Archive

Aviation materials and tecnologes №2, 2018

DOI: 10.18577/2071-9140-2018-0-2-3-8

UDC: 669.018.44

Pages: 3-8

N.N. Trofimenko1, I.Yu. Efimochkin1, A.N. Bolshakova1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

PROBLEMS OF CREATION AND PROSPECTS FOR THE USE OF HEAT-RESISTANT HIGH-ENTROPY ALLOYS

The analysis of works on high-entropy alloys shows that research in this field of knowledge is of wide interest and is a promising direction for materials science of the future. In contrast to conventional alloys, the high-entropy alloy consists of five or more elements taken in equiatomic or equimolar concentrations. Such an arrangement makes it possible to obtain alloys with a high entropy of mixing, which reduces the formation of intermetallic phases, and which promotes the formation of a stable single-phase substitution solution with a BCC or FCC arrangments. The preparation of compositions of alloys with high entropy of mixing occurs by the method of vacuum-arc melting and mechanical alloying. The methods of powder metallurgy are practically significant to create high-temperature alloys from refractory elements. There is a huge number of possible combinations of high-entropy alloys. Therefore, it is of great importance to develop strategies for obtaining suitable compositions that meet the requirements of both academic research and industrial applications. The article underlines four effects that arise as a result of structural features in a given type of alloys. Basic investigations of the properties of high-temperature high-entropy alloys are presented.

Keywords: high-entropy alloys, heat-resistant alloys, BCC or FCC arrangment, single-phase solid solution, nanocrystallite structure, phase composition, mechanical alloying.

Reference List

1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
5. Chabina E.B., Lomberg B.S., Filonova E.V., Ovsepyan S.V., Bakradze M.M. [Change of structural and phase condition of heat resisting deformable nickel alloy at alloying tantalum and rhenium] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 03. Available at: http://www.viam-works.ru (accessed: March 12, 2018). DOI: 10.18577/2307-6046-2015-0-9-3-3.
6. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie lantana na kachestvo i ekspluatacionnye svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36-VI [The lanthanum influence on quality and operational properties of single crystal nickel base ZhS36-VI superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 02. Available at: http://www.viam-works.ru (accessed: March 12, 2018). DOI: 10.18577/2307-6046-2015-0-12-2-2.
7. Shein E.A. Tendentsii v oblasti legirovaniya i mikrolegirovaniya zharoprochnykh monokristallicheskikh splavov na osnove nikelya (obzor) [Tendencies in the field of alloying and microalloying of heat resisting single-crystal alloys on the basis of nickel (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №3. St. 02. Available at: http://viam-works.ru (accessed: March 12, 2018). DOI: 10.18557/2307-6046-2016-0-3-2-2.
8. Kablov E.N., Svetliv I.L., Efimochkin I.Yu. Vysokotemperaturnye Nb–Si-composity [High-temperature Nb-Si-composites] // Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 164–173.
9. Perepezko J.H. The Hotter the Engine, the Better // Science. 2009. Vol. 326. P. 1068–1069.
10. Yeh J.-W., Chen S.-K., Lin S.-J. et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes // Advanced Engineering Materials. 2004. Vol. 6. P. 299–303.
11. Oates W.A. Configurational Entropies of Mixing in Solid Alloys // Journal of Phase Equilibria and Diffusion. 2007. Vol. 28. P. 79–89.
12. Volkenshtein M.V. Entropiya I informatsii [Entropy and information]. М.: Nauka, 1986. 192 s.
13. Shultse G. Metallofizika [Metalphysics]. М.: Mir, 1971. 477 s.
14. Li A., Zhang X. Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements // Acta Metallurgica Sinica (English Letters). 2009. Vol. 22. P. 219–224.
15. Yang X., Zhang Y., Liaw P.K. Alloy Design and Properties Optimization of High-Entropy Alloys // Procedia Engineering. 2012. Vol. 64. P. 830–838.
16. Hsu C.-Y., Juan C.-C., Wang W.-R. et al. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys // Materials Science and Engineering: A. 2011. Vol. 528. P. 3581–3588.
17. Tsai M.-H., Wang C.-W., Tsai C.-W. et al. Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization // Journal of The Electrochemical Society. 2011. Vol. 158. P. H1161–H1165.
18. Tsai M.-H., Yeh J.-W., Gan J.-Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon // Thin Solid Films. 2008. Vol. 516. P. 5527–5530.
19. Shun T.-T., Hung C.-H., Lee C.-F. Formation of ordered/disordered nanoparticles in FCC high entropy alloys // Journal of Alloys and Compounds. 2010. Vol. 493. P. 105–109.
20. Tsai M.-H., Yeh J.-W. High-Entropy Alloys: A Critical Review // Materials Research Letters. 2014. Vol. 2. P. 107–123.
21. Yeh J.W. Recent progress in high-entropy alloys // Annales de Chimie Science des Materiaux. 2006. Vol. 31. P. 633–648.
22. Salishchev G.A., Tikhonovsky M.A., Shaysultanov D.G. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system / Journal of Alloys and Compounds. 2014. Vol. 591. P. 11–21.
23. Murty B.S., Yeh J.W., Ranganathan S. High Entropy Alloys. Elsevier, 2014. 218 p.
24. Yurkova A.I., Chernyavskij V.V., Kravchenko A.I. Poluchenie nanokristallicheskih tugoplavkih Nb–Mo–Ta–W–V i Nb–Mo–Ta–W–Hf vysokoentropijnykh splavov metodom mekhanicheskogo legirovaniya [Receiving nanocrystal high-melting Nb–Mo–Ta–W–V and Nb–Mo–Ta–W–Hf of high entropy alloys method of mechanical alloying]. Available at: http://compnano.kpi.ua/pdf_files/sams-2014n/sams-2014-nat-p-150.pdf (accessed: March 12., 2018).
25. Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys // Intermetallics. 2011. Vol. 19. P. 698–706.
26. Guo N.N., Wang L., Luo L.S. et al. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy // Materials & Design. 2015. Vol. 81. P. 87–94.
27. Senkov O.N., Senkova S.V., Miracle D.B., Woodward C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system // Materials Science and Engineering: A. 2013. Vol. 565. P. 51–62.
28. Senkov O.N., Scott J.M., Senkova S.V. et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy // Journal of Alloys and Compounds. 2011. Vol. 509. P. 6043–6048.
29. Juan C.-C., Tsai M.-H., Tsai C.-W. et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys // Intermetallics. 2015. Vol. 62. P. 76–83.
30. Senkov O.N., Scott J.M., Senkova S.V. et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy // Journal of Materials Science. 2012. Vol. 47. P. 4062–4074.
31. Chen H., Kauffmann A., Gorr B. et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al // Journal of Alloys and Compounds. 2016. Vol. 661. P. 206–215.
32. Zhang Y., Liu Y., Li Y. et al. Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite // Materials Letters. 2016. Vol. 174. P. 82–85.
33. Komarov F.F., Pogrebnyak A.D., Konstantinov S.V.. Radiatsionnaya stojkost vysokoentropijnykh nanostrukturirovannykh pokrytij (Ti, Hf, Zr, V, Nb)N [Radiation resistance of the high entropy nanostructured coverings (Ti, Hf, Zr, V, Nb) N] // Zhurnal tekhnicheskoj fiziki. 2015. Т. 85. Vyp. 10. S. 105–110.
34. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: March 12, 2018).
35. Yang S., Khosravi E. An Integrated Study on a Novel High Temperature High Entropy Alloy. Pittsburgh: Southern University and A&M College. 2016. 41 р. Pittsburgh, PA Available at: https://www.netl.doe.gov/File%20Library/Events/2016/crosscutting-ree/track-a-041816/Presentantion_20160418_1100A_FE0011550_SU.pdf (accessed: March 12, 2018).

DOI: 10.18577/2071-9140-2018-0-2-9-16

UDC: 669.715:620.17

Pages: 9-16

A.M. Sergeeva1, N.S. Lovizin1, A.A. Sosnin1

[1] Federal State budget institution of Sciences Institute of machinery and metallurgy of Far Eastern Branch of Russian Academy of Sciences,

ABOUT COMBINED TECHNOLOGY OF CONTINUOUS CASTING OF ALUMINUM ALLOYS WITH SYNCHRONOUS DEFORMATION OF THE METAL

The results of studies of changes in the mechanical properties of alloy D1 during its processing by the combined technology of continuous casting with synchronous deformation of metal in solid-liquid state are presented. These studies have shown that this technology allows obtaining flat billets of rectangular cross-section for a short production cycle with a speed of 2 m/min. The processing of alloy D1 leads to increase temporary resistance of disruption by 24,5%, yield point - by 43,5%, relative elongation - of 2,5 times, Brinell hardness - by 29% in comparison with the alloy in the initial state. The perspective of this technology is shown.

Keywords: aluminum alloys, continuous casting, deformation in the solid-liquid state, combined processes, crystallization.

