Archive

Aviation materials and tecnologes №1, 2019

DOI: 10.18577/2071-9140-2019-0-1-3-10

UDC: 669.295

Pages: 3-10

S.V. Putyrskiy1, A.L. Yakovlev1, N.A. Nochovnaya1, V.A. Krokhina1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

RESEARCH OF DIFFERENT HEAT TREATMENT MODES INFLUENCE ON PROPERTIES OF SEMI-FINISHED PRODUCTS AND WELDED JOINTS FROM TITANIUM ALLOY ВТ22М

The article presents the results of a study of the various heat treatment effects on the semi-finished and welded joints properties, made by electron-beam welding made of alloy VT22M. In addition to the traditional used step mode for forgings made of VT22M, the possibility of using heat treatment for strength σв≥1200 MPa and heat treatment with heating above the α⇄β transition temperature has been considered. The effect of vacuum heat treatment by stepped mode and the mode with heating above the transition temperature α ⇄ β on the properties of welded joints and the semi-finished has been investigated. Also the properties of welded joints have been investigated when using an insert made of alloy VT1-0.

Keywords: high-strength titanium alloys, deformation, mechanical properties, heat treatment, microstructure, fracture toughness, electron-beam welding.

Reference List

1. Glazunov S.G., Moiseyev V.N. Konstruktsionnyye titanovyye splavy [Structural titanium alloys]. M.: Metallurgiya, 1974. 368 s.
2. Kablov E.N. Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii: sb. nauchno-inform. materialov. 3-ye izd., pererab. i dop. [Trends and benchmarks of innovative development of Russia: collection scientific and information materials. 3rd ed., rev. and add.]. M.: VIAM, 2015. 720 s.
3. Yakovlev A.L., Nochovnaya N.A., Putyrskiy S.V., Krokhina V.A. Perspektivy primeneniya vysokoprochnogo titanovogo splava VT22 i yego modifikatsiy [Prospects for the use of high-strength titanium alloy VT22 and its modifications] // Titan. 2018. №2 (60). S. 42–47.
4. Yakovlev A.L., Nochovnaya N.A. Vliyanie termicheskoj obrabotki na svojstva listov iz vysokoprochnogo titanovogo splava VT23M [Effect of heat treatment on properties of sheets of high-strength titanium alloy VT23M] // Aviacionnye materialy i tehnologii. 2013. №4. S. 8–13.
5. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: September 18, 2018).
6. Shiryaev A.A., Antashev V.G. Osobennosti razrabotki vysokoprochnogo samozakalivaiushchegosia vysokotekhnologichnogo psevdo-β-titanovogo splava [Peculiarities of development of advanced high-strength self-hardening high-processable pseudo-β-titanium alloys] // Aviacionnye materialy i tehnologii. 2014. №4. S. 23–30. DOI: 10.18577/2071-9140-2014-0-4-23-30.
7. Dzunovich D.A., Panin P.V., Lukina E.A., Shiryaev A.A. Vliyanie rezhimov termicheskoj obrabotki na strukturu i svojstva svarnykh krupnogabaritnykh polufabrikatov iz titanovogo splava VT23 [Heat treatment effect on structure and properties of welded large-dimensioned semi-finished products from VT23 titanium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №1 (61). St. 07. Available at: http://www.viam-works.ru (accessed: October 3, 2018). DOI: 10.18577/2307-6046-2018-0-1-7-7.
8. Miklyayev P.G., Neshpor G.S., Kudryashov V.G. Kinetika razrusheniya [The kinetics of destruction]. M.: Metallurgiya, 1979. 279 s.
9. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
10. Erasov V.S., Grinevich A.V., Senik V.Ya., Konovalov V.V., Trunin Yu.P., Nesterenko G.I. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
11. Lyasotskaya V.S. Termicheskaya obrabotka svarnykh soyedineniy titanovykh splavov [Heat treatment of welded joints of titanium alloys]. M.: Ekomet, 2003. 352 s.
12. Khorev A.I. Razrabotka konstruktsionnykh titanovykh splavov dlya izgotovleniya detaley i uzlov aviakosmicheskoy tekhniki [Development of structural titanium alloys for the manufacture of parts and assemblies of aerospace equipment] // Svarochnoye proizvodstvo. 2009. №3. S. 13–23.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Plokhikh A.I., Putyrskiy S.V., Nochovnaya N.A., Yakovlev A.L. Issledovaniye struktury i svoystv mnogosloynykh materialov na osnove titanovykh splavov [Study of the structure and properties of multilayer materials based on titanium alloys] // Titan. 2016. №4 (54). S. 42–47.
15. Kolachev B.A., Malkov A.V. Fizicheskiye osnovy razrusheniya titana [Physical basis of the destruction of titanium]. M.: Metallurgiya, 1983. 160 s.
16. Zolotorevskiy V.S. Mekhanicheskiye svoystva materialov: ucheb. dlya vuzov. 2-e izd. [Mechanical properties of materials: studies. for universities. 2nd ed.]. M.: Metallurgiya, 1983. 352 s.

DOI: 10.18577/2071-9140-2019-0-1-11-16

UDC: 66.017

Pages: 11-16

E.A. Khorova1, A.V. Myshlyavtsev2, E.A. Strizhak1, N.A. Tretyakova1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Federal State Budgetary Institution of Higher Education «Omsk State Technical University»,

EXAMINATION OF HYDROGENATED BUTADIENE-NITRILE RUBBERS BY METHODS OF DIFFERENTIAL SCANNING CALORIMETRY AND DYNAMIC MECHANICAL ANALYSIS

The subject of the study were Therban еlastomeric compositions based on hydrogenated butadiene-nitrile rubbers (HNBR) with 49% content of acrylonitrile and unsaturation degree of 0,9 to 6,0% and their mixtures. Research methods of еlastomeric compositions are the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The results of the determination of the glass transition temperature, elastic modulus, mechanical loss tangent of HNBR-compositions are presented. The compatibility of binary polymer mixtures and the degree of crosslinking are evaluated. The conclusion is made about the use of DSC and DMA as methods of operational control over the changes occurring in the HNBR-compositions in the given operating conditions.

Keywords: polymer mixtures, hydrogenated butadiene-nitrile rubber, differential scanning calorimetry, dynamic mechanical analysis, elastic modulus, mechanical loss tangent, glass transition temperature.

Reference List

1. Dogadkin B.A., Dontsov A.A., Shershnev V.A. Khimiya elastomerov. 2-ye izd., pererab. i dop. [Chemistry elastomers. 2nd ed., rev. and add.]. M.: Khimiya, 1981. 376 s.
2. Mark Dzh., Erman B., Eyrich F. Kauchuk i rezina. Nauka i tekhnologiya [Rubber and rubber. Science and technology]. Dolgoprudnyy: Intellekt, 2011. 768 s.
3. Kuleznev V.N. Smesi i splavy polimerov [Mixtures and alloys of polymers]. SPb.: Nauchnyye osnovy i tekhnologii, 2013. 216 s.
4. Lysova G.A., Dontsov A.A. Gidrirovannyye butadiyen-nitrilnyye kauchuki. Svoystva. Retsepturostroyeniye. Primeneniye: tematicheskiy obzor [Hydrogenated nitrile butadiene rubbers. Properties Recipe building. Application: thematic review]. M.: TSNIITEneftekhim, 1991. Ser.: Proizvodstvo rezinotekhnicheskikh i asbestotekhnicheskikh izdeliy. №6. 56 s.
5. Vysokotekhnologichnaya rezina dlya «zelenykh» motorov [High-tech tires for «green» engines]. Available at: http://press.unipeck.ru/eng/26655 (accessed: February 04, 2019).
6. Khorova E.A., Razdyakonova G.I., Khodakova S.Ya. Effect of the structure of hydrogenated butadiene-nitrile rubber on the resistance to aggressive media and high temperatures // Procedia Engineering. 2016. Vol. 152. P. 556–562.
7. Khorova E.A., Myshlyavtsev A.V. Primeneniye gidrirovannykh butadiyen-nitril\'nykh kauchukov v sostave izdeliy, ekspluatiruyemykh v usloviyakh vozdeystviya povyshennykh temperatur i agressivnykh sred [The use of hydrogenated nitrile-butadiene rubbers in the composition of products operated under conditions of exposure to elevated temperatures and corrosive environments] // Voprosy materialovedeniya. 2018. №3 (95). S. 129–136.
8. Pol D.R., Baknell K.B. Polimernyye smesi [Polymer blends]. SPb.: Nauchnyye osnovy i tekhnologii, 2009. T. 2: Funktsionalnyye svoystva. 606 s.
9. Schawe J. Curve interpretation. Part 6: Variation of DMA measurement conditions. Available at: http://mt.com/ru/ru/home/supportive_content/matchar_apps/MatChar_UC431.html (accessed: February 04, 2019).
10. Therban®ARLANXEO–LANXESS. Available at: http://therban.com/technicalinformation (accessed: February 04, 2019).
11. Ososhnik I.A., Shutilin Yu.F., Karmanova O.V. Proizvodstvo rezinovykh tekhnicheskikh izdeliy: ucheb. posobiye [Manufacture of rubber technical products: studies. allowance]. Voronezh: Voronezh. gos. tekhnol. akad., 2007. 434 s.
12. Chernikova E.V., Efimova A.A., Spiridonov V.V. i dr. Spetspraktikum po fiziko-khimicheskim i fiziko-mekhanicheskim metodam issledovaniya polimerov. Ch. 1. Teoriya [Special practical work on physicochemical and physicomechanical methods for studying polymers. Part 1. Theory]. M.: MGU im. M.V. Lomonosova, 2013. 112 s.
13. Kuleznev V.N. Smesi polimerov [Polymer blends]. M.: Khimiya, 1980. 304 s.
14. Adov M.V. Razrabotka tekhnologii polucheniya rezinovykh smesey dlya izgotovleniya avtodetaley s ispolzovaniyem tekhnogennykh otkhodov proizvodstva RTI: avtoref. dis. … kand. tekhn. nauk [Development of technology for the production of rubber compounds for the manufacture of automotive parts using industrial waste from the production of rubber goods: thesis abstract ... Cand. Sc. (Tech.)]. Saratov, 2011. 20 s.
15. Bender H., Campomizzi E. Increase of heat resistance of compositions based onhydrogenated nitrile rubber // Kautschuk Gummi Kunststoffe. 2001. Jg. 54. No. 1–2. P. 14–21.
16. Dik Dzh.S. Tekhnologiya reziny: Retsepturostroyeniye i ispytaniya [Rubber technology: Formulation and testing]. SPb: NOT, 2010. 617 s.

