MAX Phases and ultra-high temperature ceramics for extreme environments / ed.by L.M. Low, Y. Sakka, C.F. Hu. IGI-GLOBAL, 2013. 649 p.
10. Lacombe A. Ceramic matrix composites to make breakthroughs in aircraft engine performance // 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (May 4–7, 2009, Palm Spring, CA). 2009. P. 69–74.
11. Naslain R.R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview // Composites Science and Technology. 2004. Vol. 64. P. 155–170.
12. Baroumes L., Bouillon E., Christin F. An improved long life duration ceramic matrix composite material foe jet aircraft engine applications // 24th International Congress of the Aeronautical Sciences (29 August–3 September, 2004. Yokohama). 2004. Vol. 6. P. 1076–1084.
13. Novitskaya E., Khalifa H.E., Graeve O.A. Microhardness and microstructure correlations in SiC/SiC composites // Materials Letters. 2018. Vol. 213. P. 286–289.
14. Raj S.V., Bhatt R., Singh M. Development of engineered ceramic matrix composites // NASA Aeronautics Research Mission Directorate. Seedling Technical Seminar. February, 2014. 46 p.
15. Kablov E.N., Folomeykin Yu.I., Stolyarova V.L., Lopatin S.I. Protsessy vzaimodeystviya niobiy-kremniyevogo rasplava s ogneupornoy keramikoy [Interaction processes of niobium-silicon melt with refractory ceramics] // Zhurnal obshchey khimii. 2016. T. 86. №9. S. 1542–1546.

DOI: 10.18577/2071-9140-2018-0-4-45-54

UDC: 621.315.223

Pages: 45-54

V.A. Aniskovich1, A.F. Yermolenko1, A.A. Kulkov1

[1] Joint Stock Company «Central Research Institute for Special Machinery»,

COMPLEX SCIENTIFIC-TECHNOLOGICAL APPROACH TO DEVELOPING LIGHT POLYMERCERAMIC ARMOR

This paper presents researches on development of the combined armor. The technological principle of produ-cing the combined armor with a ceramic facing layer has been developed. Considerable advantages of using multi-layered materials based on high-oriented yarns in compared with composites on the basis of traditionally used fabrics have been determined. The developed mathematical model of depositing hard cores of armor-piercing bul-lets into the polymerceramic armor gives a possibility to forecast a composition and a structure of the armor without conducting high-cost firing tests.

Keywords: polymerceramic armor, high-oriented yarns, polyurethane thermosetting-plastic binder

Reference List

1. Kharchenko E.F. Kompozitnyye, tekstilnyye i kombinirovannyye bronematerialy [Composite, textile and combined armor materials] // Sovremennyye zashchitnyye struktury i sredstva individualnoy bronezashchity. M.: TSNIISM, 2014. T. 2. 332 s.
2. Materialy i zashchitnyye struktury dlya lokalnogo i individualnogo bronirovaniya / pod red. V.A. Grigoryana [Materials and protective structures for local and individual booking / ed. By V.A. Grigorian]. M.: RadioSoft, 2008. 406 s.
3. Kulakov I.V., Sidorov I.I., Sutyagin K.A. Integralnaya bronezashchita na osnove keramicheskikh kompozitsiy ot vysokoenergeticheskikh strelkovykh snaryadov [Integral body armor based on ceramic compositions from high-energy rifle shells] // Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 1996. Vyp. 3 (115)–4 (116). S. 24–27.
4. Sinani A.B., Pugachev G.S., Yemelyanov Yu.A. i dr. Ispolzovaniye vysokotverdykh materialov v legkoy bronezashchite [Use of high-hard materials in light armor protection] // Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 1996. Vyp. 1 (113)–2 (114). S. 14–19.
5. Grinevich A.V., Yarosh V.V. Osobennosti razrusheniya keramiki pri udarnom vozdeystvii [Features of the destruction of ceramics under shock impact] // Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 1999. Vyp. 1 (120)–2 (121). S. 31–34.
6. Grinevich A.V., Yarosh V.V. Drobyashchiy effekt keramicheskogo sloya kombinirovannoy broni [The crushing effect of the ceramic layer of the combined armor] // Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 1999. Vyp. 1 (120)–2 (121). S. 35–37.
7. Aktualnyye problemy tekhnologii proizvodstva sovremennykh keramicheskikh materialov: sb. tr. nauch. Seminara [Actual problems of production technology of modern ceramic materials: Sat. tr. scientific a seminar]. SPb.: Izd-vo Politekhn. un-ta, 2015. 244 s.
8. Keramicheskiy bronematerial na osnove karbida kremniya i karbida bora i sposob izgotovleniya keramicheskogo bronemateriala na osnove karbida kremniya i karbida bora: pat. 2440956 Ros. Federatsiya [Ceramic armor material based on silicon carbide and boron carbide and a method of making ceramic armor material based on silicon carbide and boron carbide: pat. 2440956 Rus. Federation]; opubl. 27.01.12.
9. Aniskovich V.A., Gavrikov I.S., Bykov V.A. Perspektivy sozdaniya broni na osnove smesevoy karbidnoy keramiki [Prospects for creating armor based on composite carbide ceramics] // Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 2011. Vyp. 1 (160)–2 (161). S. 39–40.
10. Aniskovich V.A. Razrabotka i issledovaniye kompozitnoy podlozhki dlya kombinirovannoy broni na osnove keramicheskikh materialov [Development and research of a composite substrate for combined armor based on ceramic materials] // Oboronnaya tekhnika. 2013. №3–4. S. 66–72.
11. Grimberg Dzh.Kh., Van Dingnenen Dzh.L.Dzh., Pessers V.A.R.M. Netkanyye materialy i tkani Daynema v ballisticheskoy zashchite [Non-woven materials and Daynem fabrics in ballistic protection] // Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 1996. Vyp. 3 (115)–4 (116). 69 s.
12. Kharchenko Ye.F. Analiz realizatsii prochnosti polimernykh volokon v zashchitnykh materialakh [Analysis of the implementation of the strength of polymer fibers in protective materials] // Tez. dokl. 1-y Mezhotras. nauch.-praktich. konf. Khotkovo, 1995. S. 6–7.
13. Aniskovich V.A., Zaytseva L.V., Chervyakov A.S. Razrabotka i issledovaniye kompozitnykh materialov na osnove termoplastichnykh matrits dlya sredstv bronezashchity [Development and research of composite materials based on thermoplastic matrices for armor protection] // IX Mezhdunar. nauchn.-prakt. konf. «Noveyshiye tendentsii v oblasti konstruirovaniya i primeneniya ballisticheskikh materialov i sredstv zashchity». M., 2007. S. 96–97.
14. Aniskovich V.A., Gavrikov I.S. Razrabotka i issledovaniye vysokoelastichnogo polimernogo svyazuyushchego dlya kompozitno-keramicheskoy broni [Development and research of highly elastic polymer binder for composite-ceramic armor] // Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 2014. Vyp. 3 (174). S. 49–55.
15. Aniskovich V.A. Nauchno-tekhnologicheskiye aspekty sozdaniya kombinirovannoy polimerkeramicheskoy broni [Scientific and technological aspects of the creation of a combined polymer-ceramic armor]. M.: Spektr, 2015. 75 s.