Reference List

1. Semenov B.I., Kushtarov K.M. Proizvodstvo izdelij iz metalla v tverdozhidkom sostoyanii. Novye promyshlennye tehnologii: ucheb. posobie dlya vuzov [Production of metal wares in tverdozhidky condition. New industrial technologies: the manual for higher education institutions]. M.: Izd-vo MGTU im. N.E. Baumana, 2010. 223 s.
2. Sergeeva A.M., Lovizin N.S., Sosnin A.A. Struktura i mehanicheskie svojstva ploskih zagotovok iz splava AD1, poluchennyh v usloviyah nepreryvnogo litya, sovmeshhennogo s deformaciej v tverdozhidkom sostoyanii [Structure and mechanical properties of flat preparations from alloy of AD1 received in the conditions of continuous casting, combined with deformation in solid-liquid condition] // Voprosy materialovedeniya. 2017. №1. S. 84–91.
3. GOST 4784–97. Alyuminij i splavy alyuminievye deformiruemye. Marki [State Standard 4784–97. Aluminum and alloys the aluminum deformable. Brands]. M.: Izd-vo standartov, 1997. 10 s.
4. Ustrojstvo dlya polucheniya nepreryvnolityh deformirovannyh zagotovok: pat. 2116158 Ros. Federaciya. №96111894/02 [The device for receiving the continuous cast deformed ingots: pat. 2116158 Rus. Federation. No. 96111894/02]; zayavl. 13.06.96; opubl. 27.07.98, Byul. №21. 12 s.
5. Sergeeva A.M., Lovizin N.S., Sosnin A.A., Odinokov V.I. Issledovanie struktury i mehanicheskih svojstv metalloizdelij iz splava AD0, poluchennyh s pomoshhyu novoj tehnologii nepreryvnogo litya [Research of structure and mechanical properties of hardware from alloy of AD0 received by means of new continuous casting technology] // Perspektivnye materialy. 2016. №4. S. 13–18.
6. Promyshlennye alyuminievye splavy / S.G. Alieva, M.B. Altman, S.M. Ambarcumyan i dr. [Industrial aluminum alloys / S.G. Alieva, M.B. Altman, S.M. Ambarcumyan at al.]. M.: Metallurgiya, 1984. 528 s.
7. Gabidullin R.M., Livanov V.A., Shipilov V.S. Nepreryvnoe lite alyuminievyh splavov [Continuous casting of aluminum alloys]. M.: Metallurgiya, 1977. 168 s.
8. Germann E. Nepreryvnoe lite: spravochnik. Per. s nem. / pod red. V.I. Dobatkina, V.S. Rutesa, E.R. Shora [Continuous casting: directory. Trans. from Germ. / ed. by V.I. Dobatkin, V.S. Rutes, E.R. Shor]. M.: Metallurgizdat, 1961. 814 s.
9. GOST R 8.585–2001. Termopary. Nominalnye staticheskie harakteristiki preobrazovaniya [State Standard P 8.585–2001. Thermocouples. Rated direct current characteristics of transformation]. M.: Izd-vo standartov, 2002. 84 s.
10. GOST 9012–59. Metally. Metod izmereniya tverdosti po Brinellyu [State Standard 9012–59. Metals. Method of measurement of Brinell hardness]. M.: Standartinform, 2007. 39 s.
11. GOST 2789–73. Sherohovatost poverhnosti. Parametry i harakteristiki [State Standard 2789–73. Surface roughness. Parameters and characteristics]. M.: Standartinform, 2006. 6 s.
12. GOST 1497–84. Metally. Metody ispytanij na rastyazhenie [State Standard 1497–84. Metals. Test methods on stretching]. M.: Izd-vo standartov, 2008. 24 s.
13. GOST 21488–97. Prutki pressovannye iz alyuminiya i alyuminievyh splavov. Tehnicheskie usloviya [State Standard 21488–97. Bars pressed from aluminum and aluminum alloys. Specifications]. M.: Izd-vo standartov, 2001. 22 s.
14. Aptekar I.L., Kameneckaya D.S. O vliyanii davleniya na zarozhdenie centrov novoj fazy [About influence of pressure on origin of the centers of new phase] // FMM. 1962. T. 14. Vyp. 2. S. 316–319.
15. Brovman M.Ya. Sovmeshhennye processy nepreryvnogo litya i prokatki [The combined continuous casting processes and rollings]. Saarbryukken: LAP LAMBERT Academic Publishing, 2014. 626 s.

DOI: 10.18577/2071-9140-2018-0-2-17-25

UDC: 669.017.165:669.295

Pages: 17-25

D.A. Dzunovich1, E.B. Alekseev1, P.V. Panin1, E.A. Lukina2, A.V. Novak1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,
[2] Moscow Aviation Institute (National Research University),

STRUCTURE AND PROPERTIES OF SHEET SEMI-FINISHED PRODUCTS FROM VARIOUS WROUGHT INTERMETALLIC TITANIUM ALLOYS

Phase composition and structure of sheet semi-finished products from heat-resistant wrought Ti3Al based alloys of α2, super- α2, and ortho types obtained by various technologies have been studied. A comparative analysis of mechanical properties of the mentioned types of alloys has been also accomplished. It has been shown that hydrogen technology for 7115 alloy resulted in 150-200°С reduction of hot deformation temperature interval in comparison to super-α2 alloys, as well as 40-50% reduction of specific compression forces upon upsetting at 900-1000°С - this gave the opportunity to produce sheet semi-finished products which specific strength at room temperature exceeds VTI-1 and VTI-4 alloys. It has been determined that VTI-4 sheets possess the highest stress-rupture properties at 700°С as well as higher strength at room and elevated temperatures. The prospects of industrial manufacturing of different semi-finished items (including sheets) from the alloys in focus have been analyzed. The analysis has shown that VTI-4 alloy proves to be the most ready for commercial production.

Keywords: titanium aluminide, α2(Ti3Al)-phase, ortho(Ti2AlNb)-phase, hydrogen technology, sheet semi-finished product, phase composition, structure, mechanical properties.

Reference List

1. Kablov E.N. Iz chego sdelat budushchee? Materialy novogo pokoleniya, tekhnologii ih sozdaniya i pererabotki – osnova innovatsij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
2. Kablov E.N. Razrabotki VIAM dlya gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 3–33.
3. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
4. Bratuhin A.G., Kolachev B.A., Sadkov V.V. i dr. Tekhnologiya proizvodstva titanovyh samoletnyh konstruktsij [Production technology of titanic aircraft designs]. M.: Mashinostroenie, 1995. 448 s.
5. Heng Qiang Ye. Recent developments in Ti3Al and TiAl intermetallics research in China // Materials Science and Engineering: A. 1999. Vol. 263. P. 289–295.
6. Nochovnaya N.A., CHeremushnikova E.V., Antashev V.G. Metallicheskie materialy dlya endoprotezirovaniya [Metal materials for endoprosthetics]. M.: VIAM, 2014. 72 s.
7. Gorynin I.V., Chechulin B.B. Titan v mashinostroenii [Titanium in mechanical engineering]. M.: Mashinostroenie, 1990. 399 s.
8. Aleksandrov V.K., Anoshkin N.F., Belozerov A.P. i dr. Polufabrikaty iz titanovyh splavov [Semi-finished products from titanium alloys]. M.: VILS, 1996. 581 s.
9. Kolachev B.A., Polkin I.S., Talalaev V.D. Titanovye splavy raznyh stran [Titanium alloys of the different countries]. M.: VILS, 2000. 318 s.
10. Moiseev V.N. Titan v Rossii [Titanium in Russia] // MiTOM. 2005. №8 (602). S. 23–29.
11. Kablov E.N. Materialy i himicheskie tekhnologii dlya aviatsionnoj tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
12. Kolachev B.A., Betsofen S.YA., Bunin S.YA., Volodin V.A. Fiziko-mekhanicheskie svojstva legkih konstruktsionnyh materialov [Physicomechanical properties of easy constructional materials]. M.: Metallurgiya, 1995. 442 s.
13. Djanarthany S., Viala J.-C., Bouix J. An overview of monolithic titanium aluminides based on Ti3Al and TiAl (Review) // Materials Chemistry and Physics. 2001. Vol. 72. P. 301–319.
14. Vozdvizhenskij V.M., Zhukov A.A., Postnova A.D., Vozdvizhenskaya M.V. Splavy tsvetnyh metallov dlya aviatsionnoj tekhniki / pod obshch. red. V.M. Vozdvizhenskogo [Non-ferrous alloys for aviation engineering / gen. ed. by V.M Vozdvizhensky]. Rybinsk: RGATA, 2002. 219 s.
15. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tekhnologij ih proizvodstva dlya aviatsionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
16. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallidnye splavy na osnove titana i nikelya [Intermetallidnye titanium-based alloys and nickel]. M.: VIAM, 2018. 308 s.
17. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii ekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] // Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
18. Nochovnaya N.A., Alekseev E.B., YAsinskij K.K., Kochetkov A.S. Spetsifika plavki i sposoby polucheniya slitkov intermetallidnyh titanovyh splavov s povyshennym soderzhaniem niobiya [Specifics of melting and ways of receiving ingots of intermetallic titanium alloys with the raised content of niobium] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP. C. 53–59.
19. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] // Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
20. Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Zakonomernosti formirovaniya strukturno-fazovogo sostoyaniya splavov na osnove orto- i gamma-alyuminidov titana v protsesse termomekhanicheskoj obrabotki [Patterns of forming of structural and phase condition of alloys on basis ortho-and titanium gamma aluminides in the course of thermomechanical processing] // Vestnik Rossijskogo fonda fundamental\'nyh issledovanij. 2015. №1 (85). S. 18–26.
21. Alekseev E.B., Nochovnaya N.A., Ivanov V.I., Panin P.V., Novak A.V. Issledovanie vliyaniya alyuminiya na fazovyj sostav i svojstva deformirovannyh polufabrikatov iz intermetallidnogo titanovogo splava VTI-4 [Research of influence of aluminum on phase structure and properties of the deformed semi-finished products from intermetallic VTI-4 titanium alloy] // Tekhnologiya legkih splavov. 2015. №1. S. 57–61.
22. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
23. Splav na osnove alyuminida titana: pat. 2081929 Ros. Federatsiya [Alloy on the basis of titanium aluminide: pat. 2081929 Rus. Federation]; opubl. 20.06.97.
24. Splav na osnove titana i izdelie, vypolnennoe iz nego: pat. 2210612 Ros. Federatsiya [Titanium-based alloy and the product which has been executed of it: pat. 2210612 Rus. Federation]; opubl. 20.08.2003.
25. Protsenko O.M., Karachevtsev F.N., Mekhanik E.A. Opyt razrabotki metodiki izmereniya soderzhaniya vodoroda v titanovyh splavah [Experience on development of measurement procedure for determination of hydrogen content in titanium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 08. Available at: http://www.viam-works.ru (accessed: March 26, 2018). DOI: 10.18577/2307-6046-2014-0-12-8-8.
26. Ilin A.A. Mekhanizm i kinetika fazovyh i strukturnyh prevrashchenij v titanovyh splavah [The mechanism and kinetics of phase and structural transformations in titanium alloys]. M.: Nauka, 1994. 304 s.
27. Ilin A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Vodorodnaya tekhnologiya titanovyh splavov [Hydrogen technology of titanium alloys]. M.: MISiS, 2002. 392 s.
28. Kolachev B.A., Ilin A.A., Nosov V.K., Mamonov A.M. Dostizheniya vodorodnoj tekhnologii titanovyh splavov [Achievements of hydrogen technology of titanium alloys] // Tekhnologiya legkih splavov. 2007. №3. S. 10–26.
29. Ilin A.A., Skvortsova S.V., Mamonov A.M., Kollerov M.YU. Fazovye i strukturnye prevrashcheniya v titanovyh splavah raznyh klassov pod dejstviem vodoroda [Phase and structural transformations in titanium alloys of different classes under the influence of hydrogen] // Titan. 2007. №1. S. 32–37.
30. Mamonov A.M., Skvortsova S.V., Agarkova E.O. i dr. Termovodorodnaya obrabotka kak sposob formirovaniya termicheski stabilnoj struktury v zharoprochnom titanovom splave s intermetallidnym uprochneniem [Thermohydrogen treating as way of forming of thermally stable structure in heat resisting titanium alloy with intermetallidny hardening] // Titan. 2009. №2 (24). C. 35–38.
31. Kolachev B.A. Obratimoe legirovanie titanovyh splavov vodorodom [Reversible alloying of titanium alloys hydrogen] // MiTOM. 1993. №10. S. 28–32.
32. Alekseev E.B., Nochovnaya N.A., Panin P.V., Novak A.V. Tehnologicheskaya plastichnost, struktura i fazovyj sostav opytnogo titanovogo orto-splava, soderzhashhego 13% (po masse) alyuminiya [Technological plasticity, structure and phase composition of a pilot titanium ortho alloy with 13 wt. рct. aluminum] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 08. Available at: http://www.viam-works.ru (accessed: March 26, 2018). DOI: 10.18577/2307-6046-2015-0-12-8-8.