DOI: 10.18577/2071-9140-2019-0-1-17-22

UDC: 621.793

Pages: 17-22

V.A. Bogatov1, A.G. Krynin2, P.A. Shchur1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Technoinfo ltd,

INFLUENCE OF THE LEAKAGE VALUE IN THE VACUUM CHAMBER ON THE PARAMETERS OF REACTIVE MAGNETRON DISCHARGE AND PROPERTIES OF TITANIUM OXIDE COATINGS

The influence of the magnitude of leakage in the vacuum chamber on the discharge voltage during reactive magnetron sputtering of titanium oxide coatings on the PET film, the deposition rate and refractive index of the coating are investigated. The article shows that the initial value of leakage in the vacuum chamber can have a significant impact on the process parameters of reactive magnetron sputtering, and optical properties of the titanium oxide coating. It is found that in case of reducing the initial quantity of leakage in the vacuum chamber prior to applying the titanium oxide coating, the mean value of the discharge voltage of the magnetron decreases, while the reactive magnetron deposition rate and refractive index of the coating titanium oxide increase.

Keywords: magnetron reactive deposition, optical coating, titanium oxide, polyethyleneterephthalate, magnetron sputtering parameters, leakage into the vacuum chamber.

Reference List

1. Kablov E.N. Shestoy tekhnologicheskiy uklad [The sixth technological structure] // Nauka i zhizn. 2010. №4. S. 2–7.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsional\'noy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
4. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
5. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
6. Krynin A.G., Hohlov Yu.A., Bogatov V.A., Kislyakov P.P. Prozrachnye interferencionnye pokrytiya dlya funkcionalnyh materialov ostekleniya [Transparent interferential coatings for functional materials of glazing] // Trudy VIAM : elektron. nauch.-tenhich. zhurn. 2013. №11. St. 05. Available at: http://viam-works.ru (accessed at: September 21, 2018).
7. Kuzmichev A.I. Magnetronnyye raspylitelnyye sistemy. Kn. 1. Vvedeniye v fiziku i tekhniku magnetronnogo raspyleniya [Magnetron sputtering systems. Book 1. Introduction to the physics and technology of magnetron sputtering]. Kiyev: Avers, 2008. 244 s.
8. Gorjanca T.C., Leonga D., Py C., Rotha D. Room temperature deposition of ITO using r.f. magnetron sputtering // Thin Solid Films. 2002. Vol. 413. P. 181–185.
9. Jeong S.H., Lee J.W., Lee S.B., Boo J.H. Deposition of aluminum-doped zincoxide films by RF magnetron sputtering and study of their structural, electrical and optical properties // Thin Solid Films. 2003. Vol. 435. P. 78–82.
10. Zhanga K., Wena M., Chengb G. et al. Reactive magnetron sputtering deposition and characterization of niobium carbide films // Vacuum. 2014. Vol. 99. P. 233–241.
11. Ellmer K., Welzel T. Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment // Journal of Materials Research. 2012. Vol. 27. No. 05. P. 765–779.
12. Elinson V.M., Shchur P.A., Kirillov D.V. et al. Study of the Mechanical Characteristics of Single-Layer and Multilayer Nanostructures Based on Carbon and Fluorocarbon Coatings // Pleiades Publishing, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2018. Vol. 12. No. 2. P. 342–345.
13. Kislyakov P.P., Hohlov Yu.A., Krynin A.G., Kondrashov S.V. Poluchenie i primenenie polimernoj plenki s prozrachnym elektroprovodyashhim pokrytiem na osnove oksida indiya, legirovannogo olovom [Receiving and application of polymer film with transparent electroconducting coating on the basis of the indium oxide alloyed by tin] // Trudy VIAM : elektron. nauch.-tenhich. zhurn. 2013. №11. St. 06. Available at: http://viam-works.ru (accessed at: September 21, 2018).
14. Komlev A.E., Shapovalov V.I., Shutova N.S. Magnetronnyy razryad v srede argona i kisloroda pri osazhdenii plenki oksida titana [Magnetron discharge in argon and oxygen in the deposition of a film of titanium oxide] // Zhurnal tekhnicheskoy fiziki. 2012. T. 82. №7. S. 134–136.
15. Navabpoura P., Ostovarpourb S., Hampshirea J. et al. The effect of process parameters on the structure, photocatalytic and self-cleaning properties of TiO2 and Ag–TiO2 coatings deposited using reactive magnetron sputtering // Thin Solid Films. 2014. Vol. 571. Part 1. P. 75–83.
16. Leóna J.J., Garretta M.P., Zhanga J., Kobayashi N.P. Aluminum titanium oxide alloys: Deposition of amorphous, transparent, corrosion-resistant films by pulsed DC reactive magnetron sputtering with RF substrate bias // Materials Science in Semiconductor Processing. 2015. Vol. 36. P. 96–102.
17. Stana G.E., Boteaa M., Bonia G.A. et al. Electric and pyroelectric properties of AlN thin films deposited by reactive magnetron sputtering on Si substrate // Applied Surface Science. 2015. Vol. 353. P. 1195–1202.
18. Fakhouri H. et al. Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering // Applied Catalysis B: Environmental. 2014. Vol. 144. Р. 12–21.
19. Juškevičius K. et al. High-rate reactive magnetron sputtering of zirconia films for laser optics applications // Applied Physics A. 2014. Vol. 116. No. 3. Р. 1229–1240.
20. Solovan M.N., Brus V.V., Maryanchuk P.D. i dr. Kineticheskiye svoystva tonkikh plenok TiN, poluchennykh metodom reaktivnogo magnetronnogo raspyleniya [Kinetic properties of TiN thin films obtained by the method of reactive magnetron sputtering] // Fizika tverdogo tela. 2013. T. 55. №11. S. 20–25.
21. Ievlev V.M., Kushchev S.B., Latyshev A.N. i dr. Spektry pogloshcheniya tonkikh plenok TiO2, sintezirovannykh reaktivnym vysokochastotnym magnetronnym raspyleniyem titana [Absorption spectra of thin TiO2 films synthesized by reactive high-frequency magnetron sputtering of titanium] // Fizika i tekhnika poluprovodnikov. 2014. T. 48. №7. S. 14–19.
22. Bykova Yu.V., Morozova N.S., Konishchev M.E. Issledovaniye poverkhnostnykh svoystv pokrytiy na osnove oksinitridov titana, osazhdennykh metodom reaktivnogo magnetronnogo raspyleniya [Investigation of the surface properties of coatings based on titanium oxynitrides, precipitated by the method of reactive magnetron sputtering] // Sb. trudov XVIII Mezhdunar. nauch.-praktich. konf. studentov, aspirantov i molodykh uchenykh «Sovremennyye tekhnika i tekhnologii». Tomsk, 2012. S. 129–130.
23. Marchenko V.A. Protsessy na poverkhnosti misheni pri reaktivnom raspylenii V v Ar–O2 sredakh [Processes on the target surface during reactive sputtering of V in Ar – O2 environment] // Izvestiya Rossiyskoy akademii nauk. Ser.: Fizicheskaya. 2009. T. 73. №7. S. 920–923.
24. Khokhlov Yu.A., Bogatov V.A., Krynin A.G. Vliyaniye raspredeleniya magnitnogo polya na svoystva ITO pokrytiya, poluchayemogo na polimernoy plenke metodom reaktivnogo magnetronnogo osazhdeniya [An influence of the magnetic field distribution on properties of ITO coating deposited on a polymer film by reactive magnetron sputtering method] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №12. St. 11. Available at: http://www.viam-works.ru (accessed: September 21, 2018). DOI: 10.18577/2307-6046-2014-0-12-11-11.
25. Khokhlov Yu.A., Bogatov V.A., Berezin N.M., Krynin A.G. Reaktivnoye magnetronnoye osazhdeniye ITO pokrytiya na polimernuyu plenku s primeneniyem sektsionirovannoy sistemy napuska gazov [Reactive magnetron deposition of ITO coating on the polymer film using a sectionalized gas feed system] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №5. St. 07. Available at: http://www.viam-works.ru (accessed: September 21, 2018). DOI: 10.18577/2307-6046-2015-0-5-7-7.
26. Grishin S.D., Mamonov V.I., Marakhtanov M.K., Khokhlov Yu.A. Opredeleniye energii ionov v plazme razryada s azimutalnym dreyfom elektronov [Determination of ion energy in a discharge plasma with azimuthal electron drift] // Fizika i khimiya obrabotki materialov. 1986. №2. S. 131–132.
27. Grishin S.D., Marakhtanov M.K., Ponkratov A.B., Khokhlov Yu.A. K raschetu energeticheskikh kharakteristik uskoritelya s azimutal\'nym dreyfom elektronov [Calculation of the energy characteristics of an accelerator with an azimuthal electron drift] // Fizika plazmy. 1985. T. 11. №2. S. 206–210.
28. Krylova T.N. Interferentsionnyye pokrytiya [Interference Coverage]. L.: Mashinostroyeniye, 1973. 224 s.

DOI: 10.18577/2071-9140-2019-0-1-23-36

UDC: 669.721.5

Pages: 23-36

I.A. Kozlov1, S.S. Vinogradov1, K.G. Tarasova1, N.V. Kulyushina2, V.A. Manchenko3

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Public Joint Stock Company «Rubin Aviation Corporation»,
[3] Bauman Moscow State Technical University (National Research University of Technology),

PLASMA ELECTROLYTIC OXIDATION OF MAGNESIUM ALLOYS (review)

During the second half of the last century and to the present day, scientists have developed various technologies for corrosion protection of magnesium alloys. The paper reviews the most promising of them - plasma electrolytic oxidation (РЕО). Models and possible conditions for the formation of protective coatings on the surface of magnesium alloys are presented. Based on the information received, the most effective and modern ways of further development of PEO technology are proposed.