DOI: 10.18577/2071-9140-2018-0-4-55-62

UDC: 666.266.51

Pages: 55-62

N.E. Shchegoleva1, A.S. Chainikova1, L.A. Orlova2

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Dmitry Mendeleev University of Chemical Technology of Russia,

SINTERING PROCESS ANALYSIS IN THE MANUFACTURE OF STRONTIUMALUMINOSILICATE GLASS CERAMICS BY POWER-PRESSED METHOD

The article considers production of strontiumaluminosilicate glass ceramics by powder-pressed method with the consequent roasting, research results of physical, mechanical, thermal and dielectric properties are represented in the comparison with same composition sitall properties, currently used for strontiumaluminosilicate glass ceramics production. Application prospects of produced ceramics as radio engineering material instead of spodumene ce-ramics are illustrated.

Keywords: strontiumaluminosilicate glass, glass ceramics, powder-pressed method, sintering, crystallization

Reference List

1. Kablov E.N., Grashchenkov D.V., Shchegoleva N.Ye., Orlova L.A., Suzdaltsev E.I. Radioprozrachnaya steklokeramika na osnove strontsiyalyumosilikatnogo stekla // Ogneupory i tekhnicheskaya keramika. 2016. №6. S. 31–38.
2. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. Glass and ceramics based high-temperature composite materials for use in aviation technology // Glass and ceramics, 2012. Vol. 69. No. 3–4. P. 109–112.
3. Simonenko Ye.P., Simonenko N.P., Sevast\'yanov V.G., Grashchenkov D.V., Kuznetsov N.T., Kablov E.N. Funktsionalno gradiyentnyy kompozitsionnyy material SiC/(ZrO2–HfO2–Y2O3), poluchennyy s primeneniyem zol-gel metoda [Functionally gradient composite material SiC / (ZrO2–HfO2–Y2O3), obtained using the sol-gel method] // Kompozity i nanostruktury. 2011. №4. S. 52–64.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Yu.E., Colncev S.St. Funkcionalnye kompozity na osnove steklo/steklokristallicheskih matric i diskretnyh napolnitelej: svojstva i oblasti primeneniya (obzor) [Functional composites based on glass/glass-ceramics matrixes and discrete fillers: properties and possible applications] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 52–58. DOI: 10.18577/2071-9140-2014-0-s6-52-58.
6. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: September 17, 2018). DOI: 10.18577/2307-6046-2014-0-6-8-8.
7. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Yu.E., Solncev S.St. Dispersnouprochnennye kompozity na osnove steklo/steklokristallicheskih matric: svojstva i oblasti primeneniya (obzor) [Dispersion reinforced composites based on glass/glassceramics matrixes: properties and possible applications (review)] // Aviacionnye materialy i tehnologii. 2014. №3. S. 45–54. DOI: 10.18577/2071-9140-2014-0-3-45-54.
8. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S. Perspective high-temperature ceramic composite materials // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. P. 986–991.
9. Kaplun V.A. Obtekateli antenn SVCH (Radiotekhnicheskiy raschet i proyektirovaniye) [Microwave antenna radomes (Radio engineering calculation and design)]. M.: Sov. Radio, 1974. 240 s.
10. Krasyuk V.N., Mikhaylov V.F. Bortovyye antenny giperzvukovykh letatelnykh apparatov: ucheb. Posobiye [Airborne antenna hypersonic aircraft: studies. allowance]. SPb.: SPb GAAP, 1994. 216 s.
11. Rusin M.Yu., Khamishchayev A.S. Radioprozrachnyye obtekateli iz novykh steklokristallicheskikh materialov dlya letatelnykh apparatov [Radiolucent fairings of new glass-ceramic materials for aircraft] // Aviatsionnaya promyshlennost. 2004. №4. S. 3–28.
12. Suzdaltsev E.I., Kharitonov D.V., Dmitriyev A.V. Sostoyaniye rabot v oblasti sinteza radioprozrachnykh materialov i perspektivy sozdaniya novykh kompozitsiy s uluchshennymi radiotekhnicheskimi kharakteristikami [The state of work in the field of synthesis of radio-transparent materials and the prospects for creating new compositions with improved radio-technical characteristics] // Konstruktsii iz kompozitsionnykh materialov. 2008. №2. S. 45–53.
13. Pavlushkin N.M., Khalikova S.I. K voprosu polucheniya spechennykh sitallov [On the issue of obtaining sintered sieve] // Silikaty: sb. trudov MKHTI im. D.I. Mendeleyeva. 1969. Vyp. LIX. S. 114–118.
14. Khalikova S.I., Pavlushkin N.M., Khodakovskaya R.YA. Issledovaniye osobennostey spekaniya steklokristallicheskikh materialov na osnove korunda [Investigation of the characteristics of sintering glass-ceramic materials based on corundum] // Silikaty: sb. trudov MKhTI im. D.I. Mendeleyeva. 1969. Vyp. LXIII. S. 77–79.
15. Bondareva L.K., Pavlushkin N.M., Stupina G.A., Khodakovskaya R.YA. Kristallizatsiya i spekaniye poroshkov stekla v sisteme Li2O–Al2O3–SiO2 [Crystallization and sintering of glass powders in the Li2O–Al2O3–SiO2 system] // Neorganicheskiye materialy. 1986. T. 22. №9. S. 1487–1492.
16. Sposob polucheniya spechennykh sitallov: pat. 2002771 Ros. Federatsiya. №05019531/33 [The method of obtaining sintered sieve: pat. 2002771 Rus. Federation. No. 05019531/33]; zayavl. 28.12.91; opubl. 15.11.93, Byul. №41–42. 3 s.
17. Prado M.O., Fredericci C., Zanotto E.D. Glass sintering with concurrent crystallization. Part 2. Nonisothermal sintering of jagged polydispersed particles // Physics and Chemistry of Glasses. 2002. Vol. 43. No. 5. P. 1–9.
18. Shilo A.E., Bondarev E.K., Kukharenko S.A. Sintering of low-melting glass powders and glass-abrasive composites // Science of Sintering. 2003. No. 35. P. 117–124.
19. Terence J.C., James S.R. Kinetic processes involved in the sintering and crystallization of glass powders // Journal of the American Ceramic society. 1986. Vol. 69. Is. 11. P. 837–846.
20. Montedo O.R., Floriano F.J., Filho J. de O. et al. Sintering behavior of LZSA glass-ceramics // Materials Research. 2009. Vol. 12. No. 2. P. 197–200.
21. Lukoperova M.G. Issledovaniye usloviy sinteza i razrabotka poroshkovoy tekhnologii kordiyeritovykh sitallov: avtoref. … kand. tekhn. nauk [Investigation of the conditions of synthesis and the development of powder technology cordierite sitalls: authors thesis, Cand. Sci. (Tech.)]. M., 1981. 16 s.
22. Podpilskiy R.Ya., Kondrashev F.V. Pressovaniye keramicheskikh poroshkov [Pressing ceramic powders]. M.: Metallurgiya, 1968. 272 s.
23. Sung Y.M., Kwak W.C. Influence of Various Heating Procedures on the Sintered Density of Sr-Celsian Glass-Ceramic // Journal of Materials Science Letters. 2002. Vol. 21. Is. 11. P. 841–843.
24. Pavlushkin N.M., Sentyurin G.G., Khodakovskaya R.Ya. Praktikum po tekhnologii stekla i sitallov [Workshop on the technology of glass and glass]. M.: Izd-vo lit. po str-vu, 1970. 249 s.
25. GOST 22372–77. Materialy dielektricheskiye. Metod opredeleniya dielektricheskoy pronitsayemosti i tangensa ugla dielektricheskikh poter\' v diapazone chastot ot 100 do 5∙106 Gts [State Standard 22372–77. Dielectric materials. Method for determining dielectric constant and dielectric loss tangent in the frequency range from 100 to 5∙106 Hz]. M.: Izd-vo standartov, 1979. 19 s.
26. Kachan I.S., Silich L.M. Vliyaniye temperatury spekaniya na nekotoryye fiziko-khimicheskiye svoystva materiala [Influence of sintering temperature on some physicochemical properties of the material] // Steklo, sitally i silikatnyye materialy. 1970. Vyp. 1. S. 162–166.