DOI: 10.18577/2071-9140-2018-0-2-26-32

UDC: 669.017:006.055

Pages: 26-32

A.I. Plokhikh1, M.D. Safonov1, A.G. Kolesnikov1, S.D. Karpukhin1

[1] Bauman Moscow State Technical University (National Research University of Technology,

MECHANISM OF INTERLAMINAR STRESS RELAXATION IN MULTILAYER STEEL MATERIALS

The paper presents the findings of research of multilayer steel materials that feature abnormal low values of thermal linear expansion coefficient (TLEC) in the direction normal to the rolling plane. The hypothesis of the critical role of reactive stresses in the appearance of the Invar effect is supported by the results of metallographic examination. Cyclic high-temperature heating is shown to induce recrystallization at interlaminar borders, caused by the difference between TLEC values of adjacent layers and the high heating temperature.

Keywords: hot pack rolling, multilayer metal material, rolling direction, dilatometric analysis, coefficients of thermal expansion (CTE), recrystallization.

Reference List

1. Shalin P.E., Mashinskaya G.P., Zhelezina G.F., Morozov G.A. Adaptiruyushchiesya (intellektualnye) materialy i problemy ikh sozdaniya [Adapting (intellectual) materials and problems of their creation] // Tekhnologiya: mezhotraslevoj nauch.-tekhnich. sb. Ser.: Konstruktsii iz kompozitsionnykh materialov. M.: VIMI, 1995. Vyp. 2. S. 43–48.
2. Gulyaev I.N., Gunyaev G.M., Raskutin A.E. Polimernye kompozitsionnye materialy s funktsiyami adaptacii i diagnostiki sostoianiya [Polymeric composite materials with functions of adaptation and condition diagnostics] // Aviacionnye materialy i tehnologii. 2012. №S. S. 242–253.
3. Bensoussan A., Lions J.-L., Papanicolaou G.C. Asymptotic Analysis for Periodic Structures. Amsterdam, 1978. 369 p.
4. Sanchez-Palencia E. Non-Homogeneous Media and Vibration Theory // Lecture Notes in Physics. Springer, 1980. Vol. 127. 367 p.
5. Almgren R.F. An isotropic three-dimensional structure with Poisson’s ratio // Journal of Elasticity. 1985. Vol. 15. P. 427–430.
6. Kolpakov A.G., Rakin S.I. K zadache sinteza kompozitsionnogo materiala odnomernogo stroeniya s zadannymi kharakteristikami [To problem of synthesis of composite material of one-dimensional structure with the set characteristics] // Prikladnaya mekhanika i tekhnicheskaya fizika. 1986. №6. S. 143–150.
7. Kolpakov A.G., Rakin S.I. Deformatsionnye kharakteristiki sloistykh kompozitov pri nelinejnykh deformatsiyakh [Deformation characteristics of layered composites at nonlinear deformations] // Prikladnaya mekhanika i tekhnicheskaya fizika. 2004. №5. S. 157–166.
8. Kolesnikov A.G., Plokhikh A.I., Mikhaltsevich I.YU. Issledovanie vozmozhnosti polucheniya submikro- i nanorazmernoj struktury v mnogoslojnykh materialakh metodom goryachej prokatki [Research of possibility of receiving submicro and nanodimensional structure in multi-layer materials method of hot rolling] // Proizvodstvo prokata. 2010. №3. S. 25–31.
9. Tabatchikova T.I., Plokhikh A.I., YAkovlev I.L., Klyueva S.Yu. Struktura i svojstva mnogoslojnogo materiala na osnove stalej, poluchennogo metodom goryachej paketnoj prokatki [Structure and properties of multi-layer material on the basis of staly, received by hot pack rolling method] // Fizika metallov i metallovedenie. 2013. T. 114. №7. S. 633–646.
10. Tabatchikova T.I., YAkovleva I.L., Plokhikh A.I., Delgado Rejna S.Yu. Issledovanie mnogoslojnogo materiala na osnove nerzhaveyushchikh stalej, poluchennogo metodom goryachej paketnoj prokatki [Research of multi-layer material on the basis of the stainless steels, received by hot pack rolling method] // Fizika metallov i metallovedenie. 2014. T. 115. №4. S. 431–442.
11. Plokhikh A.I., Chan YuE, Karpukhin S.D. Issledovanie vliyaniya mezhslojnogo diffuzionnogo pereraspredeleniya ugleroda na udarnuyu vyazkost\' mnogoslojnykh materialov [Research of influence of interlaminar diffusion redistribution of carbon on the impact strength of multi-layer materials] // Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2015. №8. S. 86–91.
12. Zubchenko A.S., Koloskov M.M., Kashirskij Yu.V. i dr. Marochnik stalej i splavov [Steels and alloys grade guide]. M.: Mashinostroenie, 2003. S. 585–784 s.

DOI: 10.18577/2071-9140-2018-0-2-33-39

UDC: 669.295

Pages: 33-39

D.A. Aleksandrov1, S.A. Muboyadzhyan1, A.N. Lutsenko1, P.L. Zhuravleva1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

HARDENING OF THE SURFACE OF TITANIUM ALLOYS BY ION IMPLANTATION METHOD AND IONIC MODIFICATION

The problems of hard surfacing a titanium alloy by ion implantation method with nitrogen and ionic saturation (ionic modification) of a surface in an aluminum alloy plasma are considered in the article. The microhardness of the hardened surface, erosion and abrasion resistance, the phase composition have been studied and metallographic studies have been carried out. It is shown that the use of this type of complex ion treatment increases the resistance of the surface of the titanium alloy to erosive and abrasive wear. The results of the research can be used to harden the input edge of titanium blades of the GTE compressor.

Keywords: gas turbine compressor blades, ion implantation, ion modifying, erosion resistance, erosion-resistant coatings, ion-plasma coatings.

Reference List

1. Smyslov A.M., Smyslova M.K., Muhin V.S. Ionno-implantacionnoe i vakuumno-plazmennoe modificirovanie poverhnosti lopatok kompressora GTD [Ion-implanted and vacuum and plasma modifying of surface of compressor blades of GTE] // Vestnik Rybinskoj gos. aviac. tehnologich. akad. im. P.A. Soloveva. 2017. №1 (40). S. 133–138.
2. Kablov E.N., Muboyadzhyan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 149–163.
3. Smyslov A.M., Bybin A.A., Nevyanceva R.R. Vliyanie ionnoj implantacii i plazmennoj poverhnostnoj obrabotki na ekspluatacionnye harakteristiki zharoprochnogo nikelevogo splava [Influence of ion implantation and plasma surface processing on utilization properties of heat resisting nickel alloy] // Fizika i himiya obrabotki materialov. 2007. №3. S. 29–34.
4. Smyslov A.M., Smyslova M.K., Dubin A.I. Issledovanie vliyaniya kompleksnoj vakuumnoj ionno-plazmennoj obrabotki na soprotivlenie ustalosti lopatok GTD s koncentratorom [Research of influence of complex vacuum ion-plasma processing on resistance of fatigue of blades of GTD with the concentrator] // Vestnik UGATU. 2016. T. 20. №3 (73). S. 38–43.
5. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-loaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 13–19.
6. Muboyadzhyan S.A., Aleksandrov D.A., Konnova V.I. Metodika ispytanij na otnositelnuyu erozionnuyu stojkost tverdyh pokrytij otvetstvennyh detalej kompressora GTD [Technique of tests for relative erosion resistance of hard coatings of responsible details of the GTD compressor] // Vse materialy. Enciklopedicheskij spravochnik. 2014. №4. S. 7–18.
7. Pogrebnyak A.D., Yakushhenko I.V., Sobol O.V. i dr. Vliyanie ostatochnogo davleniya i ionnoj implantacii na strukturu, elementnyj sostav i svojstva nitridov (TiZrAlYNb)N [Influence of residual pressure and ion implantation on structure, element structure and properties of nitrides (TiZrAlYNb)N] // Zhurnal tehnicheskoj fiziki. 2015. T. 85. №8. S. 72–79.
8. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
9. Karpov D.A., Litunovskij V.N. Plazmenno-immersionnaya ionnaya implantaciya (PIII): fizicheskie osnovy, ispolzovanie v tehnologiyah [Plasma and immersion ion implantation (PIII): physical bases, use in technologies]. SPb.: NIIEFA im. D.V. Efremova, 2009. 62 s.
10. Grigorev S.N., Melnik Yu.A., Metel A.S. i dr. Immersionnaya ionnaya implantaciya i azotirovanie v plazme tleyushhego razryada s elektrostaticheskim uderzhaniem elektronov [Immersion ion implantation and nitriding in glow discharge plasma with electrostatic deduction of electrons] // Uprochnyayushhie tehnologii i pokrytiya. 2010. №6. S. 43–48.
11. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Kondrateva A.R. Issledovanie vliyaniya soderzhaniya legiruyushhih elementov na svojstva vysokoprochnogo zharoprochnogo psevdo-α-splava VT46 [Research of influence of alloying elements content on properties of high strength near alpha heat resistance titanium alloy VT46] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 06. Available at: http://www.viam-works.ru (accessed: November 14, 2017). DOI: 10.18577/2307-6046-2016-0-9-6-6.
12. Sutygina A.N., Shulepov I.A. Plazmenno-immersionnaya ionnaya implantaciya alyuminiya v titan VT1-0 [Plasma and immersion ion implantation of aluminum in BT1-0 titanium] // Perspektivy razvitiya fundamentalnyh nauk: sb. nauch. tr. XII Mezhdunar. konf. studentov i molodyh uchenyh. Tomsk: Nac. issled. Tomskij politeh. un-t, 2015. S. 248–250.
13. Vorobev V.L., Bykov P.V., Bystrov S.G. i dr. Izmenenie sostava poverhnostnyh sloev titanovogo splava VT6 posle ionno-luchevogo peremeshivaniya alyuminiya i termoobrabotki [Change of structure of surface layers of VT6 titanium alloy after ion-beam hashing of aluminum and heat treatment] // Himicheskaya fizika i mezoskopiya. 2013. T. 15. №4. S. 576–581.
14. Uchevatkina N.V., Ovchinnikov V.V., Zhdanovich O.A., Sbitnev A.G. Kombinirovannaya tehnologiya povysheniya iznosostojkosti detalej iz titanovogo splava VT6 na osnove ionnoj implantacii [The combined technology of increase of wear resistance of details from BT6 titanium alloy on the basis of ion implantation] // Uprochnyayushhie tehnologii i pokrytiya. 2016. №6 (138). S. 35–39.
15. Uchevatkina N.V., Ovchinnikov V.V., Zhdanovich O.A., Sbitnev A.G. Ostatochnye napryazheniya v poverhnostnom sloe titanovogo splava VT6 posle ionnoj implantacii s bolshoj dozoj [Residual stresses in VT6 titanium alloy surface layer after ion implantation with big dose] // Zagotovitelnye proizvodstva v mashinostroenii. 2016. №6. S. 41–46.
16. Gorlov D.S., Muboyadzhyan S.A., Shhepilov A.A., Aleksandrov D.A. Vliyanie ionnoj implantacii na dempfiruyushhuyu sposobnost kompozicii «splav–ionno-plazmennoe pokrytie» [The influence of ion implantation on the damping ability of the composition «аlloy–ion-plasma coating»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2. St. 04. Available at: http://www.viam-works.ru (accessed: November 7, 2017). DOI: 10.18577/2307-6046-2017-0-2-4-4.
17. Gorlov D.S., Shhepilov A.V. Vliyanie sherohovatosti poverhnosti i abrazivnogo iznosa na dempfiruyushhuyu sposobnost kompozicii «splav–pokrytie» [Influence of surface roughness and abrasive wear on the damping capacity of the composition «alloy–coating»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №5. St. 11. Available at: http://www.viam-works.ru (accessed: November 14, 2017). DOI: 10.18577/2307-6046-2017-0-5-11-11.
18. Gorbovec M.A., Nochovnaya N.A. Vliyanie mikrostruktury i fazovogo sostava zharoprochnyh titanovyh splavov na skorost\' rosta treshhiny ustalosti [Influence of microstructure and phase composition of heat-resisting titanium alloys on the fatigue crack growth rate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 03. Available at: http://www.viam-works.ru (accessed: November 14, 2017). DOI: 10.18577/2307-6046-2016-0-4-3-3.
19. Sharkeev Yu.P., Kukareko V.A., Eroshenko A.Yu. i dr. Ionnaya implantaciya kak metod povysheniya ciklicheskoj dolgovechnosti titana v krupnozernistom i ultramelkozernistom sostoyaniyah [Ion implantation as method of increase of cyclic durability of titanium in coarse-grained and ultrafine-grained conditions] // Perspektivnye materialy. 2011. №12. S. 136–142.
20. Sharkeev Yu.P., Ryabchikov A.I., Kozlov E.V. i dr. Vysokointensivnaya ionnaya implantaciya – metod formirovaniya melkodispersnyh intermetallidov v poverhnostnyh sloyah metallov [High-intensity ion implantation – method of forming of finely divided intermetallic compound in surface layers of metals] // Izvestiya vysshih uchebnyh zavedenij. Fizika. 2004. T. 47. №9. S. 44–52.