Keywords: corrosion, magnesium alloys, conversion coatings, anodic oxidation, microarc oxidation, plasma electrolytic oxidation.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Stra-tegic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Trofimov N.V., Leonov A.A., Duyunova V.A., Uridiya Z.P. Litejnye magnievye splavy (obzor) [Cast magnesium alloys (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №12. St. 01. Available at: http://www.viam-works.ru (accessed: December 14, 2018). DOI: 10.18577/2307-6046-2016-0-12-1-1.
3. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
4. Zeng R.-C., Zhou W., Han E.-H., Ke W. Effect of pH value on corrosion of as-extruded AM60 magnesium alloy // Acta Metallurgica Sinica. 2005. Vol. 44. Issue 3. Р. 307–311.
5. Zeng R.-С., Han E.-Н., Ke W. et al. Corrosion fatigue of as-extruded AM60 magnesium alloy // Chinese Journal of Materials Research. 2005. Vol. 19. Issue 1. Р. 1–7.
6. Song G.-L., Atrens A. Corrosion mechanisms of magnesium alloys // Advance Engineering Materials. 1999. Vol. l. Issue 1. Р. 11–33.
7. Song G.-L., Atrens A. Understanding magnesium corrosion // Advance Engineering Materials. 2003. Vol. 5. Issue 12. Р. 837–858.
8. Eliezer D., Uzan P., Aghion E. Effect of second phases on the corrosion behavior of magnesium alloys // Materials Science Forum. 2003. Vol. 419–422. Р. 857–866.
9. Kablov E.N., Volkova E.F., Filonova E.V. Effect of ree on the phase composition and properties of a new refractory magnesium alloy of the Mg–Zn–Zr–REE system // Metal Science and Heat Treatment. 2017. Vol. 59. Issue 7–8. Р. 415–421.
10. Song G. Recent progress in corrosion and protection of magnesium alloys // Advanced Engineering Materials. 2005. Vol. 7. Issue 7. P. 563–586.
11. Ko Y.J., Chang D.Y., Lim J.D., Shin K.S. Effect of Mg17Al12 precipitate on corrosion behavior of AZ91D magnesium alloy // Materials Science Forum. 2003. Vol. 419–422. P. 851–856.
12. Lefebvre F., Nussbaum G. Extraction, Refining and fabrication of light metals. Ontario: Pergamon Press, 1991. Р. 19–31.
13. Kozlov I.A., Kulyushina N.V., Vinogradov S.S. Khimicheskiye nemetallicheskiye zashchitnyye pokrytiya dlya detaley iz magniyevykh splavov. Obzor [Chemical nonmetallic protective coatings for parts made from magnesium alloys. Review] // Korroziya: materialy, zashchita. 2017. №6. S. 37–48.
14. Kozlov I.A., Karimova S.A. Korrozija magnievyh splavov i sovremennye metody ih zashhity [Corrosion of magnesium alloys and modern methods of their protection] // Aviacionnye materialy i tehnologii. 2014. №2. S. 15–20. DOI: 10.18577/2071-9140-2014-0-2-15-20.
15. Karimova S.A., Kozlov I.A., Volkov I.A. Povyshenie zashhitnyh svojstv nemetallicheskih neorganicheskih pokrytij na magnievyh splavah [Increase of protective properties of non-metallic inorganic on magnesium alloys] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 09. Available at: http://viam-works.ru (accessed: December 14, 2018). DOI: 10.18577/2307-6046-2014-0-9-9-9.
16. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviatsionnye materialy i tekhnologii. 2015. №4 (37). S. 38–52. DOI: 10/18577/2071-9140-2015-0-4-38-52.
17. Karimova S.A., Duyunova V.A., Kozlov I.A. Konversionnoye pokrytiye dlya zharoprochnogo liteynogo magniyevogo splava ML10 [Conversion coating for heat-resistant foundry magnesium alloy ML10] // Liteyshchik Rossii. 2012. №2. S. 26–28.
18. Kozlova A.A., Kondrashov Je.K. Sistemy lakokrasochnyh pokrytij dlja protivokorro-zionnoj zashhity magnievyh splavov [Systems of paint coatings for anticorrosive protection of magnesium alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 44–47. DOI: 10.18577/2071-9140-2014-0-2-44-47.
19. Kozlov I.A., Kulyushina N.V., Kutyrev A.E. Vliyaniye formy polyarizuyushchego toka na zashchitnyye svoystva plazmennogo elektroliticheskogo pokrytiya na splave ML5 [Influence of the shape of the polarizing current on the protective properties of the plasma electrolytic coating on the ML5 alloy] // Materialovedeniye. 2015. №9 (222). S. 25–31.
20. Gray J.E., Luan B. Protective coatings on magnesium and its alloys – a critical review // Journal of Alloys and Compounds. 2002. Vol. 336. Issue 1–2. Р. 88–113.
21. Markov G.A., Terleyeva O.P., Shulepko Ye.K. Mikrodugovyye i dugovyye metody naneseniya zashchitnykh pokrytiy [Microarc and arc methods of applying protective coatings] // Tr. Mosk. in-ta nefti i gaza im. I.M. Gubkina. M., 1985. S. 54–56.
22. Markov G.A., Belevantsev V.I., Slonova A.I., Terleyeva O.P. Stadiynost v anodno-katodnykh mikroplazmennykh protsessakh [Staging in anodic-cathode microplasma processes] // Elektrokhimiya. 1989. T. 25. S. 1473–1479.
23. Suminov I.V., Epelfeld A.V., Lyudin V.B. i dr. Mikrodugovoye oksidirovaniye (teoriya, tekhnologiya, oborudovaniye) [Microarc oxidation (theory, technology, equipment)]. M.: Ekomet, 2005. 368 s.
24. Suminov I.V., Belkin P.N., Epelfeld A.V. i dr. Plazmenno-elektroliticheskoye modifitsirovaniye poverkhnosti metallov i splavov [Plasma electrolytic modification of the surface of metals and alloys]. M.: Tekhnosfera, 2011. T. 2. 512 s.
25. Kozlov I.A., Vinogradov S.S., Kulyushina N.V. Povysheniye zashchitnykh svoystv liteynykh magniyevykh splavov [Improving the protective properties of casting magnesium alloys] // Sb. dokl. nauchn.-tekhnich. konf. «Metallovedeniye i sovremennyye razrabotki v oblasti tekhnologiy lit\'ya, deformatsii i termicheskoy obrabotki legkikh splavov». M., 2016. S. 22.
26. Rakoch A.G., Khokhlov V.V., Bautin V.A. et al. Model concepts on the mechanism of microarc oxidation of metal materials and the control over this process // Protection of Metals. 2006. Vol. 42. Р. 158–169.
27. Rokoch A.G., Bardin I.V. Mikrodugovoye oksidirovaniye legkikh splavov [Microarc oxidation of light alloys] // Metallurg. 2010. №6. S. 58–61.
28. Vladimirov V.V. Mikrodugovoye oksidirovaniye magniyevykh splavov (obzor) [Microarc oxidation of magnesium alloys (review)] // Elektronnaya obrabotka materialov. 2014. T. 50. №3. S. 1–38.
29. Li Q., Linag J., Wang Q. Plasma Electrolytic Oxidation coatings on lightweight metals // Modern Surface Engineering Treatments. 2013. Vol. 4. Р. 75–99.
30. Song X., Lu J., Yin X., Jiang J., Wang J. The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy // Journal of Magnesium and Alloys. 2013. Vol. 1. Р. 318–322.
31. Rudnev V.S., Boguta D.L., Yarovaya T.P. et al. Microplasma oxidation of aluminum alloy in aqueous electrolytes with polyphosphate-Mg2+ complex anions // Protection of Metals. 1999. Vol. 35. Р. 473–476. 
32. Wernick S., Pinner R., Sheasby P.G. The Surface Treatment and Finishing of Aluminium and its Alloys // British Corrosion Journal. 1974. Vol. 9. Р. 1–2.
33. Wang P., Liu D., Li. J. Growth process and corrosion resistance of micro-arc oxidation coating on Mg–Zn–Cd magnesium alloys // Transaction of Nonferrous Metals Society of China. 2010. Vol. 20. P. 2198–2203.
34. Jovović J., Stojadinović S., Šišović N.M., Konjević N. Spectroscopic characterization of plasma during electrolytic oxidation (PEO) of aluminium // Surface and Coatings Technology. 2011. Vol. 206. Р. 24–28.
35. Jovović J., Stojadinović S., Šišović N.M., Konjević N. Spectroscopic study of plasma during electrolytic oxidation of magnesium- and aluminium-alloy // Journal of Quantitative Spectroscopy and Radiative Transfer. 2012. Vol. 113. Р. 1928–1937.
36. Hussein R.O., Northwood D.O., Nie X. Coating growth behavior during the plasma electrolytic oxidation process // Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. 2010. Vol. 28. Р. 766–773.
37. Stojadinovic S., Vasilic R., Belca I. et al. Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate // Corrosion Science. 2010. Vol. 52. Р. 3258–3265.
38. Sarvan M., Radić-Perić J., Kasalica B. et al. Investigation of long-duration plasma electrolytic oxidation of aluminum by means of optical spectroscopy // Surface and Coatings Technology. 2014. Vol. 254. Р. 270–276.
39. Parfenov E.V., Yerokhin A., Nevyantseva R.R. et al. Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling // Surface and Coatings Technology. 2015. Vol. 269. Р. 2–22.
40. Nechaev G.G., Popova S.S. Dynamic model of single discharge during microarc oxidation // Theoretical Foundations of Chemical Engineering. 2015. Vol. 49. Р. 447–452.
41. Belevantsev V.I., Terleyeva O.P., Markov G.A. i dr. Mikroplazmennyye elektrokhimicheskiye protsessy [Microplasma electrochemical processes] // Zashchita metallov. 1998. T. 34. №5. S. 471–486.
42. Zhang R.F. Film formation in the second step of micro-arc oxidation on magnesium alloys // Corrosion Science. 2010. Vol. 52. Р. 1285–1290.
43. Chai L., Yu X., Yang Z. et al. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking // Corrosion Science. 2008. Vol. 50. Р. 3274–3279.
44. Lu G.-H., Chen H., Li L. et al. Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy // Current Applied Physics. 2009. Vol. 9. Р. 126–130.
45. Khaselev O., Weiss D., Yahalom J. Structure and composition of anodic films formed on binary Mg–Al alloys in KOH-aluminate solutions under continuous sparking // Corrosion Science. 2001. Vol. 43. Р. 1295–1307.
46. Shen D., Ma H., Guo C. et al. Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy // Journal of Rare Earths. 2013. Vol. 31. Р. 1208–1213.
47. Lee S.-J., Do L.H.T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy // Surface and Coatings Technology. 2016. Vol. 307. Р. 781–789.