DOI: 10.18577/2071-9140-2018-0-4-63-73

UDC: 661.183.4-911.48

Pages: 63-73

V.A. Voronov1, Yu.E. Lebedeva1, O.Yu. Sorokin1, M.L. Vaganova1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

INVESTIGATION OF THE HIGH-TEMPERATURE COATINGS PROPERTIES ON THE BASIS OF AN YTTRIUM-ALUMOSILICATE SYSTEM FOR THE PROTECTION OF SiC MATERIALS FROM THE ACTION OF AN OXIDIZING ENVIRONMENT

The possibility of obtaining a high-temperature environmental barrier coating based on the yttrium silicate (Y2O3-SiO2) and yttrium-aluminosilicate (Y2O3-Al2O3-SiO2) system on a silicon carbide ceramic composite materi-al due to slurry and air plasma spray methods. The regularities of the influence of yttrium silicate and yttrium-aluminosilicate systems precursors obtaining methods on its physicochemical and thermal properties are estab-lished. Studies have been carried out to determine the effect of an oxidizing atmosphere on the durability of a pro-tective coating at temperatures up to 1500°C inclusive.

Keywords: CMC, SiC composites, rare-earth silicates, yttrium monosilicate, yttrium disilicate, protective coating, environmental barrier coating

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Shchetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: October 02, 2018).
3. Schmidt S., Beyer S., Knabe H. et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications // Acta Astronaut. 2004. Vol. 55. P. 409–420.
4. Dong J.P., Yang J., Kim H.G. et al. Oxidation behavior of silicon carbide at 1200°C in both air and water-vapor-rich environments // Journal Corrosion Science. 2014. Vol. 88. P. 416–422.
5. Kablov E.N., Zhestkov B.E., Grashchenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaganova M.L. Investigation of the Oxidative Resistance of High-Temperature Coating Based on a SiC Material under Exposure to High-Enthalpy Flow // Journal of High Temperature. 2017. Vol. 55. No. 6. P. 857–863.
6. Wang Y.G., Wu Y.H., Cheng L.F., Zhang L.T. Hot corrosion behavior of barium aluminosilicate-coated C/SiC composites at 900°C // Journal of American Ceramic Society. 2009. Vol. 93. 
P. 204–208.
7. Richards B.T., Sehr S. Foucault de Franqueville, M.R. Begley, H.N. Wadley, Delamination of ytterbium monosilicate/mullite/silicon coated SiC during thermal cycling in water vapor // Journal of Acta Materials. 2016. Vol. 103. P. 448–460.
8. Lee K.N. Protective coatings for gas turbines // The Gas Turbine Handbook. United States Department of Energy (DOE), 2006. Р. 419–437.
9. Lee K.N., Fox D.S., Bansal N.P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics // Journal of Corrosion Ceramics Matrix Composition. 2005. Vol. 25. P. 1705–1715.
10. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: September 21, 2018). DOI: 10.18577/2307-6046-2014-0-6-8-8.
11. Lee K.N., Fox D.S., Eldridge J.I. et al. Upper temperature limit of environmental barrier coatings based on mullite and BSAS // Journal of American Ceramic Society. 2003. Vol. 86. P. 1299–1306.
12. Kablov E.N., Grashhenkov D.V., Uvarova N.E. Issledovaniya metodom infrakrasnoj spektroskopii strukturnyh izmenenij gelej v processe termicheskoj obrabotki pri poluchenii vysokotemperaturnyh steklokeramicheskih materialov po zol-gel tehnologii [Researches by method of infrared spectroscopy of structural changes of gels in heat treatment process when receiving high-temperature glassceramic materials on technology sol-gel] // Aviacionnye materialy i tehnologii. 2011. №2. S. 22–25.
13.  Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: October 02, 2018).
14. Nasiri N.A., Patra N., Horlait D. et al. Thermal properties of rare-earth monosilicates for EBC on Si-based ceramic composites // Journal of American Ceramic Society. 2016. Vol. 99. P. 589–596.
15. Fernandez-Carrion A.J., Allix M., Becerro A.I. Thermal expansion of rare-earth pyrosilicates // Journal of American Ceramic Society. 2013. Vol. 96. P. 2298–2305.
16. Liddell K., Thompson D.P. X-ray diffraction data for yttrium silicates // British Ceramic Transactions. 1986. Vol. 85. P. 17–22.
17. Kolitsch U., Seifert H.J., Ludwig T., Aldinger F. Phase equilibria and crystal chemistry in the Y2O3–Аl2О3–SiO2 system // Journal of Materials Research. 1999. Vol. 14. No. 2. P. 447–455.
18. Lebedeva Yu.E., Popovich N.V., Orlova L.A., Chainikova A.S., Sorokin O.Yu., Vaganova M.L., Grashchenkov D.V. Modifying additives affect the properties of Y2O3–Al2O3–SiO2 system // Russian Journal of Inorganic Chemistry. 2017. Vol. 62. No. 8. P. 1032–1037.
20. Lebedeva Yu.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytiya dlya kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2013. №2. St. 06. Available at: http://www.viam-works.ru (accessed: September 17, 2018).
21. Aparicio M., Durán A. Yttrium silicate coatings for oxidation protection of carbon–silicon carbide composites // Journal of American Ceramic Society. 2000. Vol. 83. P. 1351–1355.
22. Voronov V.A., Shvetsov A.O., Gubin S.P. i dr. Vliyaniye metoda polucheniya katodnogo materiala sostava LiNi0,33Mn0,33Co0,33O2 na elektrokhimicheskiye kharakteristiki litiy-ionnogo akkumulyatora [The influence of the method for producing cathode material LiNi0.33Mn0.33Co0.33O2 of composition on the electrochemical characteristics of a lithium-ion battery] // Zhurnal neorganicheskoy khimii. 2016. T. 61. №9. C. 1211–1217.
23. Toropov I.A., Barzakovskiy V.P., Udalov Yu.P., Bondar I.A. Diagrammy sostoyaniya silikatnykh sistem: spravochnik [State diagrams of silicate systems: a handbook]. M.-L.: Nauka, 1965. 258 s.
24. Courcot E., Rebillat F., Teyssandier F., Louchet-Pouillerie C. Thermochemical stability of the Y2O3–SiO2 system // Journal of the European Ceramic Society. 2010. Vol. 30. P. 905–910.
25. Rabukhin A.I., Savelyev V.G. Fizicheskaya khimiya tugoplavkikh nemetallicheskikh i silikatnykh soyedineniy [Physical chemistry of refractory non-metallic and silicate compounds]. M: INFRA-M, 2008. 296 s.
26. Sun Z., Li M., Zhou Y. Kinetics and Mechanism of Hot Corrosion of γ-Y2Si2O7 in Thin-Film Na2SO4 Molten Salt // Journal of American Ceramic Society. 2008. Vol. 91 (7). P. 2236–2242.

DOI: 10.18577/2071-9140-2018-0-4-74-78

UDC: 66.045.3

Pages: 74-78

A.V. Istomin1, A.S. Bespalov1, V.G. Babashov1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

ADDING INCREASED RESISTANCE TO HEAT AND SOUND INSULATION OF MATERIAL BASED ON MIXTURE OF INORGANIC AND PLANT FIBERS

The article presents a method for obtaining a light heat and sound insulating material. The material consists of a fibrous mixture of oxide and cellulose fibers. A method for reducing the combustibility of a material by thermal oxidation treatment is proposed. The developed material has a reduced sorption to moisture and increased sound-absorbing characteristics. The resulting material will be used in aircraft construction, as a heat and sound insula-tion of a cockpit and a fuselage of the aircraft.

Keywords: heat and sound insulation, fire resistance, heat treatment, cottonized fiber, oxide fibers