DOI: 10.18577/2071-9140-2018-0-2-40-46

UDC: 539.42:539.43

Pages: 40-46

V.V. Konovalov1, S.V. Dubinskiy1, A.D. Makarov1, A.M. Dotsenko1

[1] Federal State Unitary Enterprise «Central Aerohydrodynamic Institute named after N.E. Zhukovsky»,

RESEARCH OF СORRELATION DEPENDENCIES BETWEEN MECHANICAL PROPERTIES OF AVIATION MATERIALS

The correlation between structural properties of alloys V93, V95 (7075), D16, 1163 (2024), 30HGSA, АК4-Т2 has been studied. The ratio analysis between ultimate stress, endurance limit, yield stress, relative elongation and relative plasticity of materials made in batch production has been determined. It is shown that correlation is very weak excepting three pairs. The obtained results give the possibility for improvement of aviation alloys by simultaneously increasing mechanical properties of materials.

Keywords: metal alloy, ultimate stress, endurance limit, yield stress, correlation, statistical analysis.

Reference List

1. Vovnyanko A.G., Bengus G.Yu., Voroncov I.S. Staticheskaya prochnost i ustalostnaya dolgovechnost krupnogabaritnyh pressovannyh polufabrikatov iz splavov D16ch.-T, V95p.ch.-T1 i V95p.ch.-T2 [Static durability and fatigue life of the large-size pressed semi-finished products from alloys D16ch.-T, V95p.ch.-T1 i V95p.ch.-T2] // Fiziko-himicheskaya mehanika materialov. 1982. №1. S. 20–24.
2. Docenko A.M., Polyakov A.N., Mishin V.I., Goryachev V.I. Raschetno-eksperimentalnoe issledovanie vliyaniya tehnologii na dolgovechnost\' obrazca s otverstiem i raschetnye razmery nachalnyh defektov [Rated pilot study of influence of technology on durability of sample with opening and the rated extent of initial defects] // Aviacionnaya promyshlennost. 1990. №7. S. 75–78. 
3. Serebrennikova N.Yu., Senatorova O.G., Antipov V.V. i dr. Kompleks svojstv i struktura massivnyh plit iz alyuminievyh splavov V95p.ch.-T2, AK4-1ch.-T1 i 1163-T [Complex of properties and structure of massive plates from aluminum alloys V95p.ch.-Т2, AK4-1ch.-Т1 and 1163-T] // Metallovedenie i sovremennye razrabotki v oblasti tehnologii litya, deformacii i termicheskoj obrabotki legkih splavov: sb. dok. nauch.-teh. konf. M., 2016. 10 s.
4. Senatorova O.G., Serebrennikova N.Yu., Antipov V.V. i dr. Issledovanie struktury i svojstv plity tolshhinoj 80 mm iz splava V95p.ch.-T2 [Research of structure and properties of plate 80 mm thick from alloy V95p.ch.-T2] // Tehnologiya legkih splavov. 2016. №2. S. 37–42.
5. Grinevich A.V., Rumyancev Yu.S., Morozova L.V., Terehin A.L. Issledovanie ustalostnoj dolgovechnosti alyuminievyh splavov 1163-T i V95o.ch.-T2 posle poverhnostnogo uprochneniya [Study of fatigue life of 1163-T and V95o.ch.-T2 aluminum alloys after surface hardening] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 93–102. DOI: 10.18577/2071-9140-2014-s4-93-102.
6. Erasov V.S., Grinevich A.V., Senik V.Ya., Konovalov V.V., Trunin Yu.P., Nesterenko G.I. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
7. Raschetnye znacheniya harakteristik aviacionnyh metallicheskih konstrukcionnyh materialov [Calculated values of characteristics of aviation metal constructional materials] // Aviacionnyj spravochnik A.S. 1.1.M.001-2012. M.: OAK, CAGI, 2013. 302 s.
8. Vorobev A.Z., Bogdanov B.F., Olkin B.I. Vliyanie vysokoj temperatury na vynoslivost elementov konstrukcii [Influence of high temperature on endurance of elements of design] // Trudy TsAGI. 1972. Vyp. 1417. S. 53–72.
9. Bogdanov B.F., Kolganova Z.N. Vliyanie dlitelnyh vyderzhek pri vysokoj temperature na vynoslivost alyuminievyh i titanovyh splavov [Influence of long excerpts at high temperature on endurance of aluminum and titanium alloys] // Trudy CAGI. 1970. Vyp. 1239. S. 3–10.
10. Hejvud R.B. Proektirovanie s uchetom ustalosti [Design taking into account fatigue]. M.: Mashinostroenie, 1969. 37 s.
11. Gordon D.E., Chuang S.Y. Correlation between modulus and yield strength in Ti–25Al–10Nb–3V–1Mo (a/o) // Journal of materials science letters. 1994. Vol. 13. P. 1397–1399.
12. Basov V.N., Nesterenko G.I. Prochnost i ustalost materialov obshivki konstrukcij grazhdanskih samoletov [Durability and fatigue of materials of covering of designs of civil aircrafts] // Nauchnyj Vestnik MGTUGA. 2010. №153. C. 15–23.
13. Pavlina E.J., Van Tyne C.J. Correlation of Yield Strength and Tensile Strength with Hardness for Steels // Journal of Materials Engineering and Performance. 2008. Vol. 17 (6). P. 893.
14. Goldshtejn M.I., Grachev S.V., Veksler Yu.G. Specialnye stali. 2-e izd. [Special steels. 2nd ed.] M.: MISIS, 1999. C. 215–216.

DOI: 10.18577/2071-9140-2018-0-2-47-58

UDC: 620.1

Pages: 47-58

E.N. Kablov1, V.O. Startsev1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

SYSTEMATICAL ANALYSIS OF THE CLIMATICS INFLUENCE ON MECHANICAL PROPERTIES OF THE POLYMER COMPOSITE MATERIALS BASED ON DOMESTIC AND FOREIGN SOURCES (review)

The systematical analysis of changes in mechanical properties of polymer composite materials (РСМ) was performed during full-scale tests based on domestic and foreign sources. The change in the properties of 3258 sets of samples were analyzed after exposure in 7 climatic regions from 0.5 up to 23 years. The quantitative criteria for ranging of climatic zones aggressivity, susceptibility of mechanical characteristics to climatic effect, optimal term of explosure during climatic tests were reviewed. The practical quantitative conclusions were proposed for use in express estimating expected changes in the most widespread mechanical properties of PCM, with respect to material type, mechanical property, duration and climatic conditions of exposure.

Keywords: polymer composite materials, climatic aging, mechanical properties, persistence, statistical analysis.