48. Hwang D.Y., Kim Y.M., Shin D.H. Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride // Materials Transactions. 2009. Vol. 50. Р. 671–678.
49. Kazanski B., Kossenko A., Zinigrad M., Lugovskoy A. Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy // Applied Surface Science. 2013. Vol. 287. Р. 461–466.
50. Němcová A., Skeldon P., Thompson G.E., Pacal B. Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy // Surface and Coatings Technology. 2013. Vol. 232. Р. 827–838.
51. Ghasemi A., Raja V.S., Blawert C. et al. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings // Surface and Coatings Technology. 2010. Vol. 204. Р. 1469–1478.
52. Liang J., Srinivasan P.B., Blawert C. et al. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes // Electrochimica Acta. 2009. Vol. 54. Р. 3842–3850.
53. Mori Y., Koshi A., Liao J. et al. Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate – Silicate mixture electrolytes // Corrosion Science. 2014. Vol. 88. Р. 254–262.
54. Wen Q., Cao F.-H., Shi Y.-Y. et al. The effect of phosphate on MAO of AZ91D magnesium using AC power source // Materials and Corrosion. 2008. Vol. 59. Р. 819–824.
55. Kozlov I.A., Vinogradov S.S., Napriyenko S.A. Struktura i svoystva PEO-pokrytiya, formiruyemogo na splave ML5 v silikatno-fosfatnom elektrolite [The structure and properties of the PEO-coating formed on the ML5 alloy in silicate-phosphate electrolyte] // Korroziya: materialy, zashchita. 2017. №8. S. 35–41.
56. Luo H., Cai Q., Wei B. et al. Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy // Journal of Alloys and Compounds. 2008. Vol. 464. Р. 537–543.
57. Cho J.-Y., Hwang D.-Y., Lee D.-H. et al. Influence of potassium pyrophosphate in electrolyte on coated layer of AZ91 Mg alloy formed by plasma electrolytic oxidation // Transactions of Nonferrous Metals Society of China (English Edition). 2009. Vol. 19. Р. 824–828.
58. Wu D., Liu X., Lu K. et al. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface // Applied Surface Science. 2009. Vol. 255. Р. 7115–7120.
59. Zhang R.F., Xiong G.Y., Hu C.Y. Comparison of coating properties obtained by MAO on magnesium alloys in silicate and phytic acid electrolytes // Current Applied Physics. 2010. Vol. 10. Р. 255–259.
60. Zhang R.F., Zhang S.F., Yang N. et al. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys // Journal of Alloys and Compounds. 2012. Vol. 539. Р. 249–255.
61. Hussein R.O., Zhang P., Nie X. et al. The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62 // Surface and Coatings Technology. 2011. Vol. 206. Р. 1990–1997.
62. Rakoch A.G., Dub A.V., Bapdin I.V. i dr. Vliyaniye katodnoy sostavlyayushchey toka na kinetiku rosta mikrodugovykh pokrytiy na poverkhnosti alyuminiyevykh splavov [The influence of the cathode component of the current on the growth kinetics of microarc coatings on the surface of aluminum alloys] // Korroziya: materialy, zashchita. 2008. №11. S. 30.
63. Rakoch A.G., Mogurova Yu.V., Bardin I.V. Ekzotermicheskoye okisleniye dna kanalov mikrorazryadov pri mikrodugovom oksidirovanii alyuminiyevykh splavov [Exothermic oxidation of the bottom of the channels of microdischarges during microarc oxidation of aluminum alloys] // Korroziya: materialy, zashchita. 2007. №12. S. 36–40.
64. Kozlov I.A., Kulyushina N.V., Vinogradov S.S. Vliyaniye samoproizvol\'nogo i prinuditel\'nogo zatukhaniya mikroplazmennogo razryada na svoystva formiruyemogo PEO-pokrytiya na splave ML5 [Influence of spontaneous and forced attenuation of the microplasma discharge on the properties of the formed PEO-coating on the ML5 alloy] // Sb. nauchn.-tekhn. konf. «Fundamental\'nyye issledovaniya i posledniye dostizheniya v oblasti zashchity ot korrozii, stareniya i biopovrezhdeniy materialov i slozhnykh tekhnicheskikh sistem v razlichnykh klimaticheskikh usloviyakh». M.: VIAM, 2016. S. 8.
65. Kozlov I.A., Vinogradov S.S., Kulyushina N.V. Vliyanie formy polyarizuyushchikh impulsov na strukturu i zashchitnye svojstva PEO-pokrytiya, formiruemogo na splave ML5 [Influence of the form of the polarizing impulses on structure and protective properties PEO coating formed on alloy ML5] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №8 (56). St. 12. Available at: http://www.viam-works.ru (accessed: April 16, 2018). DOI: 10.18577/2307-6046-2017-0-8-12-12.
66. Yerokhin A.L., Snizhko L.O., Gurevina N.L. et al. Discharge characterization in plasma electrolytic oxidation of aluminum // Journal of Physics D: Applied Physics. 2003. Vol. 36. Р. 2110–2120.
67. Yerokhin A.L., Shatrov T.A., Samsonov V. et al. Oxide ceramic coatings on aluminum alloys produced by a pulsed bipolar plasma electrolytic oxidation process // Surface and Coatings Technology. 2005. Vol. 199. Р. 150–157.
68. Dunleavy C.S., Curran J.A., Clyne T.W. Time dependent statistics of plasmadischarge parameters during bulk AC plasma electrolytic oxidation of aluminium // Applied Surface Science. 2013. Vol. 268. Р. 397–409.
69. Nomine A., Troughton S.C., Nomine A.V. et al. High speed video evidence for localised discharge cascades during plasma electrolytic oxidation // Surface and Coatings Technology. 2015. Vol. 269. Р. 125–130.
70. Troughton S.C., Nomine A., Nomine A.V. et al. Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation // Applied Surface Science. 2015. Vol. 359. Р. 405–411.
71. Kozlov I.A., Vinogradov S.S., Uridiya Z.P., Duyunova V.A., Manchenko V.A. Energeticheski effektivnaya tekhnologiya plazmennogo elektroliticheskogo oksidirovaniya splava ML5 [Energetically efficient technology of plasma electrolytic oxidation of the alloy ML5] // Sb. IV Vseross. konf. «Rol\' fundamental\'nykh issledovaniy pri realizatsii «Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda» M.: VIAM, 2018. S. 138–151.
72. Nominéb A., Deana J., Clyne T.W. Effect of individual discharge cascades on the microstructure of plasma electrolytic oxidation coatings // Applied Surface Science. 2016. Vol. 389. Р. 260–269.
73. Zou B., Lü G.-H., Zhang G.-L., Tian Y.-Y. Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy // Transactions of Nonferrous Metals Society of China (English Edition). 2015. Vol. 25. Р. 1500–1505.
74. Hwang I.J., Hwang D.Y., Ko Y.G., Shin D.H. Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation // Surface and Coatings Technology. 2012. Vol. 206. Р. 3360–3365.
75. Lu G.-H., Chen H., Gu W.-C. et al. Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology // Journal of Materials Processing Technology. 2008. Vol. 208. Р. 9–13.
76. Gu Y.H., Chen C.-F., Bandopadhyay S. et al. Residual stress in pulsed dc microarc oxidation treated AZ31 alloy // Surface Engineering. 2012. Vol. 28. Р. 498–502.
77. Su P., Wu X., Jiang Z., Guo Y. Effects of working frequency on the structure and corrosion resistance of plasma electrolytic oxidation coatings formed on a ZK60 Mg alloy // International Journal of Applied Ceramic Technology. 2011. Vol. 8. Р. 112–119.
78. Wang Y., Wang J., Zhang J., Zhang Z. Characteristics of anodic coatings oxidized to different voltage on AZ91D Mg alloy by micro-arc oxidization technique // Materials and Corrosion. 2005. Vol. 56. Issue 2. P. 88–92.
79. Durdu S., Usta M. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation // Applied Surface Science. 2012. Vol. 261. P. 774–782.
80. Kozlov I.A., Vinogradov S.S., Kulyushina N.V., Kutyrev A.E., Pastukhov A.S. Vliyaniye sootnosheniya amplitud polyarizuyushchego toka na zashchitnyye svoystva PEO-pokrytiya, formiruyemogo na splave ML5 [Influence of the ratio of the amplitudes of the polarizing current on the protective properties of the PEO coating formed on the ML5 alloy] // Korroziya: materialy, zashchita. 2016. №11. S. 40–48.
81. Pezzato L., Brunelli K., Gross S. et al. Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys // Journal of Applied Electrochemistry. 2014. Vol. 44. Issue 7. P. 867–879.
82. Wang P., Liu D.-X., Li J.-P. et al. Growth process and corrosion resistance of micro-arc oxidation coating on Mg–Zn–Gd magnesium alloys // Transactions of Nonferrous Metals Society of China (English Edition). 2010. Vol. 20. Issue 11. P. 2198–2203.
83. Arrabal R., Matykina E., Hashimoto T., Skeldon P., Thompson G.E. Characterization of AC PEO coatings on magnesium alloys // Surface and Coatings Technology. 2009. Vol. 203. P. 2207–2220.
84. Song Y.L., Liu Y.H., Yu S.R. et al. Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance // Applied Surface Science. 2008. Vol. 254. Issue 10. P. 3014–3020.
85. Wang Y., Wang X., Zhang T. et al. Role of β Phase during Microarc Oxidation of Mg Alloy AZ91D and Corrosion Resistance of the Oxidation Coating // Journal of Materials Science & Technology. 2013. Vol. 20. Issue 10. P. 1129–1133.
86. Chen Y., Yang Y., Zhang W. et al. Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy // Journal of Alloys and Compounds. 2017. Vol. 718. P. 92–103.
87. Kozlov I.A., Vinogradov S.S., Uridiya Z.P., Duyunova V.A., Manchenko V.A. Effekt predvaritelnogo travleniya splava ML5 pered plazmennym elektroliticheskim oksidirovaniyem [Effect of preliminary etching of alloy ML5 before plasma electrolytic oxi-dation] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №9. St. 04. Available at: http://www.viam-works.ru (accessed: September 28, 2018). DOI: 10.18577/2307-6046-2018-0-9-32-42.