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. Vysokotemperaturnyye konstruktsionnyye kompozitsionnyye materialy na osnove stekla i keramiki dlya perspektivnykh izdeliy aviatsionnoy tekhniki [High-temperature structural composite materials based on glass and ceramics for promising products of aviation technology] // Steklo i keramika. 2012. №4. S. 7–11.
4. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlya slozhnykh tekhnicheskikh ustroystv arkticheskogo primeneniya [Materials for complex technical devices of arctic use] // Nauchno-tekhnicheskie problemy osvoyeniya Arktiki. M.: Nauka, 2015. S. 275–285.
5. Ivahnenko Yu.A., Babashov V.G., Zimichev A.M., Tinyakova E.V. Vysokotemperaturnye teploizolyacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] // Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
6. Normy letnoy godnosti samoletov transportnoy kategorii: AP 25 [Airworthiness Standards for Aircraft Transport Categories: Aviation rules. Chapter 25]: utv. Postanovleniyem 28-oy sessii Soveta po aviatsii i ispolzovaniyu vozdushnogo prostranstva 11.12.2008. 3-e izd. s popravkami 1–6. M.: Aviaizdat, 2009. 276 s.
7. Pavlovskij K.A., Yamshhikova G.A., Gunyaeva A.G., Ulkin M.Yu. Razrabotka svyazuyushhego, ne podderzhivayushhego gorenie ugleplastika, dlya izgotovleniya tolstostennyh izdelij iz PKM metodom pressovogo formovaniya [Development of binding, not sustaining combustion of CFRP, for manufacturing of thick-walled products from polymeric composite materials by method of press formation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 08. Available at: http://www.viam-works.ru (accessed: February 09, 2018). DOI: 10.18577/2307-6046-2016-0-4-8-8.
8. Berlin A.A. Goreniye polimerov i polimernyye materialy ponizhennoy goryuchesti [Combustion of polymers and polymeric materials of low flammability] // Sorovskiy obrazovatelnyy zhurnal. 1996. №4. S. 16–24.
9. Khalturinskiy N.A., Popova T.V., Berlin A.A. Goreniye polimerov i mekhanizm deystviya antipirenov [Polymer burning and the mechanism of action of flame retardants] // Uspekhi khimii. 1984. №2. S. 326–346.
10. Shcherbinina N.A., Bychkova E.V., Panova L.G. Modifikatsiya poliakrilonitrilnogo volokna s tselyu snizheniya goreniya [Modification of polyacrylonitrile fiber in order to reduce burning] // Khimicheskiye volokna. 2008. №6. S. 17–19.
11. Bychkova E.V. Nauchnyye i tekhnologicheskiye osnovy modifikatsii s tselyu snizheniya goryuchesti tsellyulozosoderzhashchikh polimernykh materialov i poliakrilonitrilnykh volokon: dis. … dokt. tekhn. nauk [Scientific and technological bases of modification in order to reduce the flammability of cellulose-containing polymeric materials and polyacrylonitrile fibers: thesis, Dr. Sc. (Tech.)]. Saratov, 2015. 352 s.
12. Zubkova N.S., Antonov Yu.S. Snizheniye goryuchesti tekstilnykh materialov – resheniye ekologicheskikh i sotsialno-ekonomicheskikh problem [Reducing the flammability of textile materials – the solution of environmental and socio-economic problems] // Rossiyskiy khimicheskiy zhurnal. T. XLVI. 2002. №1. S. 96–103.
13. Istomin A.V., Druzhinina T.V. Sorbtsionnyye svoystva i funktsinalnyy sostav polimernoy kompozitsii iz m-,p-aramidnykh i poliakrilonitrilnykh volokon, podvergnutoy termookisleniyu [Sorption properties and functional composition of the polymer composition of m-,p-aramid and polyacrylonitrile fibers subjected to thermo-oxidation] // Khimicheskiye volokna. 2012. №4. S. 28–32.
14. Istomin A.V., Druzhinina T.V., Ivanova V.A. Termogravimetricheskiye issledovaniya novogo m-,p-aramidnogo volokna [Thermogravimetric studies of new m-, p-aramid fibers] // Khimicheskaya tekhnologiya. 2012. №6. S. 345–354.
15. Druzhinina T.V., Istomin A.V. Sorption properties and functional profile of a thermally oxidized polymeric composite of m- and p-aramid and polyacrylonitrile fibers // Fibre Chemistry. 2012. Vol. 44. No. 4. P. 227–231.
16. Druzhinina T.V., Matveyev I.D., Istomin A.V., Nikolaeva Yu.S. Zakonomernosti termokhimicheskikh prevrashcheniy fenoloformaldegidnykh volokon [Patterns of thermochemical transformations of phenol-formaldehyde fibers] // Khimicheskiye volokna. 2013. №6. S. 9–14.
17. Druzhinina T.V., Istomin A.V. Zakonomernosti termokhimicheskikh prevrashcheniy pri okislenii polimernoy kompozitsii iz m-,p-aramidnogo i poliakrilonitrilnogo volokon [Patterns of thermochemical transformations in the oxidation of the polymer composition of m-,p-aramid and polyacrylonitrile fibers] // Khimicheskiye volokna. 2013. №3. S. 10–16.
18. Stend dlya kachestvennoy otsenki teploizolyatsionnykh svoystv materialov: pat. 156904 Ros. Federatsiya [Stand for the qualitative assessment of the thermal insulation properties of materials: pat. 156904 Rus. Federation]; zayavl. 25.09.2014; opubl. 20.11.2015, Byul. №32. 3 s.
19. Ivakhnenko Yu.A., Kuzmin V.V., Bespalov A.S. Sostoyaniye i perspektivy razvitiya teplozvukoizolyatsionnykh pozharobezopasnykh materialov [State and prospects for the development of heat and sound insulating fireproof materials] // Problemy bezopasnosti poletov. 2014. №7. S. 27–30.
20. Shashkeev K.A., Shuldeshov E.M., Popkov O.V., Kraev I.D., Yurkov G.Yu. Poristye zvukopogloshhayushhie materialy (obzor) [Porous sound-absorbing materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6. St. 06. Available at: http://www.viam-works.ru (accessed: February 09, 2018). DOI: 10.18577/2307-6046-2016-0-6-6-6.
21. Sytyj Yu.V., Sagomonova V.A., Maksimov V.G., Babashov V.T. Zvukoteploizoliruyushhij material gradientnoj struktury VTI-22 [VTI-22 sound and thermal insulation material of gradient structure] // Aviacionnye materialy i tehnologii. 2013. №2. S. 47–49.

DOI: 10.18577/2071-9140-2018-0-4-79-86

UDC: 620.1

Pages: 79-86

V.S. Erasov1, E.I. Oreshko1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

POISSON RATIO AND POISSON FORCE

In article the results of theoretical researches of a condition of balance of a deformable isotropic body at elastic extension and compression are presented. Models of occurance of cross-section deformations with formation of internal volume of interbalance tension in a body are offered. On the basis of the offered models the scheme of division of the deformed condition of uniaxial stretching by the sum of the deformed conditions from uniaxial stretching, uniaxial stretching with biaxial compression, triaxial uniform compression has been developed. The scheme application for the description of conditions of deformation at biaxial and triaxial stretching, pure shift has been shown.

Keywords: deformable isotropic body, stretching, compression, shift, deformation, tension, specific potential energy