Reference List

1. Kin Y., Sasaki Y. What is Environmental Testing // ESPEC Technology Mag. 1996. No. 1. P. 1–15.
2. Baker A., Dutton S., Kelly D. Composite materials for aircraft structures. 2nd ed. Reston, 2004. 597 p.
3. Maxwell A.S., Broughton W.R., Dean G., Sims G.M. Review of accelerated ageing methods and lifetime prediction techniques for polymeric materials. NPL Report DEPC MPR 016, 2005. P. 84.
4. Ageing of composites / ed. Martin R. Cambridge: Woodhead Publishing Limited, 2008. 544 p.
5. Tian W., Hodgkin J. Long-Term Aging in a Commercial Aerospace Composite Sample: Chemical and Physical Changes // Journal of Applied Polymer Science. 2010. Vol. 115. P. 2981–2985.
6. Long-term durability of polymeric matrix composites / ed. Pochiraju K.V., Tandon G.A., Schoeppner G.A. Springer, 2012. 677 p.
7. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials: 1. Aging mechanisms // Russian Metallurgy (Metally). 2011. No. 10. P. 993–1000.
8. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 2. Relaxation of the initial structural nenequilibrium and through thickness gradient of properties // Russian Metallurgy (Metally). 2011. No. 10. P. 1001–1007.
9. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 3. Significant aging factors // Russian Metallurgy (Metally). 2012. No. 4. P. 323–329.
10. Böer P., Holliday L., Kang T.H.-K. Interaction of environmental factors on fiber-reinforced polymer composites and their inspection and maintenance. A review // Construction and Building Materials. 2014. Vol. 50. P. 209–208.
11. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
12. Ribeiro M.C.S., Ferreira A.J.M., Marques A.T. Effect of natural and artifical weathering on the long-term flexural performance of polymer mortars // Mechanics of Composite Materials. 2009. Vol. 45. No. 5. P. 515–526.
13. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
14. Williams J.G. The effects of tropical weathering on glass-reinforced epoxy resins // Composites. 1977. Vol. 8. No. 3. P. 121–200.
15. Pride R.A. Environments effects of composites for aircraft // CTOL Transport Tech. Conf. 1978. P. 239–258.
16. Roylance D., Roylance M. Weathering of fiber-reinforced epoxy composites // Polymer Engineering and Science. 1978. Vol. 18. No. 4. P. 249–254.
17. Stifel P. Effect of long term outdoor exposure on composite materials // 20th Structures, Structural Dynamics, and Materials Conference. St. Louis. MO. USA. 1979. P. 273–274.
18. Startsev O.V., Eskin Y.A., Kolesnik K.I., Petrov A.S., Meletov V.P. Nekotorye osobennosti izmeneniya fiziko-mehanicheskih svojstv materiala tipa SSTF pri starenii v usloviyah vlazhnyh subtropikov [Некоторые особенности изменения физико-механических свойств материала типа ССТФ при старении в условиях влажных субтропиков] // Problemy prochnosti. 1982. №10. S. 91–96.
19. Startsev O.V., Vapirov Yu.M., Deev I.S., Yartsev V.A., Krivonos V.V., Mitrofanova E.A., Chubarova M.A. The effect of prolonged atmospheric ageing on the properties and structure of carbon plastic // Mechanics of Composite Materials. 1986. No 4. P. 636–642.
20. Vapipov Yu.M. Mehanizmy stareniya ugleplastikov aviacionnogo naznacheniya v usloviyah teplogo vlazhnogo klimata [Aging mechanisms carbon plastics aviation assignment in the conditions of warm humid climate]. VIAM, 1989. 268 s.
21. Bulmanis V.N. Ekspluatacionnaja ustojchivost polimernyh voloknistyh kompozitov i izdelij v usloviyah holodnogo klimata [Operational stability of polymeric fibrous composites and products in the conditions of frigid climate]. Yakutsk: IFTPS SO AN SSSR, 1989. 472 s.
22. Baker D.J. Evalution of Composite Components on the Bell 206L and Sikorsky S-76 Helicopters. NASA AVSCOM Technical Memorandum 4195. Hampton. Virginia, 1990. P. 35.
23. Startsev O.V. Starenie polimernyh aviacionnyh materialov v teplom vlazhnom klimate: dis. v forme nauch. dokl. [Aging of polymeric aviation materials in warm humid climate: thesis in the form of the scientific report]. M.: VIAM, 1990. 80 s.
24. Bulmanis V.N., Gunyaev G.M., Krivonos V.V. et al. Atmospheric durability of polymer-fiber composites in cold climates // Mechanics of Composite Materials. 1991. Vol. 27. No. 6. P. 698–705.
25. Startseva L.T. Climatic ageing of organic fiber reinforced plastics // Mechanics of Composite Materials. 1993. Vol. 29. No. 6. P. 840.
26. Startsev O.V. Peculiarities of ageing of aircraft materials in a warm damp climate // Polymer Yearbook. Glasgow: Harwood Academic Publishers, 1994. P. 91–110.
27. Baker D.J. Ten-year ground exposure of composite materials used on the Bell model 206L helicopter flight service program. NASA Technical Paper 3468. ARL Technival Report 480. Hampton. Virginia, 1994. P. 54.
28. Vapirov Y.M., Krivonos V.V., Startsev O.V. Interpretation of the anomalous change in the properties of carbon-fiber-reinforced plastic KMU-1u during aging in different climatic regions // Mechanics of Composite Materials. 1994. Vol. 30. No. 2. P. 190–194.
29. Startsev O.V., Krotov A.S., Mashinskaya G.P. Climatic ageing of organic fiber reinforced plastics: water effect // International Journal of Polymeric Materials. 1997. Vol. 37. No. 3–4. P. 161–171.
30. Startsev O.V., Krotov A.S., Golub P. Effect of climatic and radiation ageing on properties of glass fibre reinforced epoxy laminates // Polymers and Polymer Composites. 1998. Vol. 6. No. 7. P. 481–488.
31. Startsev O.V., Krotov A.S., Startseva L.T. Interlayer shear strength of polymer composite materials during long term climatic ageing // Polymer Degradation and Stability. 1999. Vol. 63. P. 183–186.
32. Vodichka R., Nelson B., van der Berg J., Chester R. Long-term environmental durabillity of F/A-18 composite material. Melbourn, Australia: DSTO Aeronautical and Maritime Research Laboratory, 1999. P. 18.
33. Vodicka R. Environmental Exposure of Boron-Epoxy Composite Material. DSTO Aeronautical and Maritime Research Laboratory, 2000. P. 15.
34. Byon O., Kudo A. Weatherability flexural properties of CFRP subjected to accelerated and outdoor exposures // Composite Science and Technology. 2001. Vol. 61. P. 1913–1921.
35. Sookay N.K., Klemperer C.J., Verijenko V.E. Environmental testing of advanced epoxy composites // Composite Structures. 2003. Vol. 62. P. 429–433.
36. Kirillov V.N., Efimov V.A., Matveenkova T.E., Korenkova T.G. Vliyanie posledovatelnogo vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na svojstva stekloplastikov [Influence of consecutive influence of climatic and operational factors on properties of fibreglasses] // Aviacionnaya promyshlennost. 2004. №1. S. 45–48.
37. Kudo A., Ben G. Estimation of weatherability flexural properties for CFRP subjected to long-term outdoor exposure // 18th International Conference on Composite Materials. 2011. Vol. 27–3. P. 6.
38. Liew Y.S. Durability of fiber reinforced polymer composites under tropical climate. Singapore: Master degree thesis, 2003. 147 p.
39. Nishizaki I., Kishima T., Sasaki I. Deterioration of mechanical properties of pultruded FRP through exposure tests // Third International Conference on Durability & Field Applications of FRP Composites for Construction. 2007. P. 159–166.
40. Kirillov V.N., Kavun N.S., Rakitina V.P., Deev I.S. i dr. Issledovanie vlijaniya teplo-vlazhnostnogo vozdejstviya na svojstva epoksidnyh steklotekstolitov [Research of influence warm wet impacts on properties of epoxy glass fiber laminate] // Plasticheskie massy. 2008. №9. S. 14–17.
41. Efimov V.A., Kirillov V.N., Shvedkova A.K., Nikolaev E.V. Vliyanie uslovij ekspozicii na prochnostnye svojstva polimernyh kompozicionnyh materialov [Influence of conditions of exposure on strength properties of polymeric composite materials] // 9-ya Mezhdunar. konf. po gidroaviacii «Gidroaviasalon-2012». M., 2012. Ch. 2. S. 171–175.
42. Nishizaki I., Sasaki I., Tomiyama T. Outdoor exposure tests of pultruded CFRP plates // Proc. of the 6th International Conference on FRP Composites in Civil Engineering «CICE 2012» (Rome, Italy. 13–15 June, 2012). 2012. Paper 11-096. P. 1–8.
43. Sasaki I., Nishizaki I. Tensile load relaxation of FRP cable system during long-term exposure tests // Proc. of the 6th International Conference on FRP Composites in Civil Engineering «CICE 2012» (Rome, Italy. 13–15 June, 2012). 2012. Paper 11-691. P. 1–8.
44. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: December 15, 2017).
45. Startseva L.T., Panin S.V., Startsev O.V., Krotov A.S. Moisture diffusion in glass-fiber-reinforced plastics after their climatic ageing // Doklady Physical Chemistry. 2014. Vol. 456. No. 1. P. 77–81.
46. Carra G., Carvelli V. Ageing of pultruded glass fibre reinforced polymer composites exposed to combined environmental agents // Composite Structures. 2014. Vol. 108. P. 1019–1026.
47. Blaznov A.N., Safin V.F., Atyasova E.V., Babenko F.I., Fedorov Yu.Yu. Vliyanie temperatury na prochnost bazalto- i stekloplastikov [Influence of temperature on durability bazalto- and fibreglasses] // Polzunovskij vestnik. 2014. T. 2. №4. S. 154–158.
48. Aviacionnye materialy: spravochnik v 13 t. / pod red. E.N. Kablova. T. 13: Klimaticheskaya i mikrobiologicheskaya stojkost nemetallicheskih materialov. M.: VIAM, 2015. 270 s.
49. Sousa J.M., Correia J.R., Cabral-Fonseca S. Durability of glass fibre reinforced polymer piltruted profiles: comparison between QUV accelerated exposure and natural weathering in a mediterranean climate // Experimental Technique. 2013. Vol. 40. No. 1. P. 207–219.
50. Nishizaki I., Sakurada H., Tomiyama T. Durability of pultruded GFPR through ten-year outdoor exposure test // Polymers. 2015. Vol. 7. P. 2494–2503.
51. Belec L., Nguyen T.H., Nguyen D.L., Chailan J.F. Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale // Composites. Part A. 2015. Vol. 68. No. 1. P. 235–241.
52. Shvedkova A.K., Petrova A.P., Buznik V.M. Climate resistance of composite materials based on adhesive prepregs under Arctic conditions // Polymer Science. Series D. 2016. Vol. 9. No. 2. P. 165–171.
53. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: December 08, 2017). DOI: 10.18577/2307-6046-2016-0-6-11-11.
54. Harvey J.A. Chemical and physical aging of plastics // Handbook of environmental degradation of materials. 2005. P. 153–163.
55. Startsev O.V., Anikhovskaya L.I., Litvinov A.A., Krotov A.S. Increasing the reliability of predicting the properties of polymer composites in hydrothermal aging // Doklady Chemistry. 2009. Vol. 428. No. 1. P. 233–237.
56. Dement’eva L.A., Serezhenkov A.A., Bocharova L.I., Anikhovskaya L.I., Lukina N.F. Adhesive composite materials based on glass and carbon fillers // Polymer Science. Series D. 2009. Vol. 2. No. 3. P. 157–159.
57. Startsev V.O., Nizina T.A. Prognozirovanie klimaticheskogo stareniya epoksidnyh polimerov po izmeneniyu cvetovyh pokazatelej [The modeling of epoxy polymers weathering by the color characteristics measurements] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2015. №12. St. 10 Available at: http://www.viam-works.ru (accessed: December 08, 2017). DOI: 10.18577/2307-6046-2015-0-12-10-10.