DOI: 10.18577/2071-9140-2019-0-1-37-42

UDC: 20.179.111.4

Pages: 37-42

E.I. Kosarina1, O.A. Krupnina1, A.A. Demidov1, N.A. Mikhaylova1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

DIGITAL OPTICAL PATTERN AND ITS DEPENDENCE ON THE RADIATION IMAGE AT NON-DESTRUCTIVE TESTING BY METHOD OF DIGITAL RADIOGRAPHY

The description of theoretical researches and experiments on application of non-destructive testing by method of digital radiography is provided. Conditions of the best adaptation of the radiation image to the applied detector, ensuring the preset parameters of the digital optical pattern of the monitored objectes are defined. Rather simple analytical expression suitable for engineering calculations for computation of the digital pattern contrast at the set sensitivity of control has been received.

Keywords: digital radiography, radiation and digital images, flat panel detector, contrast of the image, relation «signal/noise» (OSSh), transfer function of the flat panel detector.

Reference List

1. Kablov E.N. Innovatsionnyye razrabotki FGUP «VIAM» GNTS RF po realizatsii «Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda» // Aviatsionnyye materialy i tekhnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Dominanta natsionalnoy tekhnologicheskoy initsiativy. Problemy uskoreniya razvitiya additivnykh tekhnologiy v Rossii [Dominant of the national technology initiative. Problems of accelerating the development of additive technologies in Russia] // Metally Evrazii. 2017. №3. S. 2–6.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
4. Moiseyev N.N. Matematicheskiye zadachi sistemnogo analiza: uch. posobiye. 2-ye izd. [Mathematical problems of system analysis: tutotual. 2nd ed.]. M.: Librokom, 2012. 488 s.
5. Kalman R., Farb P., Arbib M. Ocherki po matematicheskoy teorii system [Essays on the mathematical theory of systems]. M.: Librokom, 2012. 354 s.
6. Sukharev A.G. Minimaksnyye algoritmy v teorii chislennogo analiza [Minimax algorithms in the theory of numerical analysis]. M.: Nauch. i ucheb. lit., 2010. 281 s.
7. Golovinskiy P.A. Matematicheskiye modeli [Mathematical models]. M.: Nauch. i ucheb. lit., 2011. Kn. 1. S. 5673.
8. Gilderman Yu.I. Zakon i sluchay [Law and case]. Novosibirsk: Nauka, 1991. 200 s.
9. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematics Handbook for Scientists and Engineers]. M.: Nauka, 1978. 832 s.
10. Ivchenko G.I., Medvedev Yu.I. Matematicheskaya statistika: ucheb. [Mathematical statistics: textbook]. M.: Librokom, 2014. 352 s.
11. Borovkov A.A. Teoriya veroyatnostey [Probability theory]. M.: Librokom, 2016. 656 s.
12. Demidov A.A., Stepanov A.V., Turbin Ye.M., Krupnina O.A. O rezhimakh rentgenovskogo kontrolya, obespechivayushchikh formirovaniye radiatsionnykh izobrazheniy s zadannym kontrastom [The х-ray testing modes providing with radiation imaging with predetermined contrast] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 80–85. DOI: 10.18577/2071-9140-2016-0-4-80-85.
13. Kosarina E.I., Krupnina O.A., Demidov A.A., Turbin E.M. Tsifrovaya radiografiya v nerazrushayushchem kontrole aviatsionnoy tekhniki [Digital radiography in nondestructive testing of aerostructures] // Aviacionnye materialy i tehnologii. 2017. №S. S. 562–574. DOI: 10.18577/2071-9140-2017-0-S-562-574.
14. Kosarina E.I., Krupnina O.A., Demidov A.A., Turbin E.M. Vliyaniye energii izlucheniya na formirovaniye opticheskogo izobrazheniya pri rentgenovskom kontrole [Effect of radiation energy on the formation of an optical image during X-ray control] // Defektoskopiya. 2018. №3 S. 58‒63.
15. Mayorov A.A. Tsifrovyye tekhnologii v nerazrushayushchem kontrole // Sfera Neftegaz. 2009. №9. C. 2637.
16. Mayorov A.A. Kompyuternaya radiografiya s ispolzovaniyem fluorestsentnykh zapominayushchikh plastin – chto eto takoye? [Digital technologies in non-destructive testing] // V mire nerazrushayushchego kontrolya. 2004. №3 (25). S. 42–43.
17. Stepanov A.V., Kosarina E.I., Demidov A.A. Kompyuternaya rentgenografiya s primeneniem fotostimulirovannyh plastin [Computer radiograghy using photostimulated plates] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 79–85. DOI: 10.18577/2071-9140-2015-0-4-79-85.
18. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazheniy. 3-ye izd., ispr. i dop. [Digital Image Processing. 3rd ed., rev. and add.]. M.: Tekhnosfera, 2012. 1104 s.
19. Moreira E.V., Fritz M.C. Flat-panel detectors are accepted for digital radiography in place of conventional radiography in pipeline weld inspection // IV Conferencia Panamericana de END Buenos Aires. 2007. 13 p.
20. Bavendiek K., Heike U., Meade W.D. et al. New Digital Radiography Procedure Exceeds Film Sensitivity Considerably in Aerospace Applications ECNDT. 2006. 16 p.

DOI: 10.18577/2071-9140-2019-0-1-43-48

UDC: 620.1

Pages: 43-48

D.Ya. Barinov1, P.S. Marahovskiy1, E.Yu. Maltceva1, E.D. Besprozvanniy2, E.E. Aliasova2

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Limited Liability Company «Ruaslox»,

RESEARCH OF THERMAL CONDUCTIVITY OF PRINTED CIRCUIT BOARDS BASED ON ALUMINUM SUBSTRATE AND ALUMINA DIELECTRIC

Printed circuit boards (PCB) based on aluminum substrate with dielectric layer are widely used for production of electronic devices with significant heat generation. The performance properties of the boards and the required elements of the cooling systems will depend on the thermophysical properties of both the board itself and its dielectric layer. This article describes the thermal conductivity of multilayer printed circuit boards coated with aluminum oxide. The dependence of the integral thermal conductivity on the thickness of the substrate and the number of coatings is shown. A technique for estimating the thermal conductivity of alumina coatings is presented.

Keywords: thermal conductivity, thermal resistance, alumina, coating, substrate, multilayer package, PCB.

Reference List

1. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Sovremennye alyuminievye i alyuminij-litievye splavy [Modern aluminum and aluminum-lithium alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 195–211.
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminiy-litiyevyye splavy novogo pokoleniya i sloistyye alyumostekloplastiki i ikh osnove [Aluminum-lithium alloys of the new generation and layered aluminum-glass plastics and their base] // Tsvetnyye metally. 2016. №8. S. 86–91.
4. Kashin D.S., Stekhov P.A. Sovremennyye teplozashchitnyye pokrytiya poluchennyye metodom elektronno-luchevogo napyleniya (obzor) [Modern thermal barrier coatings obtained by electron-beam physical vapor deposition (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №2. St. 10. Available at: http://www.viam-works.ru (accessed: November 15, 2018). DOI: 10.18577/2307-6046-2018-0-2-10-10.
5. Gorlov D.S., Aleksandrov D.A., Zaklyakova O.V., Azarovskiy Ye.N. Issledovaniye vozmozhnosti zashchity intermetallidnogo titanovogo splava ot fretting-iznosa putem naneseniya ionno-plazmennogo pokrytiya [Investigation of the possibility of protection of intermetallic titanium alloy against fretting wear by ion-plasma coating] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №4 (64). St. 06. Available at: http://www.viam-works.ru (accessed: November 15, 2018). DOI: 10.18577/2307-6046-2018-0-4-51-58.
6. Demin S.A., Vinogradov S.S. Remont khimicheskogo oksidnogo pokrytiya na uglerodistoy stali [Repair of chemical oxide coating on carbon steel] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №9 (69). St. 05. Available at: http://www.viam-works.ru (accessed: November 15, 2018). DOI: 10.18577/2307-6046-2018-0-9-43-50.
7. Vinogradov S.S., Nikiforov A.A., Demin S.A., Chesnokov D.V. Zashchita ot korrozii uglerodistykh stalej [Protection against corrosion of carbon steel] // Aviacionnye materialy i tehnologii. 2017. №S. S. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
8. Pavlovskaya T.G., Kozlov I.A., Volkov I.A., Zakharov К.Е. Formation of hard wear-resistant anodic oxide coatings on parts made of casting aluminium alloys // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 04. Available at: http://viam-works.ru (accessed: November 15, 2018). DOI: 10.18577/2307-6046-2015-0-8-4-4.
9. Rusalox. Available at: http://www.rusalox.ru (accessed: November 16, 2018).
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Stra-tegic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. ASTM E1461–01. Standard Test Method for Thermal Diffusivity by the Flash Method. 2001. P. 1–13.
12. ISO 22007-4:2017. Plastics -- Determination of thermal conductivity and thermal diffusivity -- Part 4: Laser flash method. 2017. P. 1–17.
13. GOST R 57943–017. Plastmassy. Opredeleniye teploprovodnosti i temperaturoprovodnosti. Chast 4. Metod lazernoy vspyshki [State Standard 57943–017. Plastics Determination of thermal conductivity and thermal diffusivity. Part 4. Laser flash method]. M.: Standartinform, 2017. 12 s.
14. GOST 166–89. Shtangentsirkuli. Tekhnicheskiye usloviya [State Standard 166–89. Calipers. Technical conditions]. M.: Izd-vo standartov, 1989. 10 s.
15. GOST 6507–90. Mikrometry. Tekhnicheskiye usloviya [State Standard 6507–90. Micrometers. Technical conditions]. M.: Izd-vo standartov, 1990. 11 s.
16. Loshchinin Yu.V., Folomeykin Yu.I., Pakhomkin S.I. Issledovaniye teployemkosti metallicheskikh materialov s pokrytiyem metodom lazernoy vspyshki [Investigation of the heat capacity of metallic materials with laser flash coating] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №9. S. 40–44.
17. GOST R 56754. Plastmassy. Differentsialnaya skaniruyushchaya kalorimetriya (DSK). Chast 4. Opredeleniye udelnoy teployemkosti [State Standard 56754. Plastics. Differential Scanning Calorimetry (DSC). Part 4. Determination of specific heat]. M.: Standartinform, 2016. 14 s.

DOI: 10.18577/2071-9140-2019-0-1-49-56

UDC: 620.1

Pages: 49-56

O.V. Mitrakov1, N.O. Yakovlev1, N.A. Yakusheva1, A.V. Grinevich1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

DESTRUCTION FEATURES OF STEEL 20ХГСН2МФА-ВД DURING THE FRACTURE TOUGHNESS TEST

The article reviews the destruction features of specimens of steel 20ХГСН2МФА-ВД during the fracture tough-ness test. It has been found that the destruction of the samples with small thickness (10 mm) is conducted by the shift from shear stresses. The article analyzes the deviation of the fracture trajectory from the plane of initial fatigue cracks. It is shown that such development of cracks is due to the stress-strain state of the material at its top. In-creasing of the samples thickness changes the nature of destruction - a significant separation zone is formed. In the determination of fracture toughness on samples with a thickness of 50 mm takes place stepwise development of cracks. The bearing load of the samples of steel 20ХГСН2МФА-ВД does not change due to large areas of plastic deformation, inhibiting the destruction. Reducing of the test temperature to -70°C led to a macro-brittle fracture of 50 mm thick samples and a decrease in the fracture toughness.

Keywords: fracture toughness, shear, detachment, the trajectory of the crack, safe damage, stress-strain state, brittleness.