Reference List

1. Terentyev V.F. Ustalost metallicheskikh materialov [Fatigue metallic materials]. M.: Nauka, 2003. S. 37–44.
2. Vildeman V.E., Tretyakov V.P. Ispytaniya materialov s postroyeniyem polnykh diagramm deformirovaniya [Testing of materials with the construction of complete deformation diagrams] // Problemy mashinostroyeniya i nadezhnosti mashin. 2013. №2. S. 93–98.
3. Erasov V.S., Oreshko E.I., Lutsenko A.N. Povrezhdaemost materialov pri staticheskom rastyazhenii [Damageability of materials in tension testing] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 91–94. DOI: 10.18577/2071-9140-2015-0-4-91-94.
4. Erasov V.S., Bayramukov R.R., Nuzhnyy G.A. Opredeleniye skorosti plasticheskoy deformatsii pri ispytanii na rastyazheniye [Determination of the rate of plastic deformation in tensile testing] // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 80. №5. S. 61–63.
5. Makhutov N.A., Moskvitin G.V. Vliyaniye usloviy nagruzheniya na nakopleniye povrezhdeniy i razrusheniye [Influence of loading conditions on damage accumulation and destruction] // Mashinostroyeniye. Entsiklopediya. M.: Mashinostroyeniye, 2010. T. II-I: Fiziko-mekhanicheskiye svoystva. Ispytaniya metallicheskikh materialov. S. 220–221.
6. Chan W.S., Wang A.S.D. A study on the effects of the 900 ply on matrix cracks in composite laminates // AIAA/ASME/ASCE/AHC structures, structural: Dynamics and materials conference 27 collection of technical papers. Lanantonio (USA). 1986. Vol. 1. P. 689–694.
7. Chai H., Babcock C.D. Two-dimensional modeling of Compressive Failure in Delaminated laminates // Journal of Composite materials. 1985. Vol. 19. No. 1. P. 67–91.
8. Chen H.P., Doong J.L. Postbuckling behavior of a thick plate // AIAA Journal. 1983. Vol. 21. No. 8. P. 1157–1161.
9. Hahn H.T., Williams J.F. Compression failure mechanisms in unidirectional composites // Compos. Mater: 7-th Test. and Des. Conf. (Philadelphia, April 2–4, 1984). Philadelphia, 1986. P. 115–139.
10. Relfshider K.L., Highsmith A.L. On delamination and the damage localization process // Fract. Fibl. Compos: ASME/ASSE Mech. Conf. (Albugucrgue, June 24–26, 1985). New York, 1985. P. 71–87.
11. Williams J.G. On the calculation of energy release rates for cracked laminates // International Journal of Fracture. 1988. Vol. 36. P. 101–119.
12. Well N.A. Large Deflections of Elliptical Plates // Journal of applied Mechanics. 1956. Vol. 23. No. 1. P. 21–26.
13. Yin W.-L., Fei Z. Delamination buckling and growth in a champed circular plate // AIAA Journal. 1988. Vol. 26. No. 4. P. 438–445.
14. Yin W.-L., Wang J.T.S. The energy-release rate in the growth of a one-dimensional delamination // Journal of applied Mechanics. 1984. Vol. 51. P. 939–941.
15. Buchanan G.R., Hung Y.K., Chin H.J. Nonlinear analysis for a champed bar // Transactions of the American society of Mechanical Engineers. 1969. Vol. 36. No. 2. P. 355–357.
16. Bochkarev A.O., Grekov M.A. The influence of the surface stress on the local buckling of a plate with a circular nanohole // Proceedings of International Conference «Stability and Control Processes» in Memory of V.I. Zubov // Proceedings IEEE. 2015. P. 367–370.
17. Timoshenko S.P. Ustoychivost sterzhney, plastin i obolochek [Stability of rods, plates and shells]. M.: Nauka, 1971. S. 46–47.
18. Bochkarev A.O., Grekov M.A. On symmetrical and antisymmetrical buckling of a plate with circular nanohole under uniaxial tension // Applied Mathematical Sciences. 2015. Vol. 9. No. 125. P. 6241–6247.
19. Tsigler G. Osnovy teorii ustoychivosti konstruktsii [Basics of the theory of stability of a structure]. M.: Mir, 1971. S. 77.
20. Bochkarev A.O., Grekov M.A. Lokalnaya poterya ustoychivosti plastiny s krugovym nanootverstiyem pri odnoosnom rastyazhenii [Local loss of stability of a plate with a circular nanohole under uniaxial tension] // Doklady Akademii nauk. 2014. T. 457. №3. S. 282–285.
21. Solovyev A.S., Bochkarev A.O. Ustoychivost koltsevoy plastiny pri rastyazhenii sosredotochennymi salami [Stability of an annular plate under tension by concentrated forces] // Vestnik SPbGU. Ser.: Matematika. Mekhanika. Astronomiya. 2017. T. 4 (62). Vyp. 1. S. 136–145.