DOI: 10.18577/2071-9140-2018-0-2-59-66

UDC: 66.017

Pages: 59-66

E.I. Oreshko1, V.S. Erasov1, V.D. Krylov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

CONSTRUCTION OF 3D STRESS-STRAIN DIAGRAM FOR THE ANALYSIS OF MECHANICAL BEHAVIOR OF THE MATERIAL TESTED AT VARIOUS LOADING RATES

The advantages of representation of testing processes and their results in 3D coordinate system of axes (stress, strain and time) were demonstrated. For construction of three-dimensional diagrams of deformation of a material the ANSYS Mechanical program, allowing to build practically any exact geometry form, both by means of the convenient graphic interface of the user, and by means of parametrical language APDL is offered. Construction of stress-strain diagram in 3D space on an example of organic glass SО-120 is described.

Keywords: mechanical tests, static tension, time, elastic deformation, plastic deformation, «soft» loading, «hard» loading, rate of straining, 3D coordinate system of axes  «stress, strain, time», organic glass SО-120.

Reference List

1. Oreshko E.I., Erasov V.S., Lutsenko A.N. Kriticheskie napryazheniya poteri ustojchivosti v gibridnyh sloistyh plastinah [The critical tension of loss of stability in hybrid layered plates] // Materialovedenie. 2016. №11. S. 17–21.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Zolotorevskij V.S. Mehanicheskie svojstva metallov [Mechanical properties of metals]. M.: MISIS, 1998. 401 s.
4. Ziner K. Uprugost i neuprugost metallov [Elasticity and not elasticity of metals]. M.: Izd-vo inostr. lit., 1954. 396 s.
5. Belyaev V.I., Kovalevskij V.I., Smirnov G.V., Chekan V.A. Vysokoskorostnaya deformaciya metallov [High-speed deformation of metals]. Minsk: Nauka i tehnika, 1976. 224 s.
6. Kolskij G. Novejshie eksperimentalnye i teoreticheskie issledovaniya effektov kratkovremennogo nagruzheniya [The newest pilot and theoretical studies of effects of short-term loading] // Uspehi mehaniki deformiruemyh sred. M.: Nauka, 1975. S. 269–281.
7. Stepanov G.V. Uprugoplasticheskoe deformirovanie materialov pod dejstviem impulsnyh nagruzok [Elasto-plastic deformation of materials under the influence of pulse loads]. Kiev: Naukova dumka, 1991. 288 s.
8. Barret Ch.S., Masal\'skij T.B. Struktura metallov. Per. s angl. [Structure of metals. Trans. from Engl.]. M.: Metallurgiya, 1984. Ch. 2. 685 s.
9. Grigorev E.G., Perlovich Yu.A., Solovev G.I. i dr. Fizicheskoe materialovedenie: ucheb. dlya vuzov v 6 t. [Physical materials science: the textbook for higher education institutions in 6 vol.]. M.: MIFI, 2008. T. 4: Fizicheskie osnovy prochnosti. Radiacionnaya fizika tverdogo tela. Komp\'yuternoe modelirovanie. 696 s.
10. Nemec Ya., Serensen S.V., Strelyaev V.S. Prochnost plastmass [Durability of plastic]. M.: Mashinostroenie, 1970. S. 217–220.
11. Deribas A.A. Fizika uprochneniya i svarki vzryvom. 2-e izd., dop. i pererab. [Physics of hardening and explosion welding. 2nd ed., rev. and add.]. Novosibirsk: Nauka, 1980. 222 s.
12. Bitans K., Whitton P.W. High-strain-rate investigations, with particular reference to stress/strain characteristics // International Materials Reviews. 1972. Vol. 17. P. 66–68.
13. Campbell J.D., Fergusson W.G. The temperature and strain rate dependence of the shear strength of mild steel // Philosophical Magazine. 1970. Vol. 21. No. 169. P. 63–82.
14. Voloshenko-Klimovickij Yu.Ya. Dinamicheskij predel tekuchesti [Dynamic yield point]. M.: Nauka, 1965. 180 c.
15. Banks E.E. The ductility of metals under explosive loading conditions // Journal Institute of Metals. 1968. Vol. 96. No. 12. P. 375–378.
16. Petushkov V.G., Stepanov G.V. O postanovke vysokoskorostnyh mehanicheskih ispytanij materialov [About statement of high-speed mechanical tests of materials] // Problemy prochnosti. 1972. №3. S. 92–96.
17. Makklintok F., Argon A. Deformaciya i razrushenie materialov. Per. s angl. / pod red. E.M. Morozova, B.M. Strunina [Deformation and destruction of materials. Trans. from Engl. / ed. by E.M. Morozov, B.M. Strunin]. M.: Mir, 1970. S. 163–165.
18. Blagoveshhenskij V.V., Panin I.G. K voprosu o zube tekuchesti [To question of flowability tooth] // Fizika metallov i metallovedenie. 2010. T. 109. №3. S. 310–313.
19. Portevin A., Le Châtelier F. Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation // Comptes rendus de l\'Académie des Sciences. 1923. Vol. 176. P. 507–510.
20. Putilov K.A. Kurs fiziki [Physics course]. M.: Gos. izd-vo fiz.-mat. lit., 1963. T. I: Mehanika, akustika, molekulyarnaya fizika, termodinamika. S. 173–174.
21. Klassen-Neklyudova M.V. Dislokacii i mehanicheskie svojstva kristallov [Dislocations and mechanical properties of crystals]. M.: Izd-vo. inostr. lit., 1960. 552 s.
22. Troickij O.A. Modelirovanie dejstviya Pinch-Effekta impulsnogo toka na plasticheskuyu deformaciyu metalla [Modeling of action of Pinch-Effect of pulse current on plastic strain of metal] // Voprosy atomnoj nauki i tehniki. 2011. №4. S. 124–127.
23. Cottrell A.H. Vacancies and Other Point Defects in Metals and Alloys. London: Institute of Metals, 1958. P. 1–40.
24. Gul V.E., Kovriga V.V., Eremina E.G. Issledovanie harakteristik prochnosti polimerov pri bolshih skorostyah deformacii [Research of characteristics of durability of polymers at big strain rates] // Vysokomolekulyarnye soedineniya. 1960. T. 2. №11. S. 160.
25. Dogadkin B.A., Sandomirskij D.M. Vliyanie temperatury i skorosti rastyazheniya na prochnost vulkanizatov [Influence of temperature and stretching speed on durability of cured stocks] // Kolloidnyj zhurnal. 1951. T. 13. №4. S. 267.
26. Matrenin S.V., Ovechkin B.B. Kompozicionnye materialy i pokrytiya na polimernoj osnove: ucheb. posobie [Composite materials and coverings on polymeric basis: manual]. Tomsk, 2008. S. 28–32.
27. Lahtin Yu.M., Leonteva V.P. Materialovedenie: ucheb. dlya vuzov. 3-e izd., pererab. i dop. [Materials science: studies. for higher education institutions. 3rd ed., rev. and add.]. M.: Mashinostroenie, 1990. S. 439–442.
28. Gul V.E. Struktura i prochnost polimerov. 3-e izd., pererab. i dop. [Structure and durability of polymers. 3rd ed., rev. and add.]. M.: Himiya, 1978. S. 147–148.
29. Selihova S.I., Markova G.S., Kargin V.A. Primenenie elektronnoj difrakcii dlya izucheniya struktury sferolitov polipropilena [Application of electronic diffraction for studying of structure of spherulites of polypropylene] // Vysokomolekulyarnye soedineniya. 1964. T. 6. S. 1132.
30. Leksovskij A.M., Regel V.R. Dolgovechnost polimerov pri ciklicheskom nagruzhenii [Durability of polymers at cyclic loading] // Vysokomolekulyarnye soedineniya. 1965. T. 7. №6. S. 1045.
31. Leksovskij A.M., Regel V.R. Temperaturno-vremennaya zavisimost prochnosti alyuminiya pri staticheskom i ciklicheskom nagruzheniyah [Temperature and time dependence of durability of aluminum at static and cyclic loadings] // Fizika metallov i metallovedenie. 1965. T. 20. №2. S. 288–292.
32. Regel V.R., Leksovskij A.M. Izuchenie ciklicheskoj ustalosti polimerov na osnove predstavlenij kineticheskoj koncepcii razrusheniya [Studying of cyclic fatigue of polymers on the basis of submissions of the kinetic concept of destruction] // Mehanika polimerov. 1969. T. 5. S. 70–96.
33. Ratner S.B., Korobov V.I. Samorazogrev plastmass pri ciklicheskoj deformacii [Self-warming up of plastic at cyclic deformation ] // Mehanika polimerov. 1965. №3. S. 93–100.
34. Ratner S.B. Rabotosposobnost\' plastmassy pod nagruzkoj i puti ee prognoza i povysheniya [Operability of plastic under loading and ways of its forecast and increase] // Nauch.-tehnich. ref. sb. Ser.: Reaktivy i osobo chistye veshhestva. M.: NIITEHIM, 1979. №3 (153). S. 65.
35. Petushkov V.G. Primenenie vzryva v svarochnoj tehnike [Explosion application in welding equipment]. Kiev: Naukova dumka, 2005. S. 85–86.
36. Birger I.A., Mavlyutov R.R. Soprotivlenie materialov: ucheb. posobie [Resistance of materials: manual]. M.: Nauka, 1986. 560 s.
37. Rybakov V.A. Osnovy stroitelnoj mehaniki legkih stalnyh tonkostennyh konstrukcij: ucheb. posobie [Bases of construction mechanics of light-weight steel thin-walled designs: manual]. SPb.: Izd-vo Politehn. un-ta, 2011. 207 s.
38. Ilyushin A.A., Lenskij V.S. Soprotivlenie materialov [Resistance of materials]. M.: Fizmatizdat, 1959. 372 s.
39. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
40. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
41. Oreshko E.I., Erasov V.S., Lutsenko A.N., Terentev V.F., Slizov A.K. Postroenie diagramm deformirovaniya v trehmernom prostranstve σ–ε–t [Creation of the 3D stress-strain diagrams σ–ε–t] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 61–68. DOI: 10.18577/2071-9140-2017-0-1-61-68.
42. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
43. Oreshko E.I., Erasov V.S., Lutsenko A.N. Matematicheskoe modelirovanie deformirovaniya konstrukcionnogo ugleplastika pri izgibe [Mathematical modeling of deformation constructional carbon fiber at a bend] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 50–59. DOI: 10.18577/2071-9140-2016-2-50-59.
44. Oreshko E.I., Erasov V.S., Lutsenko A.N. Osobennosti raschetov ustojchivosti sterzhnej i plastin [Calculation features of cores and plates stability] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 74–79. DOI: 10.18577/2071-9140-2016-0-4-74-79.
45. Antipov V.V., Oreshko E.I., Erasov V.S., Serebrennikova N.Y. Hybrid laminates for application in north conditions // Mechanics of Composite Materials. 2016. Vol. 52. No. 5. P. 973–990.