Reference List

1. Makhutov N.A., Moskvichev V.V., Morozov У.M., Goldshteyn R.V. Sovremennyye zadachi mekhaniki razrusheniya i mekhaniki katastrof [Modern problems of destruction mechanics and catastrophe mechanics] // Zavodskaya laboratoriya. Diagnostika materialov. 2017. T. 83. №10. S. 55–64.
2. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
3. Grinevich A.V., Laptev A.B., Skripachev S.Yu., Nuzhnyj G.A. Matritsa prochnostnykh kharakteristik dlya otsenki predelnykh sostoyanij konstruktsionnykh metallicheskikh materialov [Matrix strength characteristics for the assessment of limit states of structural metallic materials] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 67–74. DOI: 10.18577/2071-9140-2018-0-2-67-74.
4. Kablov E.N., Grinevich A.V., Yerasov V.S. Kharakteristiki prochnosti metallicheskikh aviatsionnykh materialov i ikh raschetnyye znacheniya [Strength characteristics of metallic aviation materials and their calculated values] // 75 let. Aviatsionnyye materialy. M.: VIAM, 2007. S. 370–379.
5. Makhutov N.A., Moskvichev V.V., Morozov E.M., Goldshteyn R.V. Unifikatsiya metodov ispytaniy konstruktsionnykh materialov na treshchinostoykost. Istoriya problemy i formirovaniye normativnoy bazy [Unification of methods for testing structural materials for crack resistance. The history of the problem and the formation of the regulatory framework] // Zavodskaya laboratoriya. Diagnostika materialov. 2017. T. 83. №10. S. 41–52.
6. Shlyannikov V.N., Yarullin R.R., Ishtyryakov I.S. Razvitiye poverkhnostnykh treshchin v polykh tsilindricheskikh obraztsakh pri kombinirovannom tsiklicheskom nagruzhenii [The development of surface cracks in hollow cylindrical specimens with combined cyclic loading] // Zavodskaya laboratoriya. Diagnostika materialov. 2016. T. 82. №8. S. 47–54.
7. Makhutov N.A., Makarenko I.V., Makarenko L.V. Raschetno-eksperimentalnyj analiz napryazhenno-deformirovannogo sostoyaniya dlya naklonnykh poluellipticheskikh poverkhnostnykh treshchin [Calculated and experimental analysis of the stress-strain state for oblique semi-elliptic surface cracks] // Zavodskaya laboratoriya. Diagnostika materialov. 2016. T. 82. №3. S. 49–53.
8. Solovyev A.E., Golynets S.A., Khvatsky K.K., Aslanyan I.R. Provedenie staticheskih ispytanij pri rastyazhenii na mashinah firmy Zwick/Roell [Performing of static tensile tests on Zwick/Roell machines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 12. Available at: http://viam-works.ru (accessed: December 11, 2018). DOI: 10.18577/2307-6046-2015-0-8-12-12.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Grigorenko V.B., Morozova L.V. Primenenie rastrovoj elektronnoj mikroskopii dlya izucheniya nachal\'nykh stadij razrusheniya [Application of the scanning electron microscopy for studying of initial destruction stages] // Aviacionnye materialy i tehnologii. 2018. №1 (50). S. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
11. Cherepanov G.P. Mekhanika khrupkogo razrusheniya [Mechanics of brittle fracture]. Izhevsk: IKI, 2012. 872 s.
12. Ivlev D.D. Mekhanika plasticheskikh sred [Mechanics of plastic media]. M.: Fizmatlit, 2002. T. 2. 448 s.
13. Williams M.L. On the stress distribution at the base of stationary crack // Journal of Applied Mechanics. 1957. Vol. 24. P. 109–114.
14. Williams M.L. The bending stress distribution at the base of stationary crack // Journal of Applied Mechanics. 1961. Vol. 28. No. 1. P. 78–82.
15. Makhutov N.A., Lebedev M.P., Bol\'shakov A.M., Zakharova M.I. Osobennosti vozniknoveniya chrezvychaynykh situatsiy na gazoprovodakh v usloviyakh Severa [Features of emergency situations on gas pipelines in the conditions of the North] // Vestnik Rossiyskoy akademii nauk. 2017. T. 87. №9. S. 858–862.
16. Kablov E.N., Lebedev M.P., Startsev O.V., Golikov N.I. Klimaticheskiye ispytaniya materialov, elementov konstruktsiy, tekhniki i oborudovaniya v usloviyakh ekstremal\'no nizkikh temperature [Climatic tests of materials, structural elements, machinery and equipment in conditions of extremely low temperatures] // Trudy 6-go Evraziyskogo simpoziuma po problemam prochnosti materialov i mashin dlya regionov kholodnogo klimata. Yakutsk, 2013. S. 5–7.
17. Bolshakov A.M., Burnashev A.V. Issledovaniye udarnoy vyazkosti stali magistralnogo gazoprovoda posle dlitelnoy ekspluatatsii v usloviyakh Kraynego Severa [Study of the toughness of steel of the gas pipeline after long-term operation in the conditions of the Far North] // Deformatsiya i razrusheniye. 2018. №8. S. 43–45.
18. Ilin A.V., Artemev D.M., Filin V.Yu. Analiz korrelyatsii kriticheskikh temperatur vyazkokhrupkogo perekhoda i temperatury tormozheniya khrupkogo razrusheniya na osnove chislennogo modelirovaniya MKE [Analysis of the correlation of the critical temperatures of the viscous-brittle transition and the braking temperature of brittle fracture on the basis of FEM numerical simulation] // Zavodskaya laboratoriya. Diagnostika materialov. 2018. T. 84. №2. S. 46–55.

DOI: 10.18577/2071-9140-2019-0-1-57-65

UDC: 669.018.44:669.245

Pages: 57-65

I.A. Treninkov1, A.V. Zavodov1, N.V. Petrushin1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

RESEARCH OF CRYSTAL STRUCTURE AND MICROSTRUCTURE OF THE ZHS32-VI NICKEL-BASE SUPERALLOY SYNTHESIZED BY SELECTIVE LASER FUSION METHOD, AFTER HIGH-TEMPERATURE MECHANICAL TESTS

Structure researches after the following tests are conducted: low-cyclic fatigue under the mild and rigid modes, long-term strength, short-time strength. Researches are carried out by methods of the X-ray structural analysis and transmission electron microscopy. Carboborites are found. After tests for long-term strength TCP-phases are found. It is determined that mechanisms of microstructure degradation are depending on temperature and time of testing. The collective recrystallization is revealed.

Keywords: selective laser melting (SLМ), nickel-base superalloy ZHS32-VI, X-ray structural analysis, transmission electron microscopy, crystallographic structure, dislocations, stacking fault, γ/γ’-phase, long-term strength, short-time strength, low-cycle fatigue.

Reference List

1. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
2. Shalin R.E., Svetlov I.L., Kachanov E.B., Tolorayya V.N., Gavrilin O.S. Monokristally nikelevykh zharoprochnykh splavov [Single crystals of nickel superalloys]. M.: Mashinostroyeniye, 1997. 336 s.
3. Petrushin N.V., Visik E.M., Gorbovets M.A., Nazarkin R.M. Strukturno-fazovyye kharakteristiki i mekhanicheskiye svoystva monokristallov zharoprochnykh nikelevykh reniysoderzhashchikh splavov s intermetallidno-karbidnym uprochneniyem [Structural-phase characteristics and mechanical properties of single crystals of heat-resistant nickel rhenium-containing alloys with intermetallic-carbide hardening] // Metally. 2016. №4. S. 57–70
4. Orlov M.R. Fiziko-khimicheskiye osobennosti obrazovaniya por termicheskogo proiskhozhdeniya i rabotosposobnost monokristallicheskikh lopatok turbiny [Physico-chemical features of the formation of pores of thermal origin and the performance of single-crystal turbine blades] // Deformatsiya i razrusheniye materialov. 2008. №6. S. 43–48.
5. Nerush S.V., Ermolayev A.S., Rogalev A.M., Vasilenko S.A. Issledovaniye tekhnologii vosstanovleniya tortsa pera rabochey lopatki pervoy stupeni turbiny vysokogo davleniya (TVD) iz splava ZhS32-VI metodom lazernoy gazoporoshkovoy naplavki s primeneniyem metallicheskogo poroshka splava ZHS32-VI, izgotovlennogo metodom atomizatsii [Research of retailoring process of the rotor blade feather end of the first stage of high-pressure turbine (HPT) from ZS32-VI alloy by laser metal deposition with ZS32-VI metal alloy powder dispersed by atomization] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8 (44). St. 04. Available at: http://www.viam-works.ru (accessed: November 29, 2018). DOI: 10.18577/2307-6046-2016-0-8-4-4.
6. Gerasimov V.V. Ot monokristallicheskih neohlazhdaemyh lopatok k lopatkam turbin s pronikayushhim (transpiracionnym) ohlazhdeniem, izgotovlennym po additivnym tehnologiyam (obzor po tehnologii litya monokristallicheskih lopatok GTD) [From single-crystal uncooled blades to turbines blades with penetration (transpiration) cooling made by additive technologies (review on technology of single-crystal GTE bladescasting)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 01. Available at: http://www.viam-works.ru (accessed: November 29, 2018). DOI: 10.18577/2307-6046-2016-0-10-1-1.
7. Mageramova L., Vasilyev B., Rinzburskiy V. Novel designs of turbine blades for additive manufacturing // Proceedings of ASME Turbo Expo 2016: Turbine Technical Conference and Exposition GT2016. June 13–17, 2016. Seoul, South Korea. Copyright 2016 by ASME. P. 1–7.
8. Ramsperger M., Körner C. Selective electron beam melting of the single crystalline nickel-base superalloy CMSX-4: from columnar grains to a single crystal // Superalloys 2016: Proceedings of the 13th International symposium on Superalloys. Champion (Pennsylvania). Publ. Minerals, Metals and Materials Society. 2016. P. 341–349.
9. Supersplavy II: Zharoprochnyye materialy dlya aerokosmicheskikh i promyshlennykh energoustanovok / pod red. Ch.T. Simsa, N.S. Stoloffa, U.K. Khagelya v 2 kn. Per. s angl. [Superalloys II: Heat-resistant materials for aerospace and industrial power plants / ed. By Ch.T. Sims, N.S. Stoloff, W.K. Hagel. 2 books. Tans. from Engl.. M.: Metallurgiya, 1995. Kn. I / pod red. R.E. Shalina. 384 s.
10. Kablov E.N. Additivnyye tekhnologii – dominanta natsionalnoy tekhnologicheskoy initsiativy [Additive technologies - the dominant of the national technology initiative] // Intellekt I tekhnologii. 2015. №2 (11). S. 52–55.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Stra-tegic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Petrushin N.V., Evgenov A.G., Zavodov A.V., Treninkov I.A. Struktura i prochnost zharoprochnogo nikelevogo splava ZhS32-VI, poluchennogo metodom selektivnogo lazernogo splavleniya na monokristallicheskoy podlozhke [The structure and strength of the ZS32-VI heat-resistant nickel alloy obtained by the method of selective laser alloying on a single-crystal substrate] // Materialovedeniye. 2017. №11. S. 19–26.
13. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: November 29, 2018). DOI: 10.18577/2307-6046-2014-0-5-4-4.
14. Vostrikov A.V., Suhov D.I. Proizvodstvo granul metodom PREP dlja additivnyh tehnologij – tekushhij status i perspektivy razvitija [The production of powders by PREP method for addictive manufacturing – current situation and development prospects] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 03. Available at: http://www.viam-works.ru (accessed: November 29, 2018). DOI: 10.18577/2307-6046-2016-0-8-3-3.
15. Lutterotti L., Matthies S., Wenk H.-R. MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld Texture Analysis and more // Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12). 1999. Vol. 1. P. 1599–1604.