22. Chernykh K.F. Nelineynaya teoriya uprugosti v mashinostroitelnykh raschetakh [Nonlinear theory of elasticity in engineering calculations]. L.: Mashinostroyeniye, 1986. S. 272–273.
23. Guz A.N., Dyshel M.Sh., Kuliyev G.G. i dr. Razrusheniye i ustoychivost tonkikh tel s treshchinami [Destruction and stability of thin bodies with cracks]. Kiev: Naukova dumka, 1981. 184 s.
24. Bauer S.M., Kashtanova S.V., Morozov N.F., Semenov B.N. Ob ustoychivosti plastiny nanorazmernoy tolshchiny, oslablennoy krugovym otverstiyem [On the stability of a plate of nanoscale thickness weakened by a circular hole] // Doklady Akademii nauk. 2014. T. 458. №2. S. 158–160.
25. Bochkarev A.O., Dal Ye.M. Lokalnaya ustoychivost uprugikh plastin s vyrezami [Local stability of elastic plates with notches] // Doklady AN SSSR. 1989. T. 308. №2. S. 312–315.
26. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
27. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. № 2 (14). S. 16–21.
28. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
29. Kablov E.N. Sovremennyye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials - the basis of innovative modernization of Russia] // Metally Yevrazii. 2012. №3. S. 10–15.
30. Erasov V.S., Oreshko E.I. Deformaciya i razrushenie kak processy izmeneniya obema, ploshhadi poverhnosti i linejnyh razmerov v nagruzhaemyh telah [Deformation and destruction as processes of change of volume, the areas of a surface and the linear sizes in loaded bodies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8. St. 11. Available at: http://www.viam-works.ru (accessed: October 01, 2018). DOI: 10.18577/2307-6046-2016-0-8-11-11.
31. Erasov V.S., Oreshko E.I., Lutsenko A.N. Ploshhad svobodnoj poverhnosti kak kriterij hrupkogo razrusheniya [Area of a free surface as criterion of brittle fracture] // Aviacionnye materialy i tehnologii. 2017. № 2 (47). S. 69–79. DOI: 10.18577/2071-9140-2017-0-2-69-79.
32. Erasov V.S., Oreshko E.I. Silovoj, deformacionnyj i energeticheskij kriterii razrusheniya [Force, deformation and energy criteria of destruction] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 11. Available at: http://viam-works.ru (accessed: October 01, 2018). DOI: 10.18577/2307-6046-2017-0-10-11-11.
33. Erasov V.S., Oreshko E.I., Lutsenko A.N. Obrazovanie novykh poverkhnostey v tverdom tele na stadiyakh uprugoy i plasticheskoy deformatsiy, nachala i razvitiya razrusheniya [Formation of new surfaces in a firm body at stages of elastic and plastic deformations, the beginning and destruction development] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №2 (62). St. 12. Available at: http://www.viam-works.ru (accessed: October 01, 2018). DOI: 10.18577/2307-6046-2018-0-2-12-12.
34. Kuzmenko V.A. Novyye skhemy deformirovaniya tverdykh tel [New schemes of deformation of solids]. Kiev: Naukova dumka, 1973. S. 44–53.
35. Kraus E.I. Maloparametricheskoye uravneniye sostoyaniya tverdogo veshchestva pri vysokikh plotnostyakh energii [Low-parametric equation of state of a solid at high energy densities] // Vestnik Novosibirskogo gosudarstvennogo universiteta. Ser.: Fizika. 2007. T. 2. Vyp. 2. S. 65–73.
36. Rudakov V.N., Dorofeyev V.S., Abrakitov D.V. Ob effekte realizatsii fizicheskikh svoystv nanostruktury traditsionnykh konstruktsionnykh materialov pri proyektirovanii nesushchikh elementov universalnogo naznacheniya [On the effect of the realization of the physical properties of the nanostructures of traditional structural materials in the design of load-bearing elements of universal purpose] // Visnik ODABA. 2013. №50. Ch. 2. 9 s. Available at: http://mx.ogasa.org.ua/handle/123456789/2021 (accessed: October 01, 2018).
37. Shibkov A.A., Zolotov A.E., Zheltov M.A. i dr. Dinamika deformatsionnykh polos i razrusheniye alyuminiy-magniyevogo splava AMg6 [Dynamics of deformation bands and the destruction of the AMg6 aluminum-magnesium alloy] // Fizika tverdogo tela. 2011. T. 53. №10. S. 1873–1878.
38. Shibkov A.A., Zolotov A.E., Zheltov M.A., Denisov A.A. Deformatsionnyy khaos i samoorganizatsiya na stadii predrazrusheniya splava AMg6 [Deformation chaos and self-organization at the prefracture stage of the AMg6 alloy] // Fizika tverdogo tela. 2011. T. 53. №10. S. 1879–1884.