DOI: 10.18577/2071-9140-2018-0-2-67-74

UDC: 66.017:620.1

Pages: 67-74

A.V. Grinevich1, A.B. Laptev1, S.Yu. Skripachev1, G.A. Nuzhnyj1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

MATRIX STRENGTH CHARACTERISTICS FOR THE ASSESSMENT OF LIMIT STATES OF STRUCTURAL METALLIC MATERIALS

The article considers the systematization of design characteristics, based on the conditions of the existing loads. Limit states are considered for both a solid body and a body with a crack, the limiting state of which is determined by the characteristics of fracture mechanics. Along with the characteristics determined in laboratory standard conditions, it is necessary to estimate the external operating conditions affecting the strength characteristics of the materials. For aviation structures, the determining external factors are temperature and humidity. According to the latest editions of the Norms of airworthiness, these factors should be taken into account when assigning calculated values of strength characteristics of structural materials. The necessity to evaluate the influence of temperature and humidity on the strength design characteristics of materials requires a systematic analysis of the calculated strength characteristics and the subsequent development of methods for their determination. The article raises the question of the statistical estimation of the calculated values of the strength characteristics of the material to substantiate the longevity and reliability of the aircraft.

Keywords: strength characteristics, temperature, humidity, limiting condition, corrosive effect, static strength, fatigue, long-term strength.

Reference List

1. Prochnost samoleta. Metody normirovaniya raschetnyh uslovij prochnosti samoleta / pod red. A.I. Makarevskogo [Methods of rationing of rated conditions of durability of airplane / ed. by A.I. Makarevskij]. M.: Mashinostroenie, 1975. 280 s.
2. Normy letnoj godnosti samoletov transportnoj kategorii: AP-25 [Standards of the flight validity of airplanes of transport category: Aviation Rules 25]: utv. Postanovleniem 35-j Sessii po aviacii i ispolzovaniyu vozdushnogo prostranstva 23.10.2015. 5-e izd. s popravkami 1–8. M.: Aviaizdat, 2015. 290 s.
3. Nesushhaya sposobnost i raschet detalej mashin na prochnost / pod red. S.V. Serensena [Bearing capacity and calculation of details of machines on durability / ed. by S.V. Serensen]. M.: Mashinostroenie, 1975. 488 s.
4. Primenenie konstrukcionnyh metallicheskih materialov i opredelenie ih raschetnyh harakteristik: rekomendatelnyj cirkulyar № RC-AP25-613 [Application of constructional metal materials and definition of their rated characteristics No. RC-AP25-613]: utv. Resheniem Prezidiuma Aviaregistra MAK 22.11.2002. M.: Aviaizdat, 2008. 21 s.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N., Grinevich A.V., Erasov V.S. Harakteristiki prochnosti metallicheskih aviacionnyh materialov i ih raschetnye znacheniya [Characteristics of durability of metal aviation materials and their calculated values] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 370–379.
7. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
8. Cherepanov G.P. Mehanika hrupkogo razrusheniya [Mechanics of brittle destruction]. Izhevsk: IKI, 2012. 872 s.
9. Kurs M.G., Kutyrev A.E., Fomina M.A. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri laboratornyh i naturnyh ispytaniyah [Research of corrosion damage of wrought aluminium alloys at laboratory and full-scale tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 10. Available at: http://www.viam-works.ru (accessed: November 20, 2017). DOI: 10.18577/2307-6046-2016-0-8-10-10.
10. Chesnokov D.V., Antipov V.V., Kulyushina N.V. Metod uskorennyh laboratornyh ispytanij alyuminievyh splavov s celyu prognozirovaniya ih korrozionnoj stojkosti v usloviyah morskoj atmosfery [The method of accelerated laboratory tests of aluminum alloys for determination of their corrosion resistance in conditions of the sea atmosphere] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 (41). St. 10. Available at: http://www.viam-works.ru (accessed: November 20, 2017). DOI: 10.18577/2307-6046-2016-0-5-10-10.
11. ASTM E1681-99е1. Standard Test Method for Determining Threshold Stress Intensity Factor for Environment-Assisted Cracking of Metallic Materials. 2001. Vol. 03.
12. Ustrojstvo dlya ocenki vyazkosti razrusheniya konstrukcionnyh materialov: pat. 148072 Ros. Federaciya [The device for assessment of fracture toughness of constructional materials: pat. 148072 Rus. Federation]; opubl. 27.11.14, Byul. №3.
13. Kablov E.N., Grinevich A.V., Lutsenko A.N., Erasov V.S., Nuzhnyj G.A., Gulina I.V. Issledovanie kinetiki razrusheniya konstrukcionnyh alyuminievyh splavov pri dlitelnom dejstvii postoyannoj nagruzki i korrozionnoj sredy [Research of kinetics of destruction of structural aluminum alloys at long action of permanent load and the corrosion environment] // Deformaciya i razrushenie materialov. 2016. №10. S. 22–34.
14. Grinevich A.V., Lutsenko A.N., Erasov V.S., Nuzhnyj G.A. Metodika ocenki vyazkosti razrusheniya v korrozionnoj srede pri dlitelnoj staticheskoj nagruzke [Technique of assessment of fracture toughness in the corrosion environment at long static load] // Zavodskaya laboratoriya i diagnostika materialov. 2017. №9. S. 52–57.
15. Pavlovskaya T.G., Deshevaya E.A., Zajtsev S.N., Kozlov I.A., Volkov I.A., Zaharov K.E. Korrozionnaya stojkost alyuminievyh splavov v usloviyah, imitiruyushhih faktory kosmicheskogo poleta [Corrosion resistance of aluminum alloys in conditions simulating space flight] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3 (39). St. 11. Available at: http://www.viam-works.ru (accessed: November 20, 2017). DOI: 10.18577/2307-6046-2016-0-3-11-11.
16. Khokhlatova L.B., Kolobnev N.I., Antipov V.V. i dr. Vliyanie korrozionnoj sredy na skorost rosta treshhiny ustalosti v alyuminievyh splavah [Influence of the corrosion environment on the growth rate of crack of fatigue in aluminum alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 05. Available at: http://www.viam-works.ru (accessed: November 20, 2017).
17. Grinevich A.V., Erasov V.S., Lucenko A.N., Laptev A.B., Kutyrev A.E., Skripachev S.Yu. Problemnye zadachi opredeleniya raschetnyh prochnostnyh harakteristik aviacionnyh materialov [Problem problems of definition of rated strength characteristics of aviation materials] // Sb. IX Vseros. konf. po ispytaniyam i issledovaniyam svojstv materialov «TestMat» (posvyashhena 110-letiyu so dnya rozhdeniya professora, d.t.n. Nikolaya Mitrofanovicha Sklyarova). M.: VIAM, 2017. St. 16.
18. Rakova T.M., Kozlova A.A., Nefedov N.I., Laptev A.B. Issledovanie vliyaniya organicheskih ingibitorov korrozii na korrozionnoe rastreskivanie vysokoprochnyh stalej [The study of influence organic and inorganic corrosion inhibitors on the stress-corrosion cracking high-strength steels] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. № 6. St. 12. Available at: http://www.viam-works.ru (accessed: November 20, 2017). DOI: 10.18577/2307-6046-2017-0-6-12-12.
19. Laptev A.B., Lucenko A.N., Kurs M.G., Buharev G.M. Opyt issledovaniya biokorrozii metallov [Experience of research of biocorrosion of metals] // Praktika protivokorrozionnoj zashhity. 2016. №2 (80). S. 36–57.
20. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri naturno-uskorennyh ispytaniyah. Chast 1 [Research of corrosion destruction of deformable aluminum alloys at natural accelerated tests. Part 1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–126.
21. Lutsenko A.N., Grinevich A.V., Skripachev S.Yu., Bakanov A.V. K voprosu opredeleniya raschetnyh harakteristik aviacionnyh metallicheskih materialov s uchetom vozdejstviya korrozionnoj sredy [To question of definition of rated characteristics of aviation metal materials taking into account influence of the corrosion environment] // Voprosy materialovedeniya. 2017. №4 (92). S. 169–182.

DOI: 10.18577/2071-9140-2018-0-2-75-87

UDC: 533.6.072

Pages: 75-87

Yu.A. Azarov1, R.A. Chernovolov1

[1] Federal State Unitary Enterprise «Central Aerohydrodynamic Institute named after N.E. Zhukovsky»,

DEVELOPMENT OF RECOMMENDATIONS ON STRUCTURAL MATERIAL SELECTION IN AEROELASTIC PHENOMENA MODELLING AIRCRAFT DYNAMICALLY SIMILAR MODELS IN WIND TUNNELS

The aim of the work is to analyze typical structural layouts of aircraft dynamically similar models and to develop requirements for weight, roughness and strength properties of the materials, the use of which in the models design will fulfill the similarity criteria of Cauchy, Newton and Strouhal in aircraft aeroelasticity modeling in wind tunnels.

Keywords: aeroelasticity, dynamically similar model, excessive weight, composite materials, strength, toughness

Reference List

1. Lamper R.E., Lyshhinskij V.V. Vvedenie v teoriyu i modelirovanie flattera [Introduction in the theory and modeling of flatter]. Novosibirsk: Izd-vo NGTU, 1999. 179 s.
2. Karkle P.G. Osnovnye napravleniya deyatelnosti otdeleniya v obespechenii bezopasnosti letatel\'nyh apparatov ot flattera [The department main activities in safety of flight vehicles from flatter] // Trudy TsAGI. 2013. Vyp. 2738. S. 183–189.
3. Amir\'yanc G.A., Ishmuratov F.Z. Ob issledovaniyah v oblasti staticheskoj aerouprugosti i mnogodisciplinarnoj optimizacii konstrukcij [About researches in the field of static aero elasticity and multidisciplinary optimization of designs] // Trudy TsAGI. 2013. Vyp. 2738. S. 133–152.
4. Azarov Yu.A., Chernovolov R.A. Drenirovannye aerouprugie modeli letatelnyh apparatov [The trained aero elastic models of flight vehicles] // Trudy MAI: elektron. zhurn. 2017. №92. Available at: http://trudy.mai.ru/published.php?ID=77062 (accessed: March 06, 2018).
5. Bisplinghoff R., Eshli H., Halfmen R. [Aero elasticity] Aerouprugost. M.: Izd-vo inostr. lit., 1958. 801 s.
6. Ashkenazi E.K., Ganov E.V. Anizotropiya konstrukcionnyh materialov: spravochnik [Anisotropy of constructional materials: directory]. L.: Mashinostroenie, 1972. 216 s.