DOI: 10.18577/2071-9140-2019-0-1-66-73

UDC: 620.193.21

Pages: 66-73

M.G. Kurs1, E.V. Nikolaev1, D.V. Abramov1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

FULL-SCALE AND ACCELERATED TESTS OF METALLIC AND NONMETALLIC MATERIALS: KEY FACTORS AND SPECIALIZED STANDS

The paper presents an analysis of the factors of materials climatic aging , on the basis of which methods for conducting field-accelerated tests were developed. The main approaches to the implementation of the field-accelerated tests of the metallic materials with the additional effect of chloride-containing aerosols on a specialized stand in comparison with the exposure on stationary stands are considered. The results of estimating the parameters of climatic aging of non-metallic materials with increasing duration of exposure to solar radiation are presented.

Keywords: corrosion, aging, full-scale climatic tests, full-scale accelerated tests.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Lutsenko A.N., Kurs M.G., Laptev A.B. Obosnovaniye srokov naturnykh klimaticheskikh ispytaniy metallicheskikh materialov v atmosfere chernomorskogo poberezh\'ya. Analiticheskiy obzor [Justification of the timing of full-scale climatic tests of metallic ma-terials in the atmosphere of the Black Sea coast. Analytical review] // Voprosy materialovedeniya. 2016. №3 (87). S. 126–137.
4. ISO 11474:1998. Corrosion of metals and alloys. Corrosion tests in artificial atmosphere – Accelerated outdoor test by intermittent spraying of a salt solution (Scab test). Available at: https://www.iso.org/standard/19426.html (accessed: November 20, 2018).
5. Corvo F., Minotas J., Delgado J., Arroyave C. Changes in atmospheric corrosion rate caused by chloride ions depending on rain regime // Corrosion science. 2005. Vol. 47. P. 883–892.
6. Panchenko Yu.M., Strekalov P.V., Chesnokov D.V., Zhirnov A.D., Zhilikov V.P., Karimova S.A., Tararaeva T.I. Zavisimost korrozionnoy stoykosti splava D16 ot zasolennosti i meteoparametrov primorskoy atmosfery [Dependence of corrosion resistance of alloy D16 on salinity and meteoparameters of the seaside atmosphere] // Aviacionnye materialy i tehnologii. 2010. №3. S. 8–14.
7. Sinyavskiy V.S., Kalinin V.D., Aleksandrova T.V. Novyy metod uskorennykh korrozionnykh ispytaniy alyuminiyevykh splavov [New method of accelerated corrosion testing of aluminum alloys] // Tekhnologiya legkikh splavov. 2013. №2. S. 89–93.
8. Karimova S.A., Zhilikov V.P., Mikhaylov A.A., Chesnokov D.V. i dr. Naturno-uskorennyye ispytaniya alyuminiyevykh splavov v usloviyakh vozdeystviya morskoy atmosfery [Accelerated tests of aluminum alloys under the influence of the marine atmosphere] // Korroziya: materialy, zashchita. 2012. №10. S. 1–3.
9. Semenychev V.V. Korrozionnaya stoykost obraztsov splava 1201 v morskikh subtropikakh [Corrosion resistance of alloy 1201 samples in marine subtropics] // Korroziya: materialy, zashchita. 2015. №3. S. 1–5.
10. Artmeladze L.I., Gurvich L.Ya., Lashchevskiy V.B. Korrozionnaya stoykost vysokoprochnykh nerzhaveyushchikh staley v morskom climate [Corrosion resistance of high-strength stainless steels in the maritime climate] // Zashchita metallov. 1994. T. 30. №3. S. 282–286.
11. Pavlov M.R., Nikolaev E.V., Andreeva N.P., Barbotko S.L. K voprosu o metodike otsenki stoy-kosti polimernykh materialov k vozdeystviyu solnechnogo izlucheniya (obzor) [To question of technique of assessment of firmness of polymeric materials to influence of solar radiation (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №7. St. 11. Available at: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2016-0-7-11-11.
12. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at in-fluence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: November 20, 2018).
13. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 1. Issledo-vanie vliyaniya sorbirovannoy vlagi na epoksidnuyu matritsu i ugleplastik na ee osnove [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 1. Research of influence of sorbirovanny moisture on epoxy matrix and carbon plastics on its basis] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 11. Available at: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2015-0-12-11-11.
14. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh ma-terialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: November 20, 2018). DOI: 10.18577/2307-6046-2016-0-6-11-11.
15. Startsev O.V., Vapirov Yu.M., Deyev I.S. i dr. Vliyaniye dlitelnogo atmosfernogo stareniya na svoystva i strukturu ugleplastika [The effect of long-term atmospheric aging on the properties and structure of carbon plastic] // Mekhanika kompozitnykh materialov. 1986. №4. S. 637–642.
16. Apicella A., Tessieri R., De Cataldis C. Sorption Modes of Water in Glassy Epoxies // Journal of Membrane Science, 1984. Vol. 18. P. 211–225.
17. Ermolayeva M.A., Merkulova V.M. Vliyaniye stareniya na svoystva organoplastikov [Influence of aging on the properties of organoplastics] // Prilozheniye k zhurnalu «Aviatsionnaya promyshlennost». M.: Mashinostroyeniye. 1985. T. 2. S. 20–23.
18. Rudolf A.Ya., Savin V.F., Startsev O.V., Blaznov A.N., Raskutin A.E. Prodolnyy izgib dlya opredeleniya prochnosti plit aviatsionnykh ugleplastikov [Longitudinal bending to determine the strength of aircraft carbon fiber plates] // Tekhnika i tekhnologiya proizvodstva teploizolyatsionnykh materialov iz mineralnogo syrya: dokl. IX Vseros. nauch.-praktich. konf. 17–19 iyunya 2009 g. Biysk: Izd. BTI AltGTU, 2009. S. 148-153.
19. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost\' primorskoy atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggressiveness of the seaside atmosphere. Part 1. Influences (review)] // Korroziya: materialy, zashchita. 2013. №12. S. 6–18.
20. Grashchenkov D.V., Nikolayev E.V., Efimov V.A., Kirillov V.N. Moskovskiy tsentr klimaticheskikh ispytaniy FGUP «VIAM» – regionalnyy tsentr ispytaniy materialov v predstavitelnoy zone umerennogo klimata [Moscow Center for Climatic Testing of FSUE «VIAM» – a regional center for testing materials in a representative zone of temperate climate] // Sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviatsii «Gidroaviasalon–2012». Moskva, 2012. S. 202–208.
21. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovaniye korrozionnogo razrusheniya deformiruyemykh alyuminiyevykh splavov pri naturno-uskorennykh ispytaniyakh. Chast 1 [Investigation of corrosion destruction of deformable aluminum alloys during accelerated field tests. Part 1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–126.
22. Kurs M.G., Antipov V.V., Lutsenko A.N., Kutyrev A.E. Integralnyj koeffitsient korrozionnogo razrusheniya deformiruemykh alyuminievykh splavov [Integral figure of corrosion damage of deformed aluminum alloys] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 24–32. DOI: 10.18577/2071-9140-2016-0-3-24-32.

DOI: 10.18577/2071-9140-2019-0-1-74-81

UDC: 620.193.21

Pages: 74-81

E.Yu. Vetrova1, V.K. Shchekin1, M.G. Kurs1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

COMPARATIVE EVALUATION OF METHODS FOR THE DETERMINATION OF CORROSION AGGRESSIVITY OF THE ATMOSPHERE

The paper presents methods for monitoring and analyzing two aerochemical parameters of the atmosphere - the deposition rate from the atmosphere of chloride ions and sulfur dioxide - and the results of measurements during the year at eight climate stations. During determining the deposition of atmospheric sulfur dioxide, the «sulphate cup» method was tested, the dose-response functions were used to calculate the annual mass loss of standard metals for this method, and comparable values were obtained with the «sulphate plate» method in deter-mining the categories of corrosivity. The analysis of the samples on the sulfate content by turbidimetric method was carried out.

Keywords: aerochemical parameters, methods «wet candle» and «dry cloth», sulphate plate/cup/cylinder, turbidimetric analysis.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
4. Varchenko E.A., Kurs M.G. Shchelevaya korroziya alyuminiyevykh splavov i nerzhaveyush-chikh staley v morskoy vode [Crevice corrosion of aluminum alloys and stainless steel in marine water] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №7 (67). St. 11. Available at: http://www.viam-works.ru (accessed: November 13, 2018). DOI: 10.18577/2307-6046-2018-0-7-96-105.
5. Kurs M.G., Kutyrev A.E., Fomina M.A. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri laboratornyh i naturnyh ispytaniyah [Research of corrosion damage of wrought aluminium alloys at laboratory and full-scale tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 10. Available at: http://www.viam-works.ru (accessed: November 13, 2018). DOI: 10.18577/2307-6046-2016-0-8-10-10.
6. Varchenko E.A., Kurs M.G. Naturnyye ispytaniya metallicheskikh materialov v morskoy vode: klyuchevyye podkhody k otsenke stoykosti k korrozii i biopovrezhdeniyu [Natural tests of metal materials in sea water: key approaches to estimation of resistance to corrosion and biodeterioration] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №11 (59). St. 12. Available at: http://www.viam-works.ru (accessed: November 13, 2018). DOI: 10.18577/2307-6046-2017-0-11-12-12.
7. ISO 9223:2012. Korroziya metallov i splavov – Korrozivnost atmosfer – Klassifikatsiya, opredeleniye i otsenka [ISO 9223: 2012. Corrosion of metals and alloys – Atmospheric corrosion – Classification, definition and evaluation]. Shveytsariya, Zheneva: ISO, 2012. 15 s.
8. GOST 9.039–74. YESZKS. Korrozionnaya agressivnost atmosfery [State Standard 9.039–74. Unified system of protection against corrosion and aging. Corrosion aggressiveness of the atmosphere]. M.: Izd-vo standartov, 1974. 39 s.
9. ISO 9225:2012. Korroziya metallov i splavov – Korrozivnost atmosfer – Izmereniye okruzhayushchikh parametrov, vliyayushchikh na korrozivnost atmosfer [ISO 9225: 2012. Corrosion of metals and alloys - Atmospheric corrosion – Measurement of ambient parameters affecting atmospheric corrosivity]. Shveytsariya, Zheneva: ISO, 2012. 22 s.
10. Zhirnov A.D., Strekalov P.V., Karimova S.A. i dr. Sezonnaya dinamika protsessa korrozii metallov na beregovoy zone Chernogo morya [Seasonal dynamics of the process of metal corrosion on the coastal zone of the Black Sea] // Korroziya: materialy, zashchita. 2007. №8. S. 23–36.
11. Kurs M.G., Antipov V.V., Lutsenko A.N., Kutyrev A.E. Integralnyj koeffitsient korrozionnogo razrusheniya deformiruemykh alyuminievykh splavov [Integral figure of corrosion damage of deformed aluminum alloys] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 24–32. DOI: 10.18577/2071-9140-2016-0-3-24-32.
12. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoy atmosfery. Ch. 1. Faktory vliyaniya (obzor) [The integral coefficient of corrosion destruction of wrought aluminum alloys] // Korroziya: materialy, zashchita. 2013. №12. S. 6–18.
13. Semenychev V.V. Korrozionnaya stojkost listov splava D16ch.-T v morskih subtropikah [Corrosion resistance of alloy D16ch.-T sheets in marine subtropics] // Trudy VIAM: el-ektron. nauch.-tehnich. zhurn. 2014. №7. St. 11. Available at: http://www.viam-works.ru (ac-cessed: November 13, 2018). DOI: 10.18577/2307-6046-2014-0-7-11-11.
14. Mikhaylov A.A., Zhirnov A.D., Zhilikov V.P., Karimova S.A. i dr. Korrozivnost primorskikh atmosfer [Corrosivity of coastal atmospheres] // Sb. mater. VII nauch. konf. po gidroaviatsii «Gidroaviasalon–2008». 2008. S. 299–306.
15. ASTM G140-08. Standartnyy metod dlya opredeleniya skorosti osazhdeniya iz atmosfery khloridov metodom vlazhnoy svechi [Standard method for determining the deposition rate of chlorides from the atmosphere by the wet candle method]. SSHA, ASTM, 2008. 4 s.
16. ASTM G91-2011. Standartnaya praktika dlya monitoringa skorosti osazhdeniya iz atmosfery SO2 dlya otsenki atmosfernoy korrozii [ASTM G91-2011. Standard practice is to monitor the rate of deposition from an SO2 atmosphere to evaluate atmospheric corrosion]. SSHA, ASTM, 2011. 6 s.
17. GOST 4166–76. Reaktivy. Natriy sernokislyy. Tekhnicheskiye usloviya [State Atandard 4166–76. Reagents. Sodium sulfate. Technical conditions]. M.: Standartinform, 2005. 9 s.