DOI: 10.18577/2071-9140-2018-0-4-87-93

UDC: 620.179.1:621.792.05

Pages: 87-93

V.V. Murashov1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

RESEARCH AND IMPROVEMENT OF ACOUSTIC LOW-FREQUENCY CONTROL METHODS OF PRODUCTS FROM LAYERED PLASTICS AND MULTILAYERED GLUED OF CONSTRUCTIONS

Physical opportunities and features of low-frequency acoustic methods are considered: mechanical impedance analysis, velocimetric, free vibration and acoustic-topographic. It is shown that these methods have advantages at control of the products executed from materials with high level of attenuation of elastic oscillations, and also from hydroscopic materials. Results of research of equivalent circuits of methods are given and influence of contact flexibility of the dry point contact and frictional noise on utilization properties of each of considered methods is considered. Results of pilot studies are provided and controlled thickness and sensitivity of methods are specified at control of products from CFRP.

Keywords: acoustic low-frequency methods, mechanical impedance analysis method, velocimetric method, free vibration method, acoustic-topographic method, testing sensitivity, dry point contact, frictional noise

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
4. Murashov V.V. Types of Production and Operational Defects of the Multilayer Glud Constructions and Polymer Composite Materials Products and Methods to Detect them // Proceedings 5th European-American Workshop on Reliability of NDT (Berlin, Germany, Oct. 7–10 2013). Available at: http://www.nde-reliability.de/Proceedings/Posters (accessed: October 16, 2018).
5. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional carbon the plastics modified by nanoparticles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
6. Gunasekera A.M. Monitoring of impact damage products from PCM // Materials Evaluation. 2010. Vol. 68. No. 8. P. 880–887.
7. Murashov V.V. Nondestructive Testing of Glued Joints // Polymer Science. Series D. Glues and Sealing Materials, 2009. Vol. 2. No. 1. R. 58–63.
8. Murashov V.V. Primeneniye ultrazvukovogo rezonansnogo metoda dlya vyyavleniya defektov kleyenykh konstruktsiy [Application of the ultrasonic resonance method for detection of defects  of glued constructions] // Aviacionnyye materialy i tehnologii. 2018. №1 (50). S. 88–94. DOI: 10.18577/2071-9140-2018-0-1-88-94.
9. Murashov V.V. Kontrol i diagnostika mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov akusticheskimi metodami [Monitoring and diagnostics of multilayer structures made of polymer composite materials by acoustic methods]. M.: Spektr, 2016. 244 s.
10. Murashov V.V. Kontrol kleyenykh konstruktsiy akusticheskim impedansnym metodom [Control of glued structures by acoustic impedance method] // Klei. Germetiki. Tekhnologii. 2010. №3. S. 13–20.
11. Lange Yu.V. Akusticheskiye nizkochastotnyye metody i sredstva nerazrushayushchego kontrolya mnogosloynykh konstruktsiy [Acoustic low-frequency methods and means of non-destructive testing of multilayer structures]. M.: Mashinostroyeniye, 1991. 272 s.
12. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
13. Barynin V.A., Budadin O.N., Kulkov A.A. Sovremennyye tekhnologii nerazrushayushchego kontrolya konstruktsiy iz polimernykh kompozitsionnykh materialov [Modern technologies of non-destructive testing of structures made of polymer composite materials]. M.: Spektr, 2013. 243 s.
14. Rose J.L., Soley L.E. Ultrasonic guided waves for anomaly detection in aircraft components // Materials Evaluation. 2000. Vol. 58. No. 9. P. 1080–1086.
15. Nagem R.J., Seng J.M., Williams J.H. Residual life predictions of composite aircraft structures via nondestructive testing. Part 2: Degradation modeling and residual life prediction // Materials Evaluation. 2000. Vol. 58. No. 11. P. 1310–1319.
16. Truell R., Elbaum CH., Chik B. Ultrazvukovyye metody v fizike tverdogo tela. Per. s angl. [Ultrasonic methods in solid state physics. Trans. from Engl.]. M.: Mir, 1978. 544 s. 
17. Petrova A.P. Kleyashchiye materialy. Spravochnik / pod red. E.N. Kablova, S.V. Reznichenko [Adhesive materials. Handbook / ed. by E.N. Kablov, S.V. Reznichenko]. M.: Redaktsiya zhurnala «Kauchuk i rezina», 2002. 196 c.
18. Smith R.A., Nelson L.J. et al. Automation of control and estimation of parameters of defects in parts of the PCM // Insight. 2009. Vol. 51. No. 2. P. 82–87.
19. Murashov V.V. Primeneniye variantov akusticheskogo impedansnogo metoda dlya kontrolya detaley iz PKM i mnogosloynykh kleyenykh konstruktsiy [Application of options of the acoustic impedance method for control of parts from PCM and multilayer glued structures] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 469–482. DOI: 10.18577/2071-9140-2017-0-S-469-482.