DOI: 10.18577/2071-9140-2018-0-2-88-94

UDC: 620.17:623.445

Pages: 88-94

A.V. Lavrov1, N.O. Yakovlev1, V.S. Erasov1

[1] Federal state unitary enterprise «All-Russian scientific research institute of aviation materials»,

DESTRUCTION OF CERAMIC MATERIALS UNDER THE INFLUENCE OF HIGH-SPEED INDENTER

The article considers data from open Russian and foreign sources on the mechanisms of destruction of ceramic materials at the impact of a high-speed high-hard indenter. It is shown that under the influence of indenters, which are similar in their characteristics to armor-piercing bullets of hand-held firearms, plastic deformation and destruction of ceramics in the local volume directly under the ceramic-indenter contact surface occurs at the initial stage of the impact. The influence of various physical and mechanical properties of ceramic materials on their functioning as a part of protective compositions is analyzed. The influence of structural features of armored barriers on the nature of the functioning of the ceramic layer is considered. The necessity of further studies of the mechanisms of destruction of ceramic barriers under the action of a high-speed indenter is substantiated.

Keywords: ceramic materials, armor materials, the mechanism of destruction, mechanical properties, alumina, silicon carbide, ballistic tests

Reference List

1. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastyanov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlya perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11. 2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Ivahnenko Yu.A., Varrik N.M., Maksimov V.G. Vysokotemperaturnye radioprozrachnye keramicheskie kompozicionnye materialy dlya obtekatelej antenn i drugih izdelij aviacionnoj tehniki (obzor) [The high-temperature radiolucent ceramic composite materials for the radomes and other products of aviation engineering (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 05. Available at: http://www.viam-works.ru (accessed: January 03, 2018). DOI: 10.18577/2307-6046-2016-0-5-5-5.
4. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: January 03, 2018). DOI: 10.18577/2307-6046-2014-0-6-8-8.
5. Buchilin N.V., Lyulyukina G.Yu., Varrik N.M. Vliyanie rezhima obzhiga na strukturu i svojstva vysokoporistyh keramicheskih materialov na osnove mullita [Influence of the mode of roasting on structure and property of high-porous ceramic mullite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №5. St. 04. Available at: http://www.viam-works.ru (accessed: January 03, 2018). DOI: 10.18577/2307-6046-2017-0-5-4-4.
6. Buchilin N.V., Prager E.P., Ivahnenko Yu.A. Vliyanie plastificiruyushhih dobavok na reologicheskie harakteristiki shlikerov dlya polucheniya poristyh keramicheskih materialov na osnove oksida alyuminiya [The influence of plasticizating additives on rheology of slip for porous ceramic materials based on aluminum oxide] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8. St. 06. Available at: http://www.viam-works.ru (accessed: January 03, 2018). DOI: 10.18577/2307-6046-2016-0-8-6-6.
7. Ерасов В.С., Лавров А.В., Луценко А.Н., Гриневич А.В. К вопросу взаимодействия термоупрочненного ударника с керамической преградой // Авиационные материалы и технологии. 2016. №2. С. 69–75. DOI: 10.18577/2071-9140-2016-0-2-69-75.
8. Grinevich A.V., Yarosh V.V. Osobennosti razrusheniya keramiki pri udarnom vozdejstvii [Features of destruction of ceramics at shock influence] // Voprosy oboronnoj tehniki. Ser.: 15. 1999. Vyp. 1–2. S. 23–30.
9. Odanovich Z., Bobich B. Ballistic protection efficiency of composite ceramics/metal armours // Scientific-Technical Review. 2003. Vol. LIII. No. 3. P. 30–38.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
12. Sagomonyan A.Ya. Pronikanie (pronikanie tverdyh tel v szhimaemye sploshnye sredy) [Penetration (penetration of solid bodies into squeezed continuous mediums)]. M.: Izd-vo MGU, 1974. 300 s.
13. Stepanov G.V. Uprugo-plasticheskoe deformirovanie materialov pod dejstviem impulsnyh nagruzok [Elasto-plastic deformation of materials under the influence of pulse loads]. Kiev: Naukova dumka, 1979. 268 s.
14. Selivanov V.V. Mehanika razrusheniya deformiruemogo tela [Private questions of final ballistics / ed. by V.A.Grigoryan] // Prikladnaya mehanika sploshnyh sred. M.: Izd-vo MGTU im. N.E. Baumana, 1999. T. 2. 420 s.
15. Grigoryan V.A., Beloborodko A.N., Dorohov N.S. i dr. Chastnye voprosy konechnoj ballistiki / Pod red. V.A. Grigoryana [Action of means of defeat and ammunition]. M.: Izd-vo MGTU im. N.E. Baumana, 2006. 592 s.
16. Balaganskij I.A., Merzhievskij L.A. Dejstvie sredstv porazheniya i boepripasov [Action of means of defeat and ammunition]. Novosibirsk: Izd-vo NGTU, 2004. 408 s.
17. Evans A.G., Lengdon T.G. Konstrukcionnaya keramika. Per. s angl. / Pod red. A.S. Vlasova [Constructional ceramics. Trans. from Engl. / ed. by A.S. Vlasov]. M.: Metallurgiya, 1980. 256 s.
18. Stepanov G.V., Zubov V.I., Majstrenko A.L. i dr. Vliyanie skorosti nagruzheniya na prochnost keramicheskih materialov na osnove samosvyazannogo karbida kremniya [Influence of speed of loading on durability of ceramic materials on the basis of the self-connected silicon carbide] // Problemy prochnosti. 2010. №3. S. 79–88.
19. Savinyh A.S., Kanel G.I., Razorenov S.V., Rumyancev V.I. Evolyuciya udarnyh voln v keramike SiC [Evolution of shock waves in SiC ceramics] // Zhurnal tehnicheskoj fiziki. 2013. T. 83. Vyp. 7. S. 43–47.
20. Babkin A.V., Veldanov V.A., Gryaznov E.F. Sredstva porazheniya i boepripasy: ucheb. [Means of defeat and ammunition: textbook]. M.: Izd-vo MGTU im. N.E. Baumana, 2008. 984 s.
21. Grigoryan V.A., Kobylkin I.F., Marinin V.M., Chistyakov E.N. Materialy i zashhitnye struktury dlya lokalnogo i individualnogo bronirovniya [Materials and protective structures for local and individual armoring]. M.: RadioSoft, 2008. 406 s.
22. Wilkins M.L. Third progress report of light armor program. Lawrence Radiation Laboratory. University of California, Livermore, 1968. P. 58.
23. Rozenberg Z., Dekel E. Terminal Ballistics. Springer-Verlag Berlin Heidelberg, 2012. 323 p. DOI 10.1007/978-3-642-25305-8.
24. Vlasov A.S., Zilberbrand E.L., Kozhushko A.A. i dr. Vysokoskorostnoe vnedrenie v SiC-keramiku s razlichnoj poristostyu [High-speed implementation in SiC-ceramics with different porosity] // Zhurnal tehnicheskoj fiziki. 2004. T. 74. Vyp. 5. S. 62–65.
25. Fomin V.M., Gulidov A.I., Sapozhnikov G.A. i dr. Vysokoskorostnoe vzaimodejstvie tel [High-speed interaction of bodies]. Novosibirsk: Izd-vo SO RAN, 1999. 600 s.
26. Kozhushko A.A., Rykova I.I., Sinani A.B. Soprotivlenie keramik vnedreniyu udaryayushhego tela pri vysokih skorostyah vzaimodejstviya [Resistance ceramic to implementation of striking body at high speeds of interaction ] // Fizika goreniya i vzryva. 1992. №1. S. 89–93.
27. Material modeling for terminal ballistic simulation / ed. by J. Walter. Ballistic Research Laboratory, Aberdeen Proving Ground (Maryland, USA), 1992. 84 p.
28. Rahbek D.B., Johnsen B.B. Dynamic behavior of ceramic armor systems. Norwegian Defence Research Establishment, Forsvarets forskningsinstitutt (FFI), 2015. 45 p.
29. Strassburger E., Bauer S., Weber S., Gedon H. Flash X-ray cinematography analysis of dwell and penetration of small caliber projectiles with three types of SiC ceramics // Defence Technology. 2016. Vol. 12. P. 277–283.
30. The Science of Armour Materials. Edited by Ian G. Crouch. Woodhead Publishing, 2017. 715 p.
31. Morozov N.F., Petrov Yu.V. Problemy dinamiki razrusheniya tverdyh tel [Problems of dynamics of destruction of solid bodies]. SPb.: Izd-vo S.Pb. un-ta, 1997. 132 s.
32. Evstifeev A.D. Vremennye effekty plasticheskogo deformirovaniya i razrusheniya tverdyh tel pri dinamicheskom vozdejstvii: dis. … kand. fiz.-mat. nauk [Temporary effects of plastic deformation and destruction of solid bodies at dynamic influence: thesis, Cand. Sci. (Phys.&Math.)]. SPb., 2014. 102 s. 
33. Clayton J.D., Kraft R.H., Leavy R.B. Mesoscale modeling of nonlinear elasticity and fracture in ceramic polycrystals under dynamic shear and compression // International Journal of Solids and Structures. 2012. Vol. 49. P. 2686–2702.
34. Fakolujo O.S. Characterisation and properties improvement of armour ceramics. University of Ottawa (Canada), 2016. 190 p.
35. Numerical simulation of ballistic impacts on ceramic material. A.P.T.M.J. Lamberts. MT07.33. Eindhoven University of Technology, Eindhoven, 2007. 74 p.
36. Dateraksa K., Sujirote K., McCuiston R., Atong D. Ballistic performance of ceramic/S2-glass composite armor // Journal of Metals, Materials and Minerals. 2012. Vol. 22. No. 2. Р. 33–39.
37. Espinosa H.D., Brar N.S., Yuan G. et al. Enhanced ballistic performance of confined multi-layered ceramic targets against long rod penetrators through interface defeat // International Journal of Solids and Structures. 2000. Vol. 37. P. 4893–4913.
38. Lundberg P., Renström R., Andersson O. Influence of confining prestress on the transition from interface defeat to penetration in ceramic targets // Defence Technology. 2016. Vol. 12. P. 263–271.
39. Lavrov A.V., Erasov V.S., Landik D.N. Ob odnom podhode k traktovke obedinennoj teorii prochnosti Ya.B. Fridmana [One of the approaches to interpretation of the united strength theory of Ya.B. Fridman] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 87–94. DOI: 10.18577/2071-9140-2017-0-2-87-94.