DOI: 10.18577/2071-9140-2019-0-1-82-87

UDC: 620.179

Pages: 82-87

P.S. Marahovskiy1, E.Yu. Maltceva1, D.Ya. Barinov1, A.V. Zuev1, M.V. Smirnov2

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,
[2] Joint Stock Company «Academician M.F. Reshetnev Information Sattelite Systems»,

EXPERIENCE IN MEASURING THE THERMAL LINEAR EXPANSION COEFFICIENT OF COMBINED CORDS USING ORGANIC AND GLASS FIBERS

The paper presents the results of studies of the average temperature coefficient of linear expansion of combined cords made of organic material and glass fiber. Approaches are proposed to minimize the measurement error of thermal expansion of cords in the temperature range from -150 to +100°C. The effect of stresses on the test results of the average temperature coefficient of linear expansion of aramid and arimide fibers is shown. The dependence of the change in thermal expansion of organic filaments on the content of sulfuric acid in them is reflected.

Keywords: arimide fibers, aramid fibers, glass fibers, temperature coefficient of linear expansion, dilatometry, cord.

Reference List

1. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
2. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: November 17, 2018).
3. Gusev Yu.A., Tverdaya O.N., Gromova A.A. Ugleplastik na osnove svyazuyushchego s nizkoy temperaturoy otverzhdeniya i uglerodnoy ravnoprochnoy tkani [Carbon plastic on the basis of binding curing with low temperature and carbon equally strong of the fabric] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №6 (54). St. 06. Available at: http:/www.viam-works.ru (accessed: November 17, 2018). DOI: 10.18577/2307-6046-2017-0-6-6-6.
4. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
5. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt & Tekhnologii. 2012. №S. S. 260–265.
6. Amatuni A.H. Metody i pribory dlya opredeleniya temperaturnykh koeffitsiyentov lineynogo rasshireniya materialov [Methods and instruments for determining the temperature coefficients of linear expansion of materials]. M.: Izd-vo standartov, 1972. 140 s.
7 TA Instruments. Available at: http://www.tainstruments.com (accessed: November 17, 2018).
8. Netzsch. Available at: http://www.netzsch-thermal-analysis.com/ (accessed: November 17, 2018).
9. Linseis Thermal Analysis. Available at: http://www.linseis.com (accessed: November 17, 2018).
10.Mettler Toledo. Available at: http://www.mt.com (accessed: November 17, 2018).
11.PromKompleksInzhiniring. Available at: http:// pki-pribor.ru (accessed: November 17, 2018).
12. GOST 15173–70. Plastmassy. Metod opredeleniya srednego koeffitsiyenta teplovogo rasshireniya [State Standard 15173–70. Plastics Method for determining the average coefficient of thermal expansion]. M.: Izd-vo standartov, 1970. 6 s.
13. ASTM E831-14. Standard test method for linear thermal expansion of solid materials by thermomechanical analysis. 2014. 5 p.
14. GOST 32618.2–2014. Plastmassy. Termomekhanicheskiy analiz (TMA). Chast 2. Opredeleniye koeffitsiyenta lineynogo teplovogo rasshireniya i temperatury steklovaniya [State Standard 32618.2–2014. Plastics Thermomechanical analysis (TMA). Part 2. Determination of the coefficient of linear thermal expansion and glass transition temperature]. M.: Standartinform, 2014. 11 s.
15. Kirillov V.N., Ablekova Z.P., Gudkova G.K., Abeliov YA.A. Opticheskiy dilatometr dlya opredeleniya lineynogo rasshireniya volokon, plenochnykh i elastichnykh materialov v shirokom diapazone temperatur [Optical dilatometer for determining the linear expansion of fibers, film and elastic materials in a wide range of temperatures] // Zavodskaya laboratoriya 1978. №12. 4 s.
16. Sposob opredeleniya temperaturnogo koeffitsiyent lineynogo rasshireniya volokon: pat. 646236 SSSR [The method for determining the temperature coefficient of linear expansion of fibers: Pat. 646236 USSR]; zayavl. 21.12.76; opubl. 05.02.79.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
18. Mazurin O.V., Totesh A.S., Streltsina M.V. i dr. Teplovoye rasshireniye stekla [Thermal expansion of glass]. L.: Nauka, 1969. 216 s.
19. Sposob formovaniya i promyvki aramidnogo volokna i regeneratsii sernoy kisloty: pat. 2473722 Ros. Fedaratsiya [Method of forming and washing aramid fiber and regeneration of sulfuric acid: Pat. 2473722 Rus. Federation]; zayavl. 10.10.08; opubl. 27.01.13.
20. Gladkov A.N. Razrabotka protsessa polucheniya vysokoprochnykh i vysokomodul\'nykh nitey armalon: dis. … kand. khim. nauk.[ Development of the process of obtaining high-strength and high-modulus threads of Armalon: thesis, Cand. Sc. (Chem.)]. M., 2007. 109 s.
21. Kuznetsov D.A. Proizvodstvo sernoy kisloty [Sulfuric acid productio]. M.: Vysshaya shkola, 1968. 296 s.

DOI: 10.18577/2071-9140-2019-0-1-88-94

UDC: 621.318.2

Pages: 88-94

R.B. Morgunov1, V.P. Piskorskiy1, R.A. Valeev1, D.V. Korolev1

[1] Federal State Unitary Enterprise «All-Russian Scientific Research Institute of Aviation Materials»,

THE THERMAL STABILITY OF RARE-EARTH MAGNETS SUPPORTED BY MEANS OF THE MAGNETOCALORIC EFFECT

The possibility of stabilizing the working temperature of the magnet by means of cooling devices based on the magnetocaloric effect is considered. The results of magnetic hysteresis study obtained by the authors for MgO(111)/W(5 nm)/Ho(400 nm)/W(5 nm) samples are presented. The magnitude of the magnetocaloric effect is estimated by calculating the magnetic entropy. The obtained results are compared with modern works in the field of magnetic calorimetry and materials that are recognized as the most promising for the implementation of cooling cycles in a magnetic field. It was found that holmium films in the range of 120-140 K are applicable for the development of magneto-cooling devices on their basis.

Keywords: magneto calorometric effect, magnetic entropy, holmium, Curie temperature, direction of magnetization, the magnetic order, rare earth magnets.

Reference List

1. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strate-gicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
3. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Pr–Dy–Fe–Co–B [Phase composition of the Pr–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
4. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termostabil\'nyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
5. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Korolev D.V. Zavisimost svojstv spechennyh materialov sistemy Nd–Dy–Fe–Co–B ot tehnologicheskih parametrov [Properties dependence of the Nd–Dy–Fe–Co–B sintered materials on technological parameters] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 24–29. DOI: 10.18577/2071-9140-2015-0-S2-24-29.
6. Piskorskij V.P., Korolev D.V. Valeev R.A., Morgunov R.B., Kunitsyna E.I. Fizika I inzheneriya postoyannykh magnitov: ucheb. posobie [Physics and engineering of constant magnets: manual]. M.: VIAM, 2018. 360 p.
7. Giauque W.F., MacDougall D.P. Attainment of Temperatures Below 1 K Absolute by Demagnetization of Gd2(SO4)3•8H2O // Physical Review. 1933. No. 9. Vol. 43. P. 768.
8. Zimm C., Jastrab A., Sternberg A. et al. Description and performance of a near-room temperature magnetic refrigerator // Advances in Cryogenic Engineering. 1998. Vol. 43. P. 1759–1766.
9. Pecharsky V.K., Gschneidner K.A. Giant magnetocaloric effect in Gd5(Si2Ge2) // Physical Review Letters. 1997. Vol. 78. P. 3–6.
10. Pecharsky V.K., Gschneidner K.A. Magnetocaloric effect and magnetic refrigeration // Journal of Magnetism and Magnetic Materials. 1999. Vol. 200. Р. 44–56.
11. Gschneidner K.A., Pecharsky V.K., Tsokol A.O. Recent developments in magnetocaloric materials // Reports on Progress in Physics. 2005. Vol. 68. P. 1479.
12. Zverev V.I., Tishin A.M., Min Zou et al. Magnetic and magnetothermal properties, and the magnetic phase diagram of single-crystal holmium along the easy magnetization direction // Journal of Physics: Condensed Matter. 2015. Vol. 27. P. 146002.
13. Miller C.W., Williams D.V., Bingham N.S., Srikanth H. Magnetocaloric effect in Gd/W thin film heterostructures // Journal of Applied Physics. 2010. Vol. 107. P. 09A903.
14. Tishina E.N. magnitnoe okhlazhdenie – uzhe realnost [Magnetic cooling – already reality]. Available at: http://www.amtc.ru/publications/articles/2054/ (accessed: December 25, 2018).
15. Gschneidner K.A., Pechersky V.K. Thirty years of near room temperature magnetic cooling: Where we are today and future prospects // International journal of refrigeration. 2008. Vol. 31. P. 945–961.