20. Lange Yu.V. Akusticheskiy spektralnyy metod nerazrushayushchego kontrolya [Acoustic spectral method of non-destructive testing] // Defektoskopiya. 1978. №3. S. 7–14.
21. Lange Yu.V. Nizkochastotnyye akusticheskiye metody i sredstva nerazrushayushchego kontrolya mnogosloynykh konstruktsiy [Low-frequency acoustic methods and means of non-destructive testing of multilayer structures] // Kontrol. Diagnostika. 2004. №2. S. 39–41.
22. Lange Yu.V., Ustinov E.G. Akusticheskiye impulsy udarnogo vozbuzhdeniya izdeliy [Acoustic impulses of shock excitation of products] // Defektoskopiya. 1982. №10. S. 81–87.
23. Lange Yu.V., Teumin I.I. O dinamicheskoy gibkosti sukhogo tochechnogo kontakta [On the dynamic flexibility of dry point contact] // Defektoskopiya. 1971. №2. S. 49–60.
24. Ermolov I.N., Lange Yu.V. Ultrazvukovoy control [Ultrasonic testing] // Nerazrushayushchiy kontrol\': spravochnik / pod obshch. red. V.V. Klyuyeva. M.: Mashinostroyeniye, 2006. T. 3. 864 s.
25. Skuchik E. Osnovy akustiki [Fundamentals of Acoustics]. M.: Mir, 1976. T. 1. 520 s.
26. Baryshev S.E. Spektralnaya plotnost posledovatelnosti ekho-signalov [The spectral density of the sequence of echo signals] // Defektoskopiya. 1974. №2. S. 19–25.
27. Lange Yu.V. Elektricheskoye modelirovaniye pyezopreobrazovateley nizkochastotnykh akusticheskikh defektoskopov [Electrical modeling of piezoelectric transducers for low-frequency acoustic flaw detectors] // Defektoskopiya. 1979. №11. S. 20–26.
28. Murashov V.V., Trifonova S.I. Kontrol kachestva polimernyh kompozicionnyh materialov ultrazvukovym vremennym sposobom velosimetricheskogo metoda [Quality control of polymer composite materials using ultrasonic time-of-flight velocimetric technique] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 86–90. DOI: 10.18577/2071-9140-2015-0-4-86-90.
29. Murashov V.V., Yakovleva S.I. Primeneniye akusticheskogo metoda svobodnykh kolebaniy dlya kontrolya konstruktsiy, soderzhashchikh sloi iz nemetallicheskikh materialov [Application of the acoustic method of free oscillations to control structures containing layers of non-metallic materials] // Kontrol. Diagnostika. 2017. №10. S. 28–35.
30. Bakunov A.S., Murashov V.V., Sysoyev A.M. Kontrol lopastey vozdushnogo vinta sredstvami nizkochastotnoy akustiki [Control of propeller blades by means of low-frequency acoustics] // Kontrol. Diagnostika. 2012. №6. S. 72–74.
31. Skuchik E. Prostyye i slozhnyye kolebatelnyye sistemy [Simple and complex oscillatory systems]. M.: Mir, 1971. S. 309.
32. Vaynberg D.V. Spravochnik po prochnosti, ustoychivosti i kolebaniyam plastin [Handbook of strength, stability and vibrations of the plates]. Kiev: Budivelnik, 1973. C. 260.
33. Iofe V.K., Yanpolskiy A.A. Raschetnyye grafiki i tablitsy po elektroakustike [Calculated graphs and tables on electroacoustics]. M.-L.: Gosenergoizdat, 1954. S. 98.
34. Merkulov L.G., Tokarev V.A. Fizicheskiye osnovy spektralnogo metoda izmereniya zatukhaniya ultrazvukovykh voln v materialakh [Physical basis of the spectral method of measuring the attenuation of ultrasonic waves in materials] // Defektoskopiya. 1970. №4. S. 3–11.
35. Biryukova N.P., Kitaygorodskiy Yu.I. Fizicheskiye osnovy akustiko-topograficheskogo metoda [Physical bases of acoustic topographical method] // Sb. dokl. VII Vsesoyuz. nauch.-tekhnich. konf. «Nerazrushayushchiy kontrol materialov, izdeliy i svarnykh soyedineniy». M.: NIIIN, 1974. S. 107.
36. Lange YU.V., Voropayev S.I., Yermolayev V.P., Muzhitskiy V.F. Vozmozhnosti kontrolya mnogosloynykh konstruktsiy impedansnym defektoskopom AD-42I [Possibilities of control of multilayer structures with an impedance flaw detector AD-42I] // Zavodskaya laboratoriya. 1993. №10. S. 19–21.
37. Lange Yu.V., Vinogradov N.V., Tsorin E.I. i dr. Nizkochastotnyy akusticheskiy defektoskop dlya kontrolya armirovannykh plastikov i kleyenykh konstruktsiy [Low-frequency acoustic flaw detector for control of reinforced plastics and glued structures] // Defektoskopiya. 1977. №1. S. 115–119.
38. Lange Yu.V., Voropayev S.I., Muzhitskiy V.F. i dr. Primeneniye spektral\'nogo analiza v nizkochastotnykh akusticheskikh defektoskopakh [Application of spectral analysis in low-frequency acoustic flaw detectors] // Defektoskopiya. 1995. №10. S. 74–83.
39. Lange Yu.V. O rabote pyezopriyemnika akusticheskogo spektralnogo defektoskopa [On the work of a piezopath receiver of the acoustic spectral flaw detector] // Defektoskopiya. 1978. №7. S. 67–77.
40. Ashkenazi E.K. Anizotropiya mashinostroitelnykh materialov [Anisotropy of engineering materials]. L.: Mashinostroyeniye, 1969. S. 37–39.
41. Viktorov I.A. Fizicheskiye osnovy primeneniya ultrazvukovykh voln Releya i Lemba v tekhnike [The physical basis for the application of ultrasonic Rayleigh and Lamb waves in engineering]. M.: Nauka, 1966. S. 84–